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Preface

Despite its usefulness, design optimization remains underused in in-
dustry. One of the reasons for this is the shortage of design optimization
courses in undergraduate and graduate curricula. This is changing;
today, most top aerospace and mechanical engineering departments in-
clude at least one graduate-level course on numerical optimization. We
have also seen design optimization increasingly used in an expanding
number of industries.

The word engineering in the title reflects the types of problems
and algorithms we focus on, even though the methods are applicable
beyond engineering. In contrast to explicit analytic mathematical
functions, most engineering problems are implemented in complex
multidisciplinary codes that involve implicit functions. Such problems
might require hierarchical solvers and coupled derivative computation.
Furthermore, engineering problems often involve many design variables
and constraints, requiring scalable methods.

The target audience for this book is advanced undergraduate and
beginning graduate students in science and engineering. No previous
exposure to optimization is assumed. Knowledge of linear algebra,
multivariable calculus, and numerical methods is helpful. However,
these subjects’ core concepts are reviewed in an appendix and as needed
in the text. The content of the book spans approximately two semester-
length university courses. Our approach is to start from the most
general case problem and then explain special cases. The first half
of the book covers the fundamentals (along with an optional history
chapter). In contrast, the second half, from Chapter 8 onward, covers
more specialized or advanced topics.

Our philosophy in the exposition is to provide a detailed enough
explanation and analysis of optimization algorithms so that readers
can implement a basic working version. Although we do not encourage
readers to use their implementations instead of existing software for
solving optimization problems, implementing a method is crucial in
understanding the method and its behavior.* A deeper knowledge of
these methods is useful for developers, researchers, and those who
want to use numerical optimization more effectively. The problems at

Xi

*In the words of Donald Knuth: “The ul-
timate test of whether I understand something
is if I can explain it to a computer. I can say
something to you and you'll nod your head,
but I'm not sure that I explained it well. But
the computer doesn’t nod its head. It repeats
back exactly what I tell it. In most of life, you
can bluff, but not with computers.”
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the end of each chapter are designed to provide a gradual progression
in difficulty and eventually require implementing the methods. Some
of the problems are open-ended to encourage students to explore a
given topic on their own. When discussing the various optimization
techniques, we also explain how to avoid the potential pitfalls of using a
particular method and how to employ it more effectively. Practical tips
are included throughout the book to alert the reader to common issues
encountered in engineering design optimization and how to address
them.

We have created a repository with code, data, templates, and
examples as a supplementary resource for this book: https://github.
com/mdobook/resources. Some of the end-of-chapter exercises refer
to code or data from this repository.

Go forth and optimize!


https://github.com/mdobook/resources
https://github.com/mdobook/resources
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Introduction

Optimization is a human instinct. People constantly seek to improve
their lives and the systems that surround them. Optimization is intrinsic
in biology, as exemplified by the evolution of species. Birds optimize
their wings’ shape in real time, and dogs have been shown to find
optimal trajectories. Even more broadly, many laws of physics relate to
optimization, such as the principle of minimum energy. As Leonhard
Euler once wrote, “nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”

The term optimization is often used to mean “improvement”, but
mathematically, it is a much more precise concept: finding the best
possible solution by changing variables that can be controlled, often
subject to constraints. Optimization has a broad appeal because it is
applicable in all domains and because of the human desire to make
things better. Any problem where a decision needs to be made can be
cast as an optimization problem.

Although some simple optimization problems can be solved an-
alytically, most practical problems of interest are too complex to be
solved this way. The advent of numerical computing, together with
the development of optimization algorithms, has enabled us to solve
problems of increasing complexity.

By the end of this chapter you should be able to:

1. Understand the design optimization process.
2. Formulate an optimization problem.

3. Identify key characteristics to classify optimization prob-
lems and optimization algorithms.

4. Select an appropriate algorithm for a given optimization
problem.

J

Optimization problems occur in various areas, such as economics,
political science, management, manufacturing, biology, physics, and
engineering. This book focuses on the application of numerical opti-
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mization to the design of engineering systems. Numerical optimization
first emerged in operations research, which deals with problems such as
deciding on the price of a product, setting up a distribution network,
scheduling, or suggesting routes. Other optimization areas include
optimal control and machine learning. Although we do not cover these
other areas specifically in this book, many of the methods we cover are
useful in those areas.

Design optimization problems abound in the various engineering
disciplines, such as wing design in aerospace engineering, process
control in chemical engineering, structural design in civil engineering,
circuit design in electrical engineering, and mechanism design in
mechanical engineering. Most engineering systems rarely work in
isolation and are linked to other systems. This gave rise to the field of
multidisciplinary design optimization (MDO), which applies numerical
optimization techniques to the design of engineering systems that
involve multiple disciplines.

In the remainder of this chapter, we start by explaining the design
optimization process and contrasting it with the conventional design
process (Section 1.1). Then we explain how to formulate optimization
problems and the different types of problems that can arise (Section 1.2).
Because design optimization problems involve functions of different
types, these are also briefly discussed (Section 1.3). (A more detailed
discussion of the numerical models used to compute these functions is
deferred to Chapter 3.) We then provide an overview of the different
optimization algorithms, highlighting the algorithms covered in this
book and linking to the relevant sections (Section 1.4). We connect
algorithm types and problem types by providing guidelines for selecting
the right algorithm for a given problem (Section 1.5). Finally, we
introduce the notation used throughout the book (Section 1.6).

1.1 Design Optimization Process

Engineering design is an iterative process that engineers follow to
develop a product that accomplishes a given task. For any product
beyond a certain complexity, this process involves teams of engineers
and multiple stages with many iterative loops that may be nested. The
engineering teams are formed to tackle different aspects of the product
at different stages.

The design process can be divided into the sequence of phases shown
in Fig. 1.1. Before the design process begins, we must determine the
requirements and specifications. This might involve market research,
an analysis of current similar designs, and interviews with potential

Requirements
and
specifications

l

Conceptual
design

#

Preliminary
design

%

Detailed
design

#

Final
design

Fig. 1.1 Design phases.
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customers. In the conceptual design phase, various concepts for the
system are generated and considered. Because this phase should be
short, it usually relies on simplified models and human intuition. For
more complicated systems, the various subsystems are identified. In
the preliminary design phase, a chosen concept and subsystems are
refined by using better models to guide changes in the design, and
the performance expectations are set. The detailed design phase seeks
to complete the design down to every detail so that it can finally be
manufactured. All of these phases require iteration within themselves.
When severe issues are identified, it may be necessary to “go back to the
drawing board” and regress to an earlier phase. This is just a high-level
view; in practical design, each phase may require multiple iterative
processes.

Design optimization is a tool that can replace an iterative design
process to accelerate the design cycle and obtain better results. To
understand the role of design optimization, consider a simplified
version of the conventional engineering design process with only one
iterative loop, as shown in Fig. 1.2 (top). In this process, engineers make
decisions at every stage based on intuition and background knowledge.

Each of the steps in the conventional design process includes human
decisions that are either challenging or impossible to program into com-
puter code. Determining the product specifications requires engineers
to define the problem and do background research. The design cycle
must start with an initial design, which can be based on past designs or
anew idea. In the conventional design process, this initial design is
analyzed in some way to evaluate its performance. This could involve
numerical modeling or actual building and testing. Engineers then
evaluate the design and decide whether it is good enough or not based
on the results.” If the answer is no—which is likely to be the case for at
least the first few iterations—the engineer changes the design based
on intuition, experience, or trade studies. When the design is finalized
when it is deemed satisfactory.

The design optimization process can be represented using a flow
diagram similar to that for the conventional design process, as shown in
Fig. 1.2 (bottom). The determination of the specifications and the initial
design are no different from the conventional design process. However,
design optimization requires a formal formulation of the optimization
problem that includes the design variables that are to be changed, the
objective to be minimized, and the constraints that need to be satisfied.
The evaluation of the design is strictly based on numerical values for the
objective and constraints. When a rigorous optimization algorithm is
used, the decision to finalize the design is made only when the current

*The evaluation of a given design in engi-
neering is often called the analysis. Engi-
neers and computer scientists also refer to
it as simulation.
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Manual iteration

Change
design
manually

<_| No

Evaluate
performance

Initial

Specifications design

good?

Optimization

Update
design
variables

Initial
design

Evaluate
objective and
constraints

Specifications

Formulate
optimization
problem

Change initial design or No

reformulate problem good?

-

design satisfies the optimality conditions that ensure that no other
design “close by” is better. The design changes are made automatically
by the optimization algorithm and do not require intervention from
the designer.

This automated process does not usually provide a “push-button”
solution; it requires human intervention and expertise (often more
expertise than in the traditional process). Human decisions are still
needed in the design optimization process. Before running an op-
timization, in addition to determining the specifications and initial
design, engineers need to formulate the design problem. This requires
expertise in both the subject area and numerical optimization. The
designer must decide what the objective is, which parameters can be
changed, and which constraints must be enforced. These decisions

7

have profound effects on the outcome, so it is crucial that the designer
formulates the optimization problem well.

Is the design

Optimality
achieved?

lYes

Is the design

_ Yes  uEee design

Yes

Final design

Fig. 1.2 Conventional (top) versus de-
sign optimization process (bottom).
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After running the optimization, engineers must assess the design
because it is unlikely that the first formulation yields a valid and practical
design. After evaluating the optimal design, engineers might decide
to reformulate the optimization problem by changing the objective
function, adding or removing constraints, or changing the set of design
variables. Engineers might also decide to increase the models’ fidelity if
they fail to consider critical physical phenomena, or they might decide
to decrease the fidelity if the models are too expensive to evaluate in an
optimization iteration.

Post-optimality studies are often performed to interpret the optimal
design and the design trends. This might be done by performing pa-
rameter studies, where design variables or other parameters are varied
to quantify their effect on the objective and constraints. Validation of
the result can be done by evaluating the design with higher-fidelity
simulation tools, by performing experiments, or both. It is also possi-
ble to compute post-optimality sensitivities to evaluate which design
variables are the most influential or which constraints drive the design.
These sensitivities can inform where engineers might best allocate
resources to alleviate the driving constraints in future designs.

Design optimization can be used in any of the design phases shown
in Fig. 1.1, where each phase could involve running one or more design
optimizations. We illustrate several advantages of design optimization
in Fig. 1.3, which shows the notional variations of system performance,
cost, and uncertainty as a function of time in design. When using
optimization, the system performance increases more rapidly compared
with the conventional process, achieving a better end result in a shorter
total time. As a result, the cost of the design process is lower. Finally,
the uncertainty in the performance reduces more rapidly as well.

Considering multiple disciplines or components using MDO ampli-
fies the advantages illustrated in Fig. 1.3. The central idea of MDO is to
consider the interactions between components using coupled models
while simultaneously optimizing the design variables from the various
components. In contrast, sequential optimization optimizes one com-
ponent at a time. Even when interactions are considered, sequential
optimization might converge to a suboptimal result (see Section 13.1
for more details and examples).

In this book, we tend to frame problems and discussions in the
context of engineering design. However, the optimization methods
are general and are used in other applications that may not be design
problems, such as optimal control, machine learning, and regression.
In other words, we mean “design” in a general sense, where variables
are changed to optimize an objective.

Design
optimization  Tncreased

PL‘I" |‘()]” mance

Conventional
design| process

System
performance

Reduced cost

Cumulative
cost

Reduced time

\

Uncertainty

Reduced
uncertainty

Time in design

Fig. 1.3 Compared with the conven-
tional design process, MDO increases
the system performance, decreases
the design time, reduces the total cost,
and reduces the uncertainty ata given
point in time.
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1.2 Optimization Problem Formulation

The design optimization process requires the designer to translate
their intent to a mathematical statement that can then be solved by
an optimization algorithm. Developing this statement has the added
benefit that it helps the designer better understand the problem. Being
methodical in the formulation of the optimization problem is vital
because the optimizer tends to exploit any weaknesses you might have in your
formulation or model. An inadequate problem formulation can either
cause the optimization to fail or cause it to converge to a mathematical
optimum that is undesirable or unrealistic from an engineering point
of view—the proverbial “right answer to the wrong question”.

To formulate design optimization problems, we follow the procedure
outlined in Fig. 1.4. The first step requires writing a description of the
design problem, including a description of the system, and a statement
of all the goals and requirements. At this point, the description does
not necessarily involve optimization concepts and is often vague.

The next step is to gather as much data and information as possible
about the problem. Some information is already specified in the
problem statement, but more research is usually required to find all the
relevant data on the performance requirements and expectations. Raw
data mightneed to be processed and organized to gather the information
required for the design problem. The more familiar practitioners are
with the problem, the better prepared they will be to develop a sound
formulation to identify eventual issues in the solutions.

At this stage, it is also essential to identify the analysis procedure
and gather information on that as well. The analysis might consist of a
simple model or a set of elaborate tools. All the possible inputs and
outputs of the analysis should be identified, and its limitations should
be understood. The computational time for the analysis needs to be
considered because optimization requires repeated analysis.

It is usually impossible to learn everything about the problem before
proceeding to the next steps, where we define the design variables, objec-
tive, and constraints. Therefore, information gathering and refinement
are ongoing processes in problem formulation.

1.2.1 Design Variables

The next step is to identify the variables that describe the system, the
design variables,* which we represent by the column vector:

x=[x1,x2,..., %] . (1.1)

1. Describe the
problem

%

2. Gather
information

#

3. Define the
design variables

%

4. Define the
objective

#

5. Define the

constraints

Fig. 1.4 Steps in optimization prob-
lem formulation.

*Some texts call these decision variables or
simply variables.
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This vector defines a given design, so different vectors x correspond
to different designs. The number of variables, n,, determines the
problem’s dimensionality.

The design variables must not depend on each other or any other
parameter, and the optimizer must be free to choose the elements of
x independently. This means that in the analysis of a given design,
the variables must be input parameters that remain fixed throughout
the analysis process. Otherwise, the optimizer does not have absolute
control of the design variables. Another possible pitfall is to define
a design variable that happens to be a linear combination of other
variables, which results in an ill-defined optimization problem with
an infinite number of combinations of design variable values that
correspond to the same design.

The choice of variables is usually not unique. For example, a square
shape can be parametrized by the length of its side or by its area, and
different unit systems can be used. The choice of units affects the
problem’s scaling but not the functional form of the problem.

The choice of design variables can affect the functional form of the
objective and constraints. For example, some nonlinear relationships
can be converted to linear ones through a change of variables. It is also
possible to introduce or eliminate discontinuities through the choice of
design variables.

A given set of design variable values defines the system’s design, but
whether this system satisfies all the requirements is a separate question
that will be addressed with the constraints in a later step. However, it
is possible and advisable to define the space of allowable values for
the design variables based on the design problem’s specifications and
physical limitations.

The first consideration in the definition of the allowable design
variable values is whether the design variables are continuous or discrete.
Continuous design variables are real numbers that are allowed to vary
continuously within a specified range with no gaps, which we write as

X, <x; <%, i=1,...,ny, (1.2)

where x and ¥ are lower and upper bounds on the design variables,
respectively. These are also known as bound constraints or side constraints.
Some design variables may be unbounded or bounded on only one
side.

When all the design variables are continuous, the optimization prob-
lem is said to be continuous.” Most of this book focuses on algorithms
that assume continuous design variables.

T This is not to be confused with the conti-
nuity of the objective and constraint func-
tions, which we discuss in Section 1.3.
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When one or more variables are allowed to have discrete values,
whether real or integer, we have a discrete optimization problem. An
example of a discrete design variable is structural sizing, where only
components of specific thicknesses or cross-sectional areas are available.
Integer design variables are a special case of discrete variables where
the values are integers, such as the number of wheels on a vehicle.
Optimization algorithms that handle discrete variables are discussed
in Chapter 8.

We distinguish the design variable bounds from constraints because
the optimizer has direct control over their values, and they benefit from
a different numerical treatment when solving an optimization problem.
When defining these bounds, we must take care not to unnecessarily
constrain the design space, which would prevent the optimizer from
achieving a better design that is realizable. A smaller allowable range
in the design variable values should make the optimization easier.
However, design variable bounds should be based on actual physical
constraints instead of being artificially limited. An example of a
physical constraint is a lower bound on structural thickness in a weight
minimization problem, where otherwise, the optimizer will discover
that negative sizes yield negative weight. Whenever a design variable
converges to the bound at the optimum, the designer should reconsider
the reasoning for that bound and make sure it is valid. This is because
designers sometimes set bounds that limit the optimization from
obtaining a better objective.

At the formulation stage, we should strive to list as many indepen-
dent design variables as possible. However, it is advisable to start with
a small set of variables when solving a problem for the first time and
then gradually expand the set of design variables.

Some optimization algorithms require the user to provide initial
design variable values. This initial point is usually based on the best
guess the user can produce. This might be an already good design that
the optimization refines further by making small changes. Another
possibility is that the initial guess is a bad design or a “blank slate” that
the optimization changes significantly.

SEI RN Design variables for wing design

Consider a wing design problem where the wing planform shape is rect-
angular. The planform could be parametrized by the span (b) and the chord
(c), as shown in Fig. 1.5, so that x = [b,c]. However, this choice is not
unique. Two other variables are often used in aircraft design: wing area (S)
and wing aspect ratio (AR), as shown in Fig. 1.6. Because these variables are
not independent (S = bc and AR = b2/S), we cannot just add them to the set

b

Fig. 1.5 Wingspan (b) and chord (c).
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of design variables. Instead, we must pick any two variables out of the four
to parametrize the design because we have four possible variables and two
dependency relationships.

For this wing, the variables must be positive to be physically meaningful,
so we must remember to explicitly bound these variables to be greater than
zero in an optimization. The variables should be bound from below by small
positive values because numerical models are probably not prepared to take
zero values. No upper bound is needed unless the optimization algorithm
requires it.

1ol Use splines to parameterize curves

Many problems that involve shapes, functional distributions, and paths
are sometimes implemented with a large number of discrete points. However,
these can be represented more compactly with splines. This is a commonly used
technique in optimization because reducing the number of design variables
often speeds up an optimization with little if any loss in the model parameteri-
zation fidelity. Figure 1.7 shows an example spline describing the shape of a
turbine blade. In this example, only four design variables are used to represent
the curved shape.

1.2.2 Objective Function

To find the best design, we need an objective function, which is a quantity
that determines if one design is better than another. This function must
be a scalar that is computable for a given design variable vector x. The
objective function can be minimized or maximized, depending on the
problem. For example, a designer might want to minimize the weight
or cost of a given structure. An example of a function to be maximized
could be the range of a vehicle.

Fig. 1.6 Wing design space for two
different sets of design variables, x =
[b,c]and x =[S, AR].

Chord [m]

0

0 0.2 0.4 0.6 0.8 1
Blade fraction

Fig. 1.7 Parameterizing the chord dis-
tribution of a wing or turbine blade
using a spline reduces the number of
design variables while still allowing
for a wide range of shape changes.
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The convention adopted in this book is that the objective function, f,
is to be minimized. This convention does not prevent us from maximizing
a function because we can reformulate it as a minimization problem by
finding the minimum of the negative of f and then changing the sign,
as follows:

max[f(x)] = —min[—f(x)]. (1.3)

This transformation is illustrated in Fig. 1.8.%

The objective function is computed through a numerical model
whose complexity can range from a simple explicit equation to a system
of coupled implicit models (more on this in Chapter 3).

The choice of objective function is crucial for successful design
optimization. If the function does not represent the true intent of the
designer, it does not matter how precisely the function and its optimum
point are computed—the mathematical optimum will be non-optimal
from the engineering point of view. A bad choice for the objective
function is a common mistake in design optimization.

The choice of objective function is not always obvious. For example,
minimizing the weight of a vehicle might sound like a good idea, but
this might result in a vehicle that is too expensive to manufacture. In
this case, manufacturing cost would probably be a better objective.
However, there is a trade-off between manufacturing cost and the
performance of the vehicle. It might not be obvious which of these
objectives is the most appropriate one because this trade-off depends on
customer preferences. This issue motivates multiobjective optimization,
which is the subject of Chapter 9. Multiobjective optimization does
not yield a single design but rather a range of designs that settle for
different trade-offs between the objectives.

Experimenting with different objectives should be part of the design
exploration process (this is represented by the outer loop in the design
optimization process in Fig. 1.2). Results from optimizing the “wrong”
objective can still yield insights into the design trade-offs and trends
for the system at hand.

In Ex. 1.1, we have the luxury of being able to visualize the design
space because we have only two variables. For more than three variables,
it becomes impossible to visualize the design space. We can also
visualize the objective function for two variables, as shown in Fig. 1.9.
In this figure, we plot the function values using the vertical axis, which
results in a three-dimensional surface. Although plotting the surface
might provide intuition about the function, it is not possible to locate
the points accurately when drawing on a two-dimensional surface.

Another possibility is to plot the contours of the function, which
are lines of constant value, as shown in Fig. 1.10. We prefer this type

IIr1verting the function (1/f) is another
way to turn a maximization problem into
aminimization problem, but itis generally
less desirable because it alters the scale of
the problem and could introduce a divide-
by-zero problem.

max [f(x)]

min [*f(.\’)]

Fig. 1.8 A maximization problem can
be transformed into an equivalent
minimization problem.

Fig. 1.9 A function of two variables
(f = x% +x§ in this case) can be visual-
ized by plotting a three-dimensional
surface or contour plot.
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of plot and use it extensively throughout this book because we can
locate points accurately and get the correct proportions in the axes
(in Fig. 1.10, the contours are perfect circles, and the location of the
minimum is clear). Our convention is to represent lower function values
with darker lines and higher values with lighter ones. Unless otherwise
stated, the function variation between two adjacent lines is constant,
and therefore, the closer together the contour lines are, the faster the
function is changing. The equivalent of a contour line in n-dimensional
space is a hypersurface of constant value with dimensions of n — 1,
called an isosurface.

SEIIERIPA Objective function for wing design

Let us discuss the appropriate objective function for Ex. 1.1 for a small
airplane. A common objective for a wing is to minimize drag. However, this
does not take into account the propulsive efficiency, which is strongly affected
by speed. A better objective might be to minimize the required power, which
balances drag and propulsive efficiency.S

The contours for the required power are shown in Fig. 1.11 for the two
choices of design variable sets discussed in Ex. 1.1. We can locate the minimum
graphically (denoted by the dot). Although the two optimum solutions are
the same, the shapes of the objective function contours are different. In this
case, using the aspect ratio and wing area simplifies the relationship between
the design variables and the objective by aligning the two main curvature
trends with each design variable. Thus, the parameterization can change the
effectiveness of the optimization.

0.6+ M

The optimal wing for this problem has an aspect ratio that is much higher
than that typically seen in airplanes or birds. Although the high aspect ratio
increases aerodynamic efficiency, it adversely affects the structural strength,
which we did not consider here. Thus, as in most engineering problems, we
need to add constraints and consider multiple disciplines.

2
5

Fig. 1.10 Contour plot of f = x% +x

SThe simple models used in this example
are described in Appendix D.1.6.

Fig. 1.11 Required power contours
for two different choices of design
variable sets. The optimal wing is
the same for both cases, but the func-
tional form of the objective is simpli-
fied in the one on the right.
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We use mostly two-dimensional examples throughout the book
because we can visualize them conveniently. Such visualizations should
give you an intuition about the methods and problems. However, keep
in mind that general problems have many more dimensions, and only
mathematics can help you in such cases.

Although we can sometimes visualize the variation of the objective
function in a contour plot as in Ex. 1.2, this is not possible for problems
with more design variables or more computationally demanding func-
tion evaluations. This motivates numerical optimization algorithms,
which aim to find the minimum in a multidimensional design space
using as few function evaluations as possible.

1.2.3 Constraints

The vast majority of practical design optimization problems require the
enforcement of constraints. These are functions of the design variables
that we want to restrict in some way. Like the objective function,
constraints are computed through a model whose complexity can vary
widely. The feasible region is the set of points that satisfy all constraints.
We seek to minimize the objective function within this feasible design
space.

When we restrict a function to being equal to a fixed value, we call
this an equality constraint, denoted by h(x) = 0. When the function is
required to be less than or equal to a certain value, we have an inequality
constraint, denoted by g(x) < 0.1 Although we use the “less or equal”
convention, some texts and software programs use “greater or equal”
instead. There is no loss of generality with either convention because
we can always multiply the constraint by —1 to convert between the
two.

18 PA Check the inequality convention

When using optimization software, do not forget to check the convention
for the inequality constraints (i.e., determine whether it is “less than”, “greater
than”, or “allow two-sided constraints”) and convert your constraints as

needed.

Some texts and papers omit the equality constraints without loss
of generality because an equality constraint can be replaced by two
inequality constraints. More specifically, an equality constraint, /1(x) =
0, is equivalent to enforcing two inequality constraints, /(x) > 0 and
h(x) <0.

1A strict inequality, g(x) < 0, is never
used because then x could be arbitrar-
ily close to the equality. Because the
optimum is at g = 0 for an active con-
straint, the exact solution would then be
ill-defined from a mathematical perspec-
tive. Also, the difference is not meaning-
ful when using finite-precision arithmetic
(which is always the case when using a
computer).
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Inequality constraints can be active or inactive at the optimum point.

An active inequality constraint means that g(x*) = 0, whereas for an
inactive one, g(x*) < 0. If a constraint is inactive at the optimum, this
constraint could have been removed from the problem with no change
in its solution, as illustrated in Fig. 1.12. In this case, constraints g

and g3 can be removed without affecting the solution of the problem.

Furthermore, active constraints (g; in this case) can equivalently be
replaced by equality constraints. However, it is difficult to know in
advance which constraints are active or not at the optimum for a general
problem. Constrained optimization is the subject of Chapter 5.

hi(x)=0
(active)

fx)
\

$(x) <0

(inactive) \

)
(inactive)

It is possible to overconstrain the problem such that there is no
solution. This can happen as a result of a programming error but can
also occur at the problem formulation stage. For more complicated
design problems, it might not be possible to satisfy all the specified
constraints, even if they seem to make sense. When this happens,
constraints have to be relaxed or removed.

The problem must not be overconstrained, or else there is no feasible
region in the design space over which the function can be minimized.
Thus, the number of independent equality constraints must be less than
or equal to the number of design variables (1, < ny). There is no limit
on the number of inequality constraints. However, they must be such
that there is a feasible region, and the number of active constraints plus
the equality constraints must still be less than or equal to the number
of design variables.

The feasible region grows when constraints are removed and shrinks
when constraints are added (unless these constraints are redundant).
As the feasible region grows, the optimum objective function usually
improves or at least stays the same. Conversely, the optimum worsens
or stays the same when the feasible region shrinks.

Fig. 1.12 Two-dimensional problem
with one active and two inactive
inequality constraints (left). The
shaded area indicates regions that
are infeasible (i.e., the constraints are
violated). If we only had the active
single equality constraint in the for-
mulation, we would obtain the same
result (right).
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One common issue in optimization problem formulation is dis-
tinguishing objectives from constraints. For example, we might be
tempted to minimize the stress in a structure, but this would inevitably
result in an overdesigned, heavy structure. Instead, we might want
minimum weight (or cost) with sufficient safety factors on stress, which
can be enforced by an inequality constraint.

Most engineering problems require constraints—often a large num-
ber of them. Although constraints may at first appear limiting, they
enable the optimizer to find useful solutions.

As previously mentioned, some algorithms require the user to
provide an initial guess for the design variable values. Although it
is easy to assign values within the bounds, it might not be as easy to
ensure that the initial design satisfies the constraints. This is not an
issue for most optimization algorithms, but some require starting with
a feasible design.

SEMIEREER Constraints for wing design

We now add a design constraint for the power minimization problem
of Ex. 1.2. The unconstrained optimal wing had unrealistically high aspect
ratios because we did not include structural considerations. If we add an
inequality constraint on the bending stress at the root of the wing for a fixed
amount of material, we get the curve and feasible region shown in Fig. 1.13.The
unconstrained optimum violates this constraint. The constrained optimum
results in a lower span and higher chord, and the constraint is active.

As previously mentioned, it is generally not possible to visualize
the design space as shown in Ex. 1.2 and obtain the solution graphically.
In addition to the possibility of a large number of design variables
and computationally expensive objective function evaluations, we now
add the possibility of a large number of constraints, which might also
be expensive to evaluate. Again, this is further motivation for the
optimization techniques covered in this book.

1.2.4 Optimization Problem Statement

Now that we have discussed the design variables, the objective function,
and constraints, we can put them all together in an optimization problem
statement. In words, this statement is as follows: minimize the objective
function by varying the design variables within their bounds subject to the
constraints.

0.9

0.6 1

Fig. 1.13 Minimum-power wing with
a constraint on bending stress com-
pared with the unconstrained case.
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Mathematically, we write this statement as follows:

minimize f(x)
by varying x, <x; <% i=1,...,ny (1.4)
subjectto g;(x) <0 j=1,...,ng
hi(x) =0 I=1,...,ny.

This is the standard formulation used in this book; however, other
books and software manuals might differ from this.I For example, they
might use different symbols, use “greater than or equal to” for the

inequality constraint, or maximize instead of minimizing. In any case,

it is possible to convert between standard formulations to get equivalent
problems.

All continuous optimization problems with a single-objective can
be written in the standard form shown in Eq. 1.4. Although our target
applications are engineering design problems, many other problems
can be stated in this form, and thus, the methods covered in this book
can be used to solve those problems.

The values of the objective and constraint functions for a given set
of design variables are computed through the analysis, which consists
of one or more numerical models. The analysis must be fully automatic
so that multiple optimization cycles can be completed without human
intervention, as shown in Fig. 1.14. The optimizer usually requires an
initial design xo and then queries the analysis for a sequence of designs
until it finds the optimum design, x*.

1ilsi el Using an optimization software package

The setup of an optimization problem varies depending on the particular
software package, so read the documentation carefully. Most optimization

software requires you to define the objective and constraints as callback functions.

These are passed to the optimizer, which calls them back as needed during the
optimization process. The functions take the design variable values as inputs
and output the function values, as shown in Fig. 1.14. Study the software
documentation for the details on how to use it.** To make sure you understand
how to use a given optimization package, test it on simple problems for which
you know the solution first (see Prob. 1.4).

When the optimizer queries the analysis for a given x, for most
methods, the constraints do not have to be feasible. The optimizer is
responsible for changing x so that the constraints are satisfied.

The objective and constraint functions must depend on the design
variables; if a function does not depend on any variable in the whole

Instead of “by varying”, some textbooks
use “with respect to” or “w.r.t.” as short-
hand.

Analysis

Fig. 1.14 The analysis computes the
objective (f) and constraint values (g,
h) for a given set of design variables

().

**Optimization software resources in-
clude the optimization toolboxes in
MATLAB, scipy.optimize.minimize in
Python, Optim.jl or Ipopt.jl in Julia,
NLopt for multiple languages, and the
Solver add-in in Microsoft Excel. The
pyOptSparse framework provides a com-
mon Python wrapper for many existing
optimization codes and facilitates the test-
ing of different methods.! SNOW. j1 wraps
a few optimizers and multiple derivative
computation methods in Julia.

1. Wu et al., pyOptSparse: A Python frame-
mu‘kﬂ)r large-scale constrained nonlinear
optimization QfSp(H‘hL’ systems, 2020.
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domain, it can be ignored and should not appear in the problem
statement.

Ideally, f, g, and h should be computable for all values of x that
make physical sense. Lower and upper design variable bounds should
be set to avoid nonphysical designs as much as possible. Even after
taking this precaution, models in the analysis sometimes fail to provide
a solution. A good optimizer can handle such eventualities gracefully.

There are some mathematical transformations that do not change
the solution of the optimization problem (Eq. 1.4). Multiplying either
the objective or the constraints by a constant does not change the optimal
design; it only changes the optimum objective value. Adding a constant
to the objective does not change the solution, but adding a constant to
any constraint changes the feasible space and can change the optimal
design.

Determining an appropriate set of design variables, objective, and
constraints is a crucial aspect of the outer loop shown in Fig. 1.2,
which requires human expertise in engineering design and numerical
optimization.

158 Ease into the problem

It is tempting to set up the full problem and attempt to solve it right
away. This rarely works, especially for a new problem. Before attempting any
optimization, you should run the analysis models and explore the solution
space manually. Particularly if using gradient-based methods, it helps to plot
the output functions across multiple input sweeps to assess if the numerical
outputs display the expected behavior and smoothness.

Instead of solving the full problem, ease into it by setting up the simplest
subproblem possible. If the function evaluations are costly, consider using
computational models that are less costly (but still representative). It is
advisable to start by solving a subproblem with a small set of variables and
then gradually expand it. The removal of some constraints has to be done more
carefully because it might result in an ill-defined problem. For multidisciplinary
problems, you should run optimizations with each component separately before
attempting to solve the coupled problem.

Solving simple problems for which you know the answer (or at least
problems for which you know the trends) helps identify any issues with
the models and problem formulation. Solving a sequence of increasingly
complicated problems gradually builds an understanding of how to solve the
optimization problem and interpret its results.
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1.3 Optimization Problem Classification

To choose the most appropriate optimization algorithm for solving a
given optimization problem, we must classify the optimization prob-
lem and know how its attributes affect the efficacy and suitability of
the available optimization algorithms. This is important because no
optimization algorithm is efficient or even appropriate for all types of
problems.

We classify optimization problems based on two main aspects:
the problem formulation and the characteristics of the objective and
constraint functions, as shown in Fig. 1.15.

Continuous

{ Design variables Discrete

Problerp Objective
formulation

Constraints

Single

Multiobjective

Constrained

Unconstrained

Optimization
problem
classification

Continuous
Smoothness
Discontinuous

- - Linear
Linearity

Nonlinear

Objective and

Unimodal

constraint function Modality

characteristics Multimodal

- Convex
Convexity

Nonconvex

Deterministic

Stochasticity
Stochastic

In the problem formulation, the design variables can be either dis-
crete or continuous. Most of this book assumes continuous design
variables, but Chapter 8 provides an introduction to discrete optimiza-
tion. When the design variables include both discrete and continuous
variables, the problem is said to be mixed. Most of the book assumes a
single objective function, but we explain how to solve multiobjective

Fig. 1.15 Optimization problems can
be classified by attributes associated
with the different aspects of the prob-
lem. The two main aspects are the
problem formulation and the objec-
tive and constraint function charac-
teristics.
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problems in Chapter 9. Finally, as previously mentioned, unconstrained
problems are rare in engineering design optimization. However, we
explain unconstrained optimization algorithms (Chapter 4) because
they provide the foundation for constrained optimization algorithms
(Chapter 5).

The characteristics of the objective and constraint functions also
determine the type of optimization problem at hand and ultimately
limit the type of optimization algorithm that is appropriate for solving
the optimization problem.

In this section, we will view the function as a “black box”, that is, a
computation for which we only see inputs (including the design vari-
ables) and outputs (including objective and constraints), as illustrated
in Fig. 1.16. When dealing with black-box models, there is limited or no
understanding of the modeling and numerical solution process used
to obtain the function values. We discuss these types of models and
how to solve them in Chapter 3, but here, we can still characterize the
functions based purely on their outputs. The black-box view is common
in real-world applications. This might be because the source code is not
provided, the modeling methods are not described, or simply because
the user does not bother to understand them.

In the remainder of this section, we discuss the attributes of objec-
tives and constraints shown in Fig. 1.15. Strictly speaking, many of these
attributes cannot typically be identified from a black-box model. For
example, although the model may appear smooth, we cannot know that
it is smooth everywhere without a more detailed inspection. However,
for this discussion, we assume that the black box’s outputs can be
exhaustively explored so that these characteristics can be identified.

1.3.1 Smoothness

The degree of function smoothness with respect to variations in the
design variables depends on the continuity of the function values and
their derivatives. When the value of the function varies continuously,
the function is said to be C° continuous. If the first derivatives also vary
continuously, then the function is C! continuous, and so on. A function
is smooth when the derivatives of all orders vary continuously every-
where in its domain. Function smoothness with respect to continuous
design variables affects what type of optimization algorithm can be
used. Figure 1.17 shows one-dimensional examples for a discontinuous
function, a C° function, and a C! function.

As we will see later, discontinuities in the function value or deriva-
tives limit the type of optimization algorithm that can be used because

flx)
—
h(x)

Fig. 1.16 A model is considered a
black box when we only see its inputs
and outputs.

Fig. 1.17 Discontinuous function
(top), C? continuous function (mid-
dle), and C! continuous function (bot-
tom).
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some algorithms assume C’, C!, and even C? continuity. In practice,
these algorithms usually still work with functions that have only a few
discontinuities that are located away from the optimum.

1.3.2 Linearity

The functions of interest could be linear or nonlinear. When both the
objective and constraint functions are linear, the optimization problem
is known as a linear optimization problem. These problems are easier
to solve than general nonlinear ones, and there are entire books and
courses dedicated to the subject. The first numerical optimization
algorithms were developed to solve linear optimization problems, and
there are many applications in operations research (see Chapter 2). An
example of a linear optimization problem is shown in Fig. 1.18.

When the objective function is quadratic and the constraints are
linear, we have a quadratic optimization problem, which is another
type of problem for which specialized solution methods exist.* Linear
optimization and quadratic optimization are covered in Sections 5.5,
11.2, and 11.3.

Although many problems can be formulated as linear or quadratic
problems, most engineering design problems are nonlinear. However,
it is common to have at least a subset of constraints that are linear, and
some general nonlinear optimization algorithms take advantage of the
techniques used to solve linear and quadratic problems.

1.3.3 Multimodality and Convexity

Functions can be either unimodal or multimodal. Unimodal functions
have a single minimum, whereas multimodal functions have multiple
minima. When we find a minimum without knowledge of whether the
function is unimodal or not, we can only say that it is a local minimum;
that is, this point is better than any point within a small neighborhood.
When we know that a local minimum is the best in the whole domain
(because we somehow know that the function is unimodal), then this
is also the global minimum, as illustrated in Fig. 1.19. Sometimes, the
function might be flat around the minimum, in which case we have a
weak minimum.

For functions involving more complicated numerical models, it is
usually impossible to prove that the function is unimodal. Proving
that such a function is unimodal would require evaluating the function
at every point in the domain, which is computationally prohibitive.
However, it much easier to prove multimodality—all we need to do is
find two distinct local minima.

Fig.1.18 Example of a linear optimiza-
tion problem in two dimensions.

*Historically, optimization problems were
referred to as programming problems, so
much of the existing literature refers to
linear optimization as linear programming
and similarly for other types of optimiza-
tion.

Weak local
minimum
Local

minimum

Global

minimum

Fig. 1.19 Types of minima.
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Just because a function is complicated or the design space has many
dimensions, it does not mean that the function is multimodal. By
default, we should not assume that a given function is either unimodal
or multimodal. As we explore the problem and solve it starting from
different points or using different optimizers, there are two main
possibilities.

One possibility is that we find more than one minimum, thus
proving that the function is multimodal. To prove this conclusively, we
must make sure that the minima do indeed satisfy the mathematical
optimality conditions with good enough precision.

The other possibility is that the optimization consistently converges
to the same optimum. In this case, we can become increasingly confi-
dent that the function is unimodal with every new optimization that
converges to the same optimum.Jr

Often, we need not be too concerned about the possibility of multiple
local minima. From an engineering design point of view, achieving a
local optimum that is better than the initial design is already a useful
result.

Convexity is a concept related to multimodality. A function is
convex if all line segments connecting any two points in the function lie
above the function and never intersect it. Convex functions are always
unimodal. Also, all multimodal functions are nonconvex, but not all
unimodal functions are convex (see Fig. 1.20).

Convex optimization seeks to minimize convex functions over con-
vex sets. Like linear optimization, convex optimization is another
subfield of numerical optimization with many applications. When the
objective and constraints are convex functions, we can use specialized
formulations and algorithms that are much more efficient than gen-
eral nonlinear algorithms to find the global optimum, as explained in
Chapter 11.

1.3.4 Deterministic versus Stochastic

Some functions are inherently stochastic. A stochastic model yields
different function values for repeated evaluations with the same input
(Fig. 1.21). For example, the numerical value from a roll of dice is a
stochastic function.

Stochasticity can also arise from deterministic models when the in-
puts are subject to uncertainty. The input variables are then described as
probability distributions, and their uncertainties need to be propagated
through the model. For example, the bending stress in a beam may
follow a deterministic model, but the beam’s geometric properties may

*For example, Lyu et al.” and He et al.®
show consistent convergence to the same
optimum in an aerodynamic shape opti-
mization problem.

2. Lyu et al., Aerodynamic Shape Optimiza-
tion Investigations of the Commion Research
Model Wing Benchmark, 2015.
3. He et al., Robust aerodynamic shape
optimization—From a circle to an airfoil,
2019.

s R

Unimodal
Convex
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. J

Multimodal

N

Fig. 1.20 Multimodal functions have
multiple minima, whereas unimodal
functions have only one minimum.
All multimodal functions are noncon-
vex, but not all unimodal functions
are convex.
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be subject to uncertainty because of manufacturing deviations. For
most of this text, we assume that functions are deterministic, except in
Chapter 12, where we explain how to perform optimization when the
model inputs are uncertain.

1.4 Optimization Algorithms

No single optimization algorithm is effective or even appropriate for
all possible optimization problems. This is why it is important to
understand the problem before deciding which optimization algorithm
to use. By “effective” algorithm, we mean that the algorithm can
solve the problem, and secondly, it does so reliably and efficiently.
Figure 1.22 lists the attributes for the classification of optimization
algorithms, which we cover in more detail in the following discussion.
These attributes are often amalgamated, but they are independent, and
any combination is possible. In this text, we cover a wide variety of
optimization algorithms corresponding to several of these combinations.
However, this overview still does not cover a wide variety of specialized
algorithms designed to solve specific problems where a particular
structure can be exploited.

When multiple models are involved, we also need to consider how
the models are coupled, solved, and integrated with the optimizer.
These considerations lead to different MDO architectures, which may

—[ Order

Global

Mathematical
Algorithm —
Optimization

algorithm
Sassification i
Function LIECH
evaluation Surrogate model

_
Stochasticity
Stochastic

4
Time dependence -

Deterministic ~ Stochastic

X X

Fig. 1.21 Deterministic functions
yield the same output when evalu-
ated repeatedly for the same input,
whereas stochastic functions do not.

Fig. 1.22 Optimization algorithms
can be classified by using the at-
tributes in the rightmost column. As
in the problem classification step,
these attributes are independent, and
any combination is possible.
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involve multiple levels of optimization problems. Coupled models and
MDO architectures are covered in Chapter 13.

1.4.1 Order of Information

At the minimum, an optimization algorithm requires users to provide
the models that compute the objective and constraint values—zeroth-
order information—for any given set of allowed design variables. We
call algorithms that use only these function values gradient-free algo-
rithms (also known as derivative-free or zeroth-order algorithms). We
cover a selection of these algorithms in Chapters 7 and 8. The advantage
of gradient-free algorithms is that the optimization is easier to set up
because they do not need additional computations other than what the
models for the objective and constraints already provide.

Gradient-based algorithms use gradients of both the objective and
constraint functions with respect to the design variables—first-order
information. The gradients provide much richer information about
the function behavior, which the optimizer can use to converge to the
optimum more efficiently. Figure 1.23 shows how the cost of gradient-
based versus gradient-free optimization algorithms typically scales
when the number of design variables increases. The number of function
evaluations required by gradient-free methods increases dramatically,
whereas the number of evaluations required by gradient-based methods
does not increase as much and is many orders of magnitude lower for
the larger numbers of design variables.

In addition, gradient-based methods use more rigorous criteria for
optimality. The gradients are used to establish whether the optimizer
converged to a point that satisfies mathematical optimality conditions,
something that is difficult to verify in a rigorous way without gradients.

We first cover gradient-based algorithms for unconstrained prob-
lems in Chapter 4 and then extend them to constrained problems in
Chapter 5. Gradient-based algorithms also include algorithms that
use curvature—second-order information. Curvature is even richer
information that tells us the rate of the change in the gradient, which
provides an idea of where the function might flatten out.

There is a distinction between the order of information provided by
the user and the order of information actually used in the algorithm. For
example, a user might only provide function values to a gradient-based
algorithm and rely on the algorithm to internally estimate gradients.
Optimization algorithms estimate the gradients by requesting addi-
tional function evaluations for finite difference approximations (see
Section 6.4). Gradient-based algorithms can also internally estimate

Gradient free

Gradient based

10 20 30

Number of function evaluations

Number of design variables

Fig. 1.23 Gradient-based algorithms
scale much better with the number
of design variables. In this example,
the gradient-based curve (with ex-
act derivatives) grows from 67 to 206
function calls, but it is overwhelmed
by the gradient-free curve, which
grows from 103 function calls to over
32,000.
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curvature based on gradient values (see Section 4.4.4).

In theory, gradient-based algorithms require the functions to be
sufficiently smooth (at least C! continuous). However, in practice, they
can tolerate the occasional discontinuity, as long as this discontinuity is
not near the optimum.

We devote a considerable portion of this book to gradient-based
algorithms because they scale favorably with the number of design
variables, and they have rigorous mathematical criteria for optimality.
We also cover the various approaches for computing gradients in detail
because the accurate and efficient computation of these gradients is
crucial for the efficacy and efficiency of these methods (see Chapter 6).

Current state-of-the-art optimization algorithms also use second-
order information to implement Newton-type methods for second-
order convergence. However, these algorithms tend to build second-
order information based on the provided gradients, as opposed to
requiring users to provide the second-order information directly (see
Section 4.4.4).

Because gradient-based methods require accurate gradients and
smooth enough functions, they require more knowledge about the mod-
els and optimization algorithm than gradient-free methods. Chapters 3
through 6 are devoted to making the power of gradient-based methods
more accessible by providing the necessary theoretical and practical
knowledge.

1.4.2 Local versus Global Search

The many ways to search the design space can be classified as being
local or global. A local search takes a series of steps starting from
a single point to form a sequence of points that hopefully converges
to a local optimum. In spite of the name, local methods can traverse
large portions of the design space and can even step between convex
regions (although this happens by chance). A global search tries to
span the whole design space in the hope of finding the global optimum.
As previously mentioned when discussing multimodality, even when
using a global method, we cannot prove that any optimum found is a
global one except for particular cases.

The classification of local versus global searches often gets con-
flated with the gradient-based versus gradient-free attributes because
gradient-based methods usually perform a local search. However, these
should be viewed as independent attributes because it is possible to use
a global search strategy to provide starting points for a gradient-based



1 INTRODUCTION 24

algorithm. Similarly, some gradient-free algorithms are based on local
search strategies.

The choice of search type is intrinsically linked to the modality of
the design space. If the design space is unimodal, then a local search
is sufficient because it converges to the global optimum. If the design
space is multimodal, a local search converges to an optimum that might
be local (or global if we are lucky enough). A global search increases
the likelihood that we converge to a global optimum, but this is by no
means guaranteed.

1.4.3 Mathematical versus Heuristic

There is a big divide regarding the extent to which an algorithm is based
on provable mathematical principles versus heuristics. Optimization
algorithms require an iterative process, which determines the sequence
of points evaluated when searching for an optimum, and optimality
criteria, which determine when the iterative process ends. Heuristics
are rules of thumb or commonsense arguments that are not based on a
strict mathematical rationale.

Gradient-based algorithms are usually based on mathematical prin-
ciples, both for the iterative process and for the optimality criteria.
Gradient-free algorithms are more evenly split between the mathe-
matical and heuristic for both the optimality criteria and the itera-
tive procedure. The mathematical gradient-free algorithms are often
called derivative-free optimization algorithms. Heuristic gradient-free
algorithms include a wide variety of nature-inspired algorithms (see
Section 7.2).

Heuristic optimality criteria are an issue because, strictly speaking,
they do not prove that a given point is a local (let alone global) optimum;
they are only expected to find a point that is “close enough”. This
contrasts with mathematical optimality criteria, which are unambiguous
about (local) optimality and converge to the optimum within the limits
of the working precision. This is not to suggest that heuristic methods
are not useful. Finding a better solution is often desirable regardless of
whether or not it is strictly optimal. Not converging tightly to optimality
criteria does, however, make it harder to compare results from different
methods.

Iterative processes based on mathematical principles tend to be
more efficient than those based on heuristics. However, some heuristic
methods are more robust because they tend to make fewer assumptions
about the modality and smoothness of the functions and handle noisy
functions more effectively.
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Most algorithms mix mathematical arguments and heuristics to
some degree. Mathematical algorithms often include constants whose
values end up being tuned based on experience. Conversely, algo-
rithms primarily based on heuristics sometimes include steps with
mathematical justification.

1.4.4 Function Evaluation

The optimization problem setup that we described previously assumes
that the function evaluations are obtained by solving numerical models
of the system. We call these direct function evaluations. However, it is
possible to create surrogate models (also known as metamodels) of these
models and use them in the optimization process. These surrogates can
be interpolation-based or projection-based models. Surrogate-based
optimization is discussed in Chapter 10.

1.4.5 Stochasticity

This attribute is independent of the stochasticity of the model that
we mentioned previously, and it is strictly related to whether the
optimization algorithm itself contains steps that are determined at
random or not.

A deterministic optimization algorithm always evaluates the same
points and converges to the same result, given the same initial conditions.
In contrast, a stochastic optimization algorithm evaluates a different set
of points if run multiple times from the same initial conditions, even
if the models for the objective and constraints are deterministic. For
example, most evolutionary algorithms include steps determined by
generating random numbers. Gradient-based algorithms are usually
deterministic, but some exceptions exist, such as stochastic gradient
descent (see Section 10.5).

1.4.6 Time Dependence

In this book, we assume that the optimization problem is static. This
means that we formulate the problem as a single optimization and solve
the complete numerical model at each optimization iteration. In contrast,
dynamic optimization problems solve a sequence of optimization problems
to make decisions at different time instances based on information that
becomes available as time progresses.

For some problems that involve time dependence, we can perform
time integration to solve for the entire time history of the states and then
compute the objective and constraint function values for an optimization
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iteration. This means that every optimization iteration requires solving
for the entire time history. An example of this type of problem is a
trajectory optimization problem where the design variables are the
coordinates representing the path, and the objective is to minimize the
total energy expended to get to a given destination.* Although such a
problem involves a time dependence, we still classify it as static because
we solve a single optimization problem. As a more specific example,
consider a car going around a racetrack. We could optimize the time
history of the throttle, braking, and steering of a car to get a trajectory
that minimizes the total time in a known racetrack for fixed conditions.
This is an open-loop optimal control problem because the car control is
predetermined and does not react to any disturbances.

For dynamic optimization problems (also known as dynamic program-
ming), the design variables are decisions made in a sequence of time
steps.” The decision at a given time step is influenced by the decisions
and system states from previous steps. Sometimes, the decision at a
given time step also depends on a prediction of the states a few steps
into the future.

The car example that we previously mentioned could also be a
dynamic optimization problem if we optimized the throttle, braking,
or steering of a car at each time instance in response to some measured
output. We could, for example, maximize the instantaneous acceleration
based on real-time acceleration sensor information and thus react to
varying conditions, such as surface traction. This is an example of a
closed-loop (or feedback) optimal control problem, a type of dynamic
optimization problem where a control law is optimized for a dynamical
system over a period of time.

Dynamic optimization is not covered in this book, except in the con-
text of discrete optimization (see Section 8.5). Different approaches are
used in general, but many of the concepts covered here are instrumental
in the numerical solution of dynamic optimization and optimal control
problems.

1.5 Selecting an Optimization Approach

This section provides guidance on how to select an appropriate approach
for solving a given optimization problem. This process cannot always
be distilled to a simple decision tree; however, it is still helpful to have a
framework as a first guide. Many of these decisions will become more
apparent as you progress through the book and gain experience, so
you may want to revisit this section periodically. Eventually, selecting
an appropriate methodology will become second nature.

4. Betts, Survey of numerical methods for
trajectory optimization, 1998.

5. Bryson and Ho, Applied Optimal Con-
trol; Optimization, Estimation, and Control,
1969.

6. Bertsekas, Dynamic Programming and
Optimal Control, 1995.
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Figure 1.24 outlines one approach to algorithm selection and also
serves as an overview of the chapters in this book. The first two char-
acteristics in the decision tree (convex problem and discrete variables)
are not the most common within the broad spectrum of engineering
optimization problems, but we list them first because they are the more
restrictive in terms of usable optimization algorithms.

No Ch.5
No
— — Yes
. DIRECT, GPS, GA, PS, etc.
Gradient free .
Ch. 7 > Multimodal?
L/ N Nelder-Mead
- - °

Dynamic programming

SA or GA (bit-encoded)

?
Cg/nv;e;(. i» Linear optimization, quadratic optimization, etc.
_n.
Yes
No — Branch and bound
- Yes
Di ? Yes i .
1s\crefe Linear? Markov chain?
Ch. 8 No
I No
No
S S Yes BFGS
Ch. 4 Y
Diff tiable? Yes . A1 . es )
! erfz/n ;a € Unconstrained? — Multimodal? Multistart
o SQP or IP
- L,

Multiple objectives?
Ch. 9

Noisy or expensive?
Ch. 10

Uncertainty?
Ch. 12

Multiple disciplines?
Ch. 13

The first node asks about convexity. Although it is often not
immediately apparent if the problem is convex, with some experience,
we can usually discern whether we should attempt to reformulate itas a
convex problem. In most instances, convexity occurs for problems with
simple objectives and constraints (e.g., linear or quadratic), such as in
control applications where the optimization is performed repeatedly. A
convex problem can be solved with general gradient-based or gradient-
free algorithms, but it would be inefficient not to take advantage of the
convex formulation structure if we can do so.

The next node asks about discrete variables. Problems with discrete
design variables are generally much harder to solve, so we might
consider alternatives that avoid using discrete variables when possible.
For example, a wind turbine’s position in a field could be posed as
a discrete variable within a discrete set of options. Alternatively, we
could represent the wind turbine’s position as a continuous variable
with two continuous coordinate variables. That level of flexibility may
or may not be desirable but generally leads to better solutions. Many

Fig. 1.24 Decision tree for selecting
an optimization algorithm.
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problems are fundamentally discrete, and there is a wide variety of
available methods.

Next, we consider whether the model is continuous and differen-
tiable or can be made smooth through model improvements. If the
problem is high dimensional (more than a few tens of variables as a
rule of thumb), gradient-free algorithms are generally intractable and
gradient-based algorithms are preferable. We would either need to
make the model smooth enough to use a gradient-based algorithm or
reduce the problem dimensionality to use a gradient-free algorithm.
Another alternative if the problem is not readily differentiable is to use
surrogate-based optimization (the box labeled “Noisy or expensive” in
Fig. 1.24). If we go the surrogate-based optimization route, we could
still use a gradient-based approach to optimize the surrogate model
because most such models are differentiable. Finally, for problems with
a relatively small number of design variables, gradient-free methods
can be a good fit. Gradient-free methods have the largest variety of
algorithms, and a combination of experience and testing is needed to
determine an appropriate algorithm for the problem at hand.

The bottom row in Fig. 1.24 lists additional considerations: multiple
objectives, surrogate-based optimization for noisy (nondifferentiable) or
computationally expensive functions, optimization under uncertainty
in the design variables and other model parameters, and MDO.

1.6 Notation

We do not use bold font to represent vectors or matrices. Instead,
we follow the convention of many optimization and numerical linear
algebra books, which try to use Greek letters (e.g., @ and p) for scalars,
lowercase roman letters (e.g., x and u) for vectors, and capitalized
roman letters (e.g., A and H) for matrices. There are exceptions to this
notation because of the wide variety of topics covered in this book and
a desire not to deviate from the standard conventions used in each
field. We explicitly note these exceptions as needed. For example, the
objective function f is a scalar function and the Lagrange multipliers
(A and o) are vectors.

By default, a vector x is a column vector, and thus xT is a row
vector. We denote the ith element of the vector as x;, as shown in
Fig. 1.25. For more compact notation, we may write a column vector
horizontally, with its components separated by commas, for example,
x = [x1,x2,...,%x,]. We refer to a vector with n components as an
n-vector, which is equivalent to writing x € R".

An (n X m) matrix has n rows and m columns, which is equivalent

=] -

Xn

(nx1)

Fig. 1.25 An n-vector, x.

J (nxm)

Fig. 1.26 An (n X m) matrix, A.
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to defining A € R™. The matrix element A;; is the element in the ith
row of the jthe column, as shown in Fig. 1.26. Occasionally, additional
letters beyond i and j are needed for indices, but those are explicitly
noted when used.

The subscript k usually refers to iteration number. Thus, xi is the
complete vector x at iteration k. The subscript zero is used for the same
purpose, so xg would be the complete vector x at the initial iteration.
Other subscripts besides those listed are used for naming. A superscript
star (x*) refers to a quantity at the optimum.

1ilsi el Work out the dimensions of the vectors and matrices

As you read this book, we encourage you to work out the dimensions of
the vectors and matrices in the operations within each equation and verify the
dimensions of the result for consistency. This will enhance your understanding
of the equations.

1.7 Summary

Optimization is compelling, and there are opportunities to apply it
everywhere. Numerical optimization fully automates the design pro-
cess but requires expertise in the problem formulation, optimization
algorithm selection, and the use of that algorithm. Finally, design
expertise is also required to interpret and critically evaluate the results
given by the optimization.

There is no single optimization algorithm that is effective in the
solution of all types of problems. It is crucial to classify the optimization
problem and understand the optimization algorithms’ characteristics
to select the appropriate algorithm to solve the problem.

In seeking a more automated design process, we must not dismiss the
value of engineering intuition, which is often difficult (if not impossible)
to convert into a rigid problem formulation and algorithm.
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Problems

1.1 Answer true or false and justify your answer.

a.

MDO arose from the need to consider multiple design objec-
tives.

. The preliminary design phase takes place after the concep-

tual design phase.

. Design optimization is a completely automated process from

which designers can expect to get their final design.

. The design variables for a problem consist of all the inputs

needed to compute the objective and constraint functions.

. The design variables must always be independent of each

other.

. An optimization algorithm designed for minimization can be

used to maximize an objective function without modifying
the algorithm.

. Compared with the global optimum of a given problem,

adding more design variables to that problem results in a
global optimum that is no worse than that of the original
problem.

. Compared with the global optimum objective value of a

given problem, adding more constraints sometimes results
in a better global optimum.

. A function is C! continuous if its derivative varies continu-

ously.

. All unimodal functions are convex.

. Global search algorithms always converge to the global

optimum.

. Gradient-based methods are largely based on mathematical

principles as opposed to heuristics.

. Solving a problem that involves a stochastic model requires

a stochastic optimization algorithm.

. If a problem is multimodal, it requires a gradient-free opti-

mization algorithm.

1.2 Plotting a two-dimensional function. Consider the two-dimensional
function

fx1,x2) = x? + 2x1x§ - xg’ —20x7 .
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1.3

1.4

1.5

Plot the function contours and find the approximate location of
the minimum point(s). Is there a global minimum? Exploration:
Plot other functions to get an intuition about their trends and
minima. You can start with simple low-order polynomials and
then add higher-order terms, trying different coefficients. Then
you can also try nonalgebraic functions. This will give you an
intuition about the function trends and minima.

Standard form. Convert the following problem to the standard
formulation (Eq. 1.4):

maximize Zx% - x%x% —eB e 412

by varying x1, X2, x3
subjectto x1 >1 (1.5)
Xy +x3 > 10

2 2
x]+3x5 < 4.

Using an unconstrained optimizer. Consider the two-dimensional
function

f o) =1 -x) +(1-x)" + % (22— x3) .

Plot the contours of this function and find the minimum graphi-
cally. Then, use optimization software to find the minimum (see
Tip 1.3). Verify that the optimizer converges to the minimum you
found graphically. Exploration: (1) Try minimizing the function
in Prob. 1.2 starting from different points. (2) Minimize other
functions of your choosing. (3) Study the options provided by the
optimization software and explore different settings.

Using a constrained optimizer. Now we add constraints to Prob. 1.4.
The objective is the same, but we now have two inequality con-
straints:

2, .2
xp+x; <1
1
x1—=3x2+=2>0,
2
and bound constraints:
x1>20, x>0.

Plot the constraints and identify the feasible region. Find the
constrained minimum graphically. Use optimization software
to solve the constrained minimization problem. Which of the
inequality constraints and bounds are active at the solution?
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1.6

1.7

Paper review. Select a paper on design optimization that seems
interesting to you, preferably from a peer-reviewed journal.
Write the full optimization problem statement in the standard
form (Eq. 1.4) for the problem solved in the paper. Classify the
problem according to Fig. 1.15 and the optimization algorithm ac-
cording to Fig. 1.22. Use the decision tree in Fig. 1.24 to determine
if the optimization algorithm was chosen appropriately. Write a
critique of the paper, highlighting its strengths and weaknesses.

Problem formulation. Choose an engineering system that you
are familiar with, and use the process outlined in Fig. 1.4 to
formulate a problem for the design optimization of that system.
Write the statement in the standard form (Eq. 1.4). Critique your
statement by asking the following: Does the objective function
truly capture the design intent? Are there other objectives that
could be considered? Do the design variables provide enough
freedom? Are the design variables bounded such that nonphysical
designs are prevented? Are you sure you have included all the
constraints needed to get a practical design? Can you think of
any loophole that the optimizer can exploit in your statement?



A Short History of Optimization

This chapter provides helpful historical context for the methods dis-
cussed in this book. Nothing else in the book depends on familiarity
with the material in this chapter, so it can be skipped. However, this
history makes connections between the various topics that will enrich
the big picture of optimization as you become familiar with the material
in the rest of the book, so you might want to revisit this chapter.

Optimization has a long history that started with geometry problems
solved by ancient Greek mathematicians. The invention of algebra and
calculus opened the door to many more types of problems, and the
advent of numerical computing increased the range of problems that
could be solved in terms of type and scale.

By the end of this chapter you should be able to:

1. Appreciate a range of historical advances in optimization.

2. Describe current frontiers in optimization.

2.1 The First Problems: Optimizing Length and Area

Ancient Greek and Egyptian mathematicians made numerous contri-
butions to geometry, including solving optimization problems that
involved length and area. They adopted a geometric approach to
solving problems that are now more easily solved using calculus.

Archimedes of Syracuse (287-212 BCE) showed that of all possible
spherical caps of a given surface area, hemispherical caps have the
largest volume. Euclid of Alexandria (325-265 BCE) showed that the
shortest distance between a point and a line is the segment perpendicular
to that line. He also proved that among rectangles of a given perimeter,
the square has the largest area.

Geometric problems involving perimeter and area had practical
value. The classic example of such practicality is Dido’s problem.
According to the legend, Queen Dido, who had fled to Tunis, purchased

33
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from a local leader as much land as could be enclosed by an ox’s hide.
The leader agreed because this seemed like a modest amount of land.
To maximize her land area, Queen Dido had the hide cut into narrow
strips to make the longest possible string. Then, she intuitively found
the curve that maximized the area enclosed by the string: a semicircle
with the diameter segment set along the sea coast (see Fig. 2.1). As
a result of the maximization, she acquired enough land to found the
ancient city of Carthage. Later, Zenodorus (200-140 BCE) proved this
optimal solution using geometrical arguments. A rigorous solution to
this problem requires using calculus of variations, which was invented
much later.

Geometric optimization problems are also applicable to the laws of
physics. Hero of Alexandria (10-70 CE) derived the law of reflection
by finding the shortest path for light reflecting from a mirror, which
results in an angle of reflection equal to the angle of incidence (Fig. 2.2).

2.2 Optimization Revolution: Derivatives and Calculus

The scientific revolution generated significant optimization develop-
ments in the seventeenth and eighteenth centuries that intertwined
with other developments in mathematics and physics.

In the early seventeenth century, Johannes Kepler published a book
in which he derived the optimal dimensions of a wine barrel.” He
became interested in this problem when he bought a barrel of wine,
and the merchant charged him based on a diagonal length (see Fig. 2.3).
This outraged Kepler because he realized that the amount of wine could
vary for the same diagonal length, depending on the barrel proportions.

Incidentally, Kepler also formulated an optimization problem when
looking for his second wife, seeking to maximize the likelihood of satis-
faction. This “marriage problem” later became known as the “secretary
problem”, which is an optimal-stopping problem that has since been
solved using dynamic optimization (mentioned in Section 1.4.6 and
discussed in Section 8.5).%

Willebrord Snell discovered the law of refraction in 1621, a formula
that describes the relationship between the angles of incidence and
refraction when light passes through a boundary between two different
media, such as air, glass, or water. Whereas Hero minimized the length
to derive the law of reflection, Snell minimized time. These laws were
generalized by Fermat in the principle of least time (or Fermat’s principle),
which states that a ray of light going from one point to another follows
the path that takes the least time.

Carthage

Gulf of
Tunis

Fig. 2.1 Queen Dido intuitively maxi-
mized the area for a given perimeter,
thus acquiring enough land to found
the city of Carthage.

A

B

Mirror
o g

Fig. 2.2 The law of reflection can be
derived by minimizing the length of
the light beam.

7. Kepler, Nova stereometria doliorum

vinariorum (New Solid Geometry of Wine
Barrels), 1615.

Fig. 2.3 Wine barrels were measured
by inserting a ruler in the tap hole
until it hit the corner.

8. Ferguson, Who solved the secretary
problem? 1989.
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Pierre de Fermat derived Snell’s law by applying the principle of
least time, and in the process, he devised a mathematical technique for
finding maxima and minima using what amounted to derivatives (he
missed the opportunity to generalize the notion of derivative, which
came later in the development of calculus).” Today, we learn about
derivatives before learning about optimization, but Fermat did the
reverse.

During this period, optimization was not yet considered an im-
portant area of mathematics, and contributions to optimization were
scattered among other areas. Therefore, most mathematicians did not
appreciate seminal contributions in optimization at the time.

In 1669, Isaac Newton wrote about a numerical technique to find
the roots of polynomials by successively linearizing them, achieving
quadratic convergence. In 1687, he used this technique to find the
roots of a nonpolynomial equation (Kepler’s equation),” but only after
using polynomial expansions. In 1690, Joseph Raphson improved on
Newton’s method by keeping all the decimals in each linearization and
making it a fully iterative scheme. The multivariable “Newton’s method”
that is widely used today was actually introduced in 1740 by Thomas
Simpson. He generalized the method by using the derivatives (which
allowed for solving nonpolynomial equations without expansions) and
by extending it to a system of two equations and two unknowns."

In 1685, Newton studied a shape optimization problem where he
sought the shape of a body of revolution that minimizes fluid drag
and even mentioned a possible application to ship design. Although
he used the wrong model for computing the drag, he correctly solved
what amounted to a calculus of variations problem.

In 1696, Johann Bernoulli challenged other mathematicians to find
the path of a body subject to gravity that minimizes the travel time
between two points of different heights. This is now a classic calculus of
variations problem called the brachistochrone problem (Fig. 2.4). Bernoulli
already had a solution that he kept secret. Five mathematicians respond
with solutions: Newton, Jakob Bernoulli (Johann's brother), Gottfried
Wilhelm von Leibniz, Ehrenfried Walther von Tschirnhaus, and Guil-
laume de I'Hopital. Newton reportedly started working on the problem
as soon as he received it and stayed up all night before sending the
solution anonymously to Bernoulli the next day.

Starting in 1736, Leonhard Euler derived the general optimality
conditions for solving calculus of variations problems, but the derivation
included geometric arguments. In 1755, Joseph-Louis Lagrange used a
purely analytic approach to derive the same optimality conditions (he
was 19 years old at the time!). Euler recognized Lagrange’s derivation,

9. Fermat, Methodus ad disquirendam
maximam et minimam (Method for the Study
of Maxima and Minima), 1636.

*Kepler’s equation describes orbits by E —
esin(E) = M, where M is the mean
anomaly, e is the eccentricity, and E is the
eccentric anomaly. This equation does not
have a closed-form solution for E.

*For this reason, Kollerstrom'’ argues
that the method should be called neither
Newton nor Newton-Raphson.

10. Kollerstrom, Thomas Simpson and

‘Newton’s method of approximation’: an

enduring myth, 1992.

Fig. 2.4 Suppose that you have a bead
on a wire that goes from A to B. The
brachistochrone curve is the shape
of the wire that minimizes the time
for the bead to slide between the two
points under gravity alone. Itis faster
than a straight-line trajectory or a cir-
cular arc.
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which uses variations of a function, as a superior approach and adopted
it, calling it “calculus of variations”. This is a second-order partial
differential equation that has become known as the Euler-Lagrange
equation. Lagrange used this equation to develop a reformulation
of classical mechanics in 1788, which became known as Lagrangian
mechanics. When deriving the general equations of equilibrium for
problems with constraints, Lagrange introduced the “method of the
multipliers”.!! Lagrange multipliers eventually became a fundamental
concept in constrained optimization (see Section 5.3).

In 1784, Gaspard Monge developed a geometric method to solve
a transportation problem. Although the method was not entirely
correct, it established combinatorial optimization, a branch of discrete
optimization (Chapter 8).

2.3 The Birth of Optimization Algorithms

Several more theoretical contributions related to optimization occurred
in the nineteenth century and the early twentieth century. However, it
was not until the 1940s that optimization started to gain traction with
the development of algorithms and their use in practical applications,
thanks to the advent of computer hardware.

In 1805, Adrien-Marie Legendre described the method of least
squares, which was used to predict asteroid orbits and for curve fitting.
Friedrich Gauss published a rigorous mathematical foundation for the
method of least squares and claimed he used it to predict the orbit of
the asteroid Ceres in 1801. Legendre and Gauss engaged in a bitter
dispute on who first developed the method.

In one of his 789 papers, Augustin-Louis Cauchy proposed the
steepest-descent method for solving systems of nonlinear equations.”
He did not seem to put much thought into it and promised a “paper
to follow” on the subject, which never happened. He proposed this
method for solving systems of nonlinear equations, but it is directly
applicable to unconstrained optimization (see Section 4.4.1).

In 1902, Gyula Farkas proved a theorem on the solvability of a system
of linear inequalities. This became known as Farkas” lemma, which is
crucial in the derivation of the optimality conditions for constrained
problems (see Section 5.3.2). In 1917, Harris Hancock published the first
textbook on optimization, which included the optimality conditions for
multivariable unconstrained and constrained problems. "’

In 1932, Karl Menger presented “the messenger problem”,'* an
optimization problem that seeks to minimize the shortest travel path
that connects a set of destinations, observing that going to the closest

11. Lagrange, Mécanique analytique, 1788.
12. Cauchy, Méthode générale pour la réso-
lution des systemes d’équations simultanées,
1847.

13. Hancock, Theory of Minima and Max-
ima, 1917.

14. Menger, Das botenproblent, 1932.
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point each time does not, in general, result in the shortest overall path.
This is a combinatorial optimization problem that later became known
as the traveling salesperson problem, one of the most intensively studied
problems in optimization (Chapter 8).

In 1939, William Karush derived the necessary conditions for in-
equality constrained problems in his master’s thesis. His approach
generalized the method of Lagrange multipliers, which only allowed
for equality constraints. Harold Kuhn and Albert Tucker independently
rediscovered these conditions and published their seminal paper in
1951.'° These became known as the Karush—Kuhn-Tucker (KKT) condi-
tions, which constitute the foundation of gradient-based constrained
optimization algorithms (see Section 5.3).

Leonid Kantorovich developed a technique to solve linear program-
ming problems in 1939 after having been given the task of optimizing
production in the Soviet government’s plywood industry. However,
his contribution was neglected for ideological reasons. In the United
States, Tjalling Koopmans rediscovered linear programming in the
early 1940s when working on ship-transportation problems. In 1947,
George Dantzig published the first complete algorithm for solving linear
programming problems—the simplex algorithm.'® In the same year,
von Neumann developed the theory of duality for linear programming
problems. Kantorovich and Koopmans later shared the 1975 Nobel
Memorial Prize in Economic Sciences “for their contributions to the
theory of optimum allocation of resources”. Dantzig was not included,
presumably because his work was more theoretical. The development
of the simplex algorithm and the widespread practical applications of
linear programming sparked a revolution in optimization. The first
international conference on optimization, the International Symposium
on Mathematical Programming, was held in Chicago in 1949.

In 1951, George Box and Kenneth Wilson developed the response-
surface methodology (surrogate modeling), which enables optimization
of systems based on experimental data (as opposed to a physics-based
model). They developed a method to build a quadratic model where
the number of data points scales linearly with the number of inputs
instead of exponentially, striking a balance between accuracy and ease of
application. In the same year, Danie Krige developed a surrogate model
based on a stochastic process, which is now known as the kriging model.
He developed this model in his master’s thesis to estimate the most likely
distribution of gold based on a limited number of borehole samples.'”
These approaches are foundational in surrogate-based optimization
(Chapter 10).

In 1952, Harry Markowitz published a paper on portfolio theory
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that formalized the idea of investment diversification, marking the birth
of modern financial economics.'® The theory is based on a quadratic
optimization problem. He received the 1990 Nobel Memorial Prize in
Economic Sciences for developing this theory.

In 1955, Lester Ford and Delbert Fulkerson created the first known
algorithm to solve the maximum-flow problem, which has applications
in transportation, electrical circuits, and data transmission. Although
the problem could already be solved with the simplex algorithm, they
proposed a more efficient algorithm for this specialized problem.

In 1957, Richard Bellman derived the necessary optimality condi-
tions for dynamic programming problems.'” These are expressed in
what became known as the Bellman equation (Section 8.5), which was
first applied to engineering control theory and subsequently became a
core principle in economic theory.

In 1959, William Davidon developed the first quasi-Newton method
for solving nonlinear optimization problems that rely on approxi-
mations of the curvature based on gradient information. He was
motivated by his work at Argonne National Laboratory, where he
used a coordinate-descent method to perform an optimization that
kept crashing the computer before converging. Although Davidon’s
approach was a breakthrough in nonlinear optimization, his original
paper was rejected. It was eventually published more than 30 years
later in the first issue of the SIAM Journal on Optimization.”’ Fortunately,
his valuable insight had been recognized well before that by Roger
Fletcher and Michael Powell, who further developed the method.”! The
method became known as the Davidon—Fletcher—Powell (DFP) method
(Section 4.4.4).

Another quasi-Newton approximation method was independently
proposed in 1970 by Charles Broyden, Roger Fletcher, Donald Goldfarb,
and David Shanno, now called the Broyden—Fletcher-Goldfarb—Shanno
(BFGS) method. Larry Armijo, A. Goldstein, and Philip Wolfe developed
the conditions for the line search that ensure convergence in gradient-
based methods (see Section 4.3.2).%?

Leveraging the developments in unconstrained optimization, re-
searchers sought methods for solving constrained problems. Penalty
and barrier methods were developed but fell out of favor because
of numerical issues (see Section 5.4). In another effort to solve non-
linear constrained problems, Robert Wilson proposed the sequential
quadratic programming (SQP) method in his PhD thesis.”* SQP consists
of applying the Newton method to solve the KKT conditions (see Sec-
tion 5.5). Shih-Ping Han reinvented SQP in 1976,* and Michael Powell
popularized this method in a series of papers starting from 1977.%°
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There were attempts to model the natural process of evolution
starting in the 1950s. In 1975, John Holland proposed genetic algorithms
(GAs) to solve optimization problems (Section 7.6).”° Research in GAs
increased dramatically after that, thanks in part to the exponential
increase in computing power.

Hooke and Jeeves” proposed a gradient-free method called coor-
dinate search. In 1965, Nelder and Mead”® developed the nonlinear
simplex method, another gradient-free nonlinear optimization based
on heuristics (Section 7.3).*

The Mathematical Programming Society was founded in 1973, an
international association for researchers active in optimization. It was
renamed the Mathematical Optimization Society in 2010 to reflect the
more modern name for the field.

Narendra Karmarkar presented a revolutionary new method in
1984 to solve large-scale linear optimization problems as much as a
hundred times faster than the simplex method.”” The New York Times
published a related news item on the front page with the headline
“Breakthrough in Problem Solving”. This heralded the age of interior-
point methods, which are related to the barrier methods dismissed in
the 1960s. Interior-point methods were eventually adapted to solve
nonlinear problems (see Section 5.6) and contributed to the unification
of linear and nonlinear optimization.

2.4 The Last Decades

The relentless exponential increase in computer power throughout
the 1980s and beyond has made it possible to perform engineering
design optimization with increasingly sophisticated models, including
multidisciplinary models. The increased computer power has also
been contributing to the gain in popularity of heuristic optimization
algorithms. Computer power has also enabled large-scale deep neural
networks (see Section 10.5), which have been instrumental in the
explosive rise of artificial intelligence (AI).

The field of optimal control flourished after Bellman’s contribution
to dynamic programming. Another important optimality principle for
control, the maximum principle, was derived by Pontryagin et al.”’ This
principle makes it possible to transform a calculus of variations problem
into a nonlinear optimization problem. Gradient-based nonlinear
optimization algorithms were then used to numerically solve for the
optimal trajectories of rockets and aircraft, with an adjoint method
to compute the gradients of the objective with respect to the control
histories.”! The adjoint method efficiently computes gradients with
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respect to large numbers of variables and has proven to be useful in other
disciplines. Optimal control then expanded to include the optimization
of feedback control laws that guarantee closed-loop stability. Optimal
control approaches include model predictive control, which is widely
used today.

In 1960, Schmit™ proposed coupling numerical optimization with
structural computational models to perform structural design, establish-
ing the field of structural optimization. Five years later, he presented
applications, including aerodynamics and structures, representing
the first known multidisciplinary design optimization (MDO) appli-
cation.” The direct method for computing gradients for structural
computational models was developed shortly after that,** eventually
followed by the adjoint method (Section 6.7).% In this early work, the
design variables were the cross-sectional areas of the members of a truss
structure. Researchers then added joint positions to the set of design
variables. Structural optimization was generalized further with shape
optimization, which optimizes the shape of arbitrary three-dimensional
structural parts.”® Another significant development was topology op-
timization, where a structural layout emerges from a solid block of
material.”” It took many years of further development in algorithms and
computer hardware for structural optimization to be widely adopted
by industry, but this capability has now made its way to commercial
software.

Aerodynamic shape optimization began when Pironneau™ used
optimal control techniques to minimize the drag of a body by varying
its shape (the “control” variables). Jameson® extended the adjoint
method with more sophisticated computational fluid dynamics (CFD)
models and applied it to aircraft wing design. CFD-based optimization
applications spread beyond aircraft wing design to the shape optimiza-
tion of wind turbines, hydrofoils, ship hulls, and automobiles. The
adjoint method was then generalized for any discretized system of
equations (see Section 6.7).

MDO developed rapidly in the 1980s following the application
of numerical optimization techniques to structural design. The first
conference in MDO, the Multidisciplinary Analysis and Optimization
Conference, took place in 1985. The earliest MDO applications focused
on coupling the aerodynamics and structures in wing design, and
other early applications integrated structures and controls.*’ The de-
velopment of MDO methods included efforts toward decomposing the
problem into optimization subproblems, leading to distributed MDO
architectures.*! Sobieszczanski-Sobieski*’ proposed a formulation for
computing the derivatives for coupled systems, which is necessary
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when performing MDO with gradient-based optimizers. This concept
was later combined with the adjoint method for the efficient computa-
tion of coupled derivatives.*> More recently, efficient computation of
coupled derivatives and hierarchical solvers have made it possible to
solve large-scale MDO problems** (Chapter 13). Engineering design
has been focusing on achieving improvements made possible by con-
sidering the interaction of all relevant disciplines. MDO applications
have extended beyond aircraft to the design of bridges, buildings,
automobiles, ships, wind turbines, and spacecraft.

In continuous nonlinear optimization, SQP has remained the state-
of-the-art approach since its popularization in the late 1970s. However,
the interior-point approach, which, as mentioned previously, revolu-
tionized linear optimization, was successfully adapted for the solution
of nonlinear problems and has made great strides since the 1990s.*>
Today, both SQP and interior-point methods are considered to be state
of the art.

Interior-point methods have contributed to the connection between
linear and nonlinear optimization, which were treated as entirely
separate fields before 1984. Today, state-of-the-art linear optimization
software packages have options for both the simplex and interior-point
approaches because the best approach depends on the problem.

Convex optimization emerged as a generalization of linear optimiza-
tion (Chapter 11). Like linear optimization, it was initially mostly used
in operations research applications,* such as transportation, manufac-
turing, supply-chain management, and revenue management, and there
were only a few applications in engineering. Since the 1990s, convex
optimization has increasingly been used in engineering applications,
including optimal control, signal processing, communications, and
circuit design. A disciplined convex programming methodology facili-
tated this expansion to construct convex problems and convert them to
a solvable form.** New classes of convex optimization problems have
also been developed, such as geometric programming (see Section 11.6),
semidefinite programming, and second-order cone programming.

As mathematical models became increasingly complex computer
programs, and given the need to differentiate those models when per-
forming gradient-based optimization, new methods were developed
to compute derivatives. Wengert'” was among the first to propose the
automatic differentiation of computer programs (or algorithmic differ-
entiation). The reverse mode of algorithmic differentiation, which is
equivalent to the adjoint method, was proposed later (see Section 6.6).*
This field has evolved immensely since then, with techniques to handle
more functions and increase efficiency. Algorithmic differentiation tools
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have been developed for an increasing number of programming lan-
guages. One of the more recently developed programming languages,
Julia, features prominent support for algorithmic differentiation. At
the same time, algorithmic differentiation has spread to a wide range
of applications.

Another technique to compute derivatives numerically, the complex-
step derivative approximation, was proposed by Squire and Trapp.*’
Soon after, this technique was generalized to computer programs,
applied to CFD, and found to be related to algorithmic differentiation
(see Section 6.5).”"

The pattern-search algorithms that Hooke and Jeeves and Nelder
and Meade developed were disparaged by applied mathematicians,
who preferred the rigor and efficiency of the gradient-based methods
developed soon after that. Nevertheless, they were further developed
and remain popular with engineering practitioners because of their sim-
plicity. Pattern-search methods experienced a renaissance in the 1990s
with the development of convergence proofs that added mathematical
rigor and the availability of more powerful parallel computers.”’ Today,
pattern-search methods (Section 7.4) remain a useful option, sometimes
one of the only options, for certain types of optimization problems.

Global optimization algorithms also experienced further develop-
ments. Jones et al.”” developed the DIRECT algorithm, which uses
a rigorous approach to find the global optimum (Section 7.5). This
seminal development was followed by various extensions and improve-
ments.”

The first genetic algorithms started the development of the broader
class of evolutionary optimization algorithms inspired by natural and
societal processes. Optimization by simulated annealing (Section 8.6)
represents one of the early examples of this broader perspective.”
Another example is particle swarm optimization (Section 7.7).”> Since
then, there has been an explosion in the number of evolutionary
algorithms, inspired by any process imaginable (see the sidenote at
the end of Section 7.2 for a partial list). Evolutionary algorithms
have remained heuristic and have not experienced the mathematical
treatment applied to pattern-search methods.

There has been a sustained interest in surrogate models (also known
as metamodels) since the seminal contributions in the 1950s. Kriging
surrogate models are still used and have been the focus of many
improvements, but new techniques, such as radial-basis functions, have
also emerged.”™ Surrogate-based optimization is now an area of active
research (Chapter 10).

Al has experienced a revolution in the last decade and is connected
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to optimization in several ways. The early Al efforts focused on solving
problems that could be described formally using logic and decision
trees. A design optimization problem statement can be viewed as an
example of a formal logic description. Since the 1980s, Al has focused
on machine learning, which uses algorithms and statistics to learn from
data. In the 2010s, machine learning rose explosively owing to the
development of deep learning neural networks, the availability of large
data sets for training the neural networks, and increased computer
power. Today, machine learning solves problems that are difficult to
describe formally, such as face and speech recognition. Deep learning
neural networks learn to map a set of inputs to a set of outputs based
on training data and can be viewed as a type of surrogate model
(see Section 10.5). These networks are trained using optimization
algorithms that minimize the loss function (analogous to model error),
but they require specialized optimization algorithms such as stochastic
gradient descent. °” The gradients for such problems are efficiently
computed with backpropagation, a specialization of the reverse mode
of algorithmic differentiation (AD) (see Section 6.6).”

2.5 Toward a Diverse Future

In the history of optimization, there is a glaring lack of diversity in ge-
ography, culture, gender, and race. Many contributions to mathematics
have more diverse origins. This section is just a brief comment on this
diversity and is not meant to be comprehensive. For a deeper analysis
of the topics mentioned here, please see the cited references and other
specialized bibliographies.

One of the oldest known mathematical objects is the Ishango bone,
which originates from Africa and shows the construction of a numeral
system.” Ancient Egyptians and Babylonians had a profound influence
on ancient Greek mathematics. The Mayan civilization developed a
sophisticated counting system that included zero and made precise as-
tronomical observations to measure the solar yeat’s length accurately.®’
In China, a textbook called Nine Chapters on the Mathematical Art, the
compilation of which started in 200 BCE, includes a guide on solving
equations using a matrix-based method. ! The word algebra derives
from a book entitled Al-jabr wa’l mugabalah by the Persian mathemati-
cian al-Khwarizmi in the ninth century, the title of which originated
the term algorithm.%” Finally, some of the basic components of calculus
were discovered in India 250 years before Newton’s breakthroughs.®’

We also must recognize that there has been, and still is, a gender
gap in science, engineering, and mathematics that has prevented
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women from having the same opportunities as men. The first known
female mathematician, Hypatia, lived in Alexandria (Egypt) in the
fourth century and was brutally murdered for political motives. In
the eighteenth century, Sophie Germain corresponded with famous
mathematicians under a male pseudonym to avoid gender bias. She
could not get a university degree because she was female but was
nevertheless a pioneer in elasticity theory. Ada Lovelace famously
wrote the first computer program in the nineteenth century.®* In the late
nineteenth century, Sofia Kovalevskaya became the first woman to obtain
a doctorate in mathematics but had to be tutored privately because
she was not allowed to attend lectures. Similarly, Emmy Noether, who
made many fundamental contributions to abstract algebra in the early
twentieth century, had to overcome rules that prevented women from
enrolling in universities and being employed as faculty.®”

In more recent history, many women made crucial contributions in
computer science. Grace Hopper invented the first compiler and influ-
enced the development of the first high-level programming language
(COBOL). Lois Haibt was part of a small team at IBM that developed
Fortran, an extremely successful programming language that is still
used today. Frances Allen was a pioneer in optimizing compilers (an
altogether different type of optimization from the topic in this book)
and was the first woman to win the Turing Award. Finally, Margaret
Hamilton was the director of a laboratory that developed the flight
software for NASA’s Apollo program and coined the term software
engineering.

Many other researchers have made key contributions despite facing
discrimination. One of the most famous examples is that of mathe-
matician and computer scientist Alan Turing, who was prosecuted in
1952 for having a relationship with another man. His punishment was
chemical castration, which he endured for a time but ultimately led
him to commit suicide at the age of 41.°

Some races and ethnicities have been historically underrepresented
in science, engineering, and mathematics. One of the most apparent
disparities has been the lack of representation of African Americans in
the United States in these fields. This underrepresentation is a direct
result of slavery and, among other factors, segregation, redlining, and
anti-black racism.””*® In the eighteenth-century United States, Benjamin
Banneker, a free African American who was a self-taught mathematician
and astronomer, corresponded directly with Thomas Jefferson and
successfully challenged the morality of the U.S. government’s views on
race and humanity.®” Historically black colleges and universities were
established in the United States after the American Civil War because
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African Americans were denied admission to traditional institutions.
In 1925, Elbert Frank Cox was the first black man to get a PhD in
mathematics, and he then became a professor at Howard University.
Katherine Johnson and fellow female African American mathematicians
Dorothy Vaughan and Mary Jackson played a crucial role in the U.S.
space program despite the open prejudice they had to overcome.”’

“Talent is equally distributed, opportunity is not.”* The arc of
recent history has bent toward more diversity and equity,’ but it takes
concerted action to bend it. We have much more work to do before
everyone has the same opportunity to contribute to our scientific
progress. Only when that is achieved can we unleash the true potential
of humankind.

2.6 Summary

The history of optimization is as old as human civilization and has had
many twists and turns. Ancient geometric optimization problems that
were correctly solved by intuition required mathematical developments
that were only realized much later. The discovery of calculus laid the
foundations for optimization. Computer hardware and algorithms then
enabled the development and deployment of numerical optimization.

Numerical optimization was first motivated by operations research
problems but eventually made its way into engineering design. Soon
after numerical models were developed to simulate engineering systems,
the idea arose to couple those models to optimization algorithms in
an automated cycle to optimize the design of such systems. The
first application was in structural design, but many other engineering
design applications followed, including applications coupling multiple
disciplines, establishing MDO. Whenever a new numerical model
becomes fast enough and sulfficiently robust, there is an opportunity to
integrate it with numerical optimization to go beyond simulation and
perform design optimization.

Many insightful connections have been made in the history of
optimization, and the trend has been to unify the theory and methods.
There are no doubt more connections and contributions to be made—
hopefully from a more diverse research community.
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*Variations of this quote abound; this one
is attributed to social entrepreneur Leila
Janah.

* A rephrasing of Martin Luther King Jr.'s
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long, but it bends toward justice.”
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Numerical Models and Solvers

In the introductory chapter, we discussed function characteristics from
the point of view of the function’s output—the black-box view shown in
Fig. 1.16. Here, we discuss how the function is modeled and computed.
The better your understanding of the model and the more access you
have to its details, the more effectively you can solve the optimization
problem. We explain the errors involved in the modeling process so
that we can interpret optimization results correctly.

e 3

By the end of this chapter you should be able to:

1. Identify different types of numerical errors and understand
the limitations of finite-precision arithmetic.

2. Estimate an algorithm’s rate of convergence.

3. Use Newton’s method to solve systems of equations.

3.1 Model Development for Analysis versus Optimization

A good understanding of numerical models and solvers is essential
because numerical optimization demands more from the models and
solvers than does pure analysis. In an analysis or a parametric study, we
may cycle through a range of plausible designs. However, optimization
algorithms seek to explore the design space, and therefore, intermediate
evaluations may use atypical design variables combinations. The
mathematical model, numerical model, and solver must be robust
enough to handle these design variable combinations.

A related issue is that an optimizer exploits errors in ways an engi-
neer would not do in analysis. For example, consider the aerodynamic
analysis of a car. In a parametric study, we might try a dozen designs,
compare the drag, and choose the best one. If we passed this procedure
to an optimizer, it might flatten the car to zero height (the minimum
drag solution) if there are no explicit constraints on interior volume
or structural integrity. Thus, we often need to develop additional

47
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models for optimization. A designer often considers some of these
requirements implicitly and approximately, but we need to model these
requirements explicitly and pose them as constraints in optimization.

Another consideration that affects both the mathematical and the
numerical model is the overall computational cost of optimization. An
analysis might only be run dozens of times, whereas an optimization
often runs the analysis thousands of times. This computational cost
can affect the level of fidelity or discretization we can afford to use.

The level of precision desirable for analysis is often insufficient
for optimization. In an analysis, a few digits of precision may be
sufficient. However, using fewer significant digits limits the types
of optimization algorithms we can employ effectively. Convergence
failures can cause premature termination of algorithms. Noisy outputs
can mislead or terminate an optimization prematurely. A common
source of these errors involves programs that work through input
and output files (see Tip 6.1). Even though the underlying code may
use double-precision arithmetic, output files rarely include all the
significant digits (another separate issue is that reading and writing
files at every iteration considerably slows down the analysis).

Another common source of errors involves converging systems of
equations, as discussed later in this chapter. Optimization generally
requires tighter tolerances than are used for analysis. Sometimes this
is as easy as changing a default tolerance, but other times we need to
rethink the solvers.

3.2 Modeling Process and Types of Errors

Design optimization problems usually involve modeling a physical
system to compute the objective and constraint function values for a
given design. Figure 3.1 shows the steps in the modeling process. Each
of these steps in the modeling process introduces errors.

The physical system represents the reality that we want to model. The
mathematical model can range from simple mathematical expressions
to continuous differential or integral equations for which closed-form
solutions over an arbitrary domain are not possible. Modeling errors
are introduced in the idealizations and approximations performed in
the derivation of the mathematical model. The errors involved in the
rest of the process are numerical errors, which we detail in Section 3.5.
In Section 3.3, we discuss mathematical models in more detail and
establish the notation for representing them.

When a mathematical model is given by differential or integral
equations, we must discretize the continuous equations to obtain the
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numerical model. Section 3.4 provides a brief overview of the dis-
cretization process, and Section 3.5.2 defines the associated errors.

The numerical model must then be programmed using a computer
language to develop a numerical solver. Because this process is suscep-
tible to human error, we discuss strategies for addressing such errors in
Section 3.5.4.

Finally, the solver computes the system state variables using finite-
precision arithmetic, which introduces roundoff errors (see Section 3.5.1).
Section 3.6 includes a brief overview of solvers, and we dedicate a sep-
arate section to Newton-based solvers in Section 3.8 because they are
used later in this book.

The total error in the modeling process is the sum of the modeling
errors and numerical errors. Validation and verification processes
quantify and reduce these errors. Verification ensures that the model
and solver are correctly implemented so that there are no errors in
the code. It also ensures that the errors introduced by discretization
and numerical computations are acceptable. Validation compares
the numerical results with experimental observations of the physical
system, which are themselves subject to experimental errors. By making
these comparisons, we can validate the modeling step of the process
and ensure that the mathematical model idealizations and assumptions
are acceptable.

Modeling and numerical errors relate directly to the concepts of
precision and accuracy. An accurate solution compares well with the
actual physical system (validation), whereas a precise solution means
that the model is programmed and solved correctly (verification).

It is often said that “all models are wrong, but some are usefu
Because there are always errors involved, we must prioritize which
aspects of a given model should be improved to reduce the overall
error. When developing a new model, we should start with the simplest
model that includes the system’s dominant behavior. Then, we might
selectively add more detail as needed. One common pitfall in numerical
modeling is to confuse precision with accuracy. Increasing precision by
reducing the numerical errors is usually desirable. However, when we
look at the bigger picture, the model might have limited utility if the
modeling errors are more significant than the numerical errors.
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Fig. 3.1 Physical problems are mod-
eled and then solved numerically to
produce function values.

71. Box, Science and statistics, 1976.

=

S EIIERE Modeling a structure

As an example of a physical system, consider the timber roof truss structure
shown in Fig. 3.2. A typical mathematical model of such a structure idealizes
the wood as a homogeneous material and the joints as pinned. It is also
common to assume that the loads are applied only at the joints and that the

KM

Fig. 3.2 Timber roof truss and ideal-
ized model.
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structure’s weight does not contribute to the loading. Finally, the displacements
are assumed to be small relative to the dimensions of the truss members.
The structure is discretized by pinned bar elements. The discrete governing
equations for any truss structure can be derived using the finite-element method.
This leads to the linear system

Ku=gq,

where K is the stiffness matrix, g is the vector of applied loads, and u represents
the displacements that we want to compute. At each joint, there are two degrees
of freedom (horizontal and vertical) that describe the displacement and applied
force. Because there are 9 joints, each with 2 degrees of freedom, the size of
this linear system is 18.

3.3 Numerical Models as Residual Equations

Mathematical models vary significantly in complexity and scale. In
the simplest case, a model can be represented by one or more explicit
functions, which are easily coded and computed. Many examples in
this book use explicit functions for simplicity. In practice, however,
many numerical models are defined by implicit equations.

Implicit equations can be written in the residual form as

ri(ur, ..., uy) =0, i=1,...,n, (3.1)

where r is a vector of residuals that has the same size as the vector of
state variables u. The equations defining the residuals could be any
expression that can be coded in a computer program. No matter how
complex the mathematical model, it can always be written as a set of
equations in this form, which we write more compactly as r(u) = 0.

Finding the state variables that satisfy this set of equations requires
a solver, as illustrated in Fig. 3.3. We review the various types of solvers
in Section 3.6. Solving a set of implicit equations is more costly than
computing explicit functions, and it is typically the most expensive step
in the optimization cycle.

Mathematical models are often referred to as governing equations,
which determine the state (1) of a given physical system at specific
conditions. Many governing equations consist of differential equations,
which require discretization. The discretization process yields implicit
equations that can be solved numerically (see Section 3.4). After
discretization, the governing equations can always be written as a set
of residuals, (1) = 0.

&,
|

Fig. 3.3 Numerical models use a
solver to find the state variables u
that satisfy the governing equations,
such that r(u) = 0.
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2B Implicit and explicit equations in structural analysis

The linear system from Ex. 3.1 is an example of a system of implicit equations,
which we can write as a set of residuals by moving the right-hand-side vector
to the left to obtain

r(u)=Ku—-q=0,

where u represents the state variables. Although the solution for u could be
written as an explicit function, u = K™1 f, this is usually not done because it
is computationally inefficient and intractable for large-scale systems. Instead,
we use a linear solver that does not explicitly form the inverse of the stiffness
matrix (see Appendix B).

In addition to computing the displacements, we might also want to compute
the axial stress (o) in each of the 15 truss members.This is an explicit function
of the displacements, which is given by the linear relationship

o=Su,

where S is a (15 X 18) matrix.

We can still use the residual notation to represent explicit functions
to write all the functions in a model (implicit and explicit) as r(u) = 0
without loss of generality. Suppose we have an implicit system of
equations, r,(u,) = 0, followed by a set of explicit functions whose
output is a vector us = f(u,), as illustrated in Fig. 3.4. We can rewrite
the explicit function as a residual by moving all the terms to one side to
get r¢(u,, uf) = f(uy) — ug = 0. Then, we can concatenate the residuals
and variables for the implicit and explicit equations as

r(u) = [f(:;r()u:)uf =0, where u= [Z;] . (3.2)
The solver arrangement would then be as shown in Fig. 3.5.

Even though it is more natural to just evaluate explicit functions
instead of adding them to a solver, in some cases, it is helpful to use
the residual to represent the entire model with the compact notation,
r(u) = 0. This will be helpful in later chapters when we compute
derivatives (Chapter 6) and solve systems that mix multiple implicit
and explicit sets of equations (Chapter 13).

S EIEEREN Expressing an explicit function as an implicit equation

Suppose we have the following mathematical model:
u% +2up—1=0
up +cos(uy) —up =0

flur,up) =uy +uy.

,,
|

- fur)

uf

Fig. 3.4 A model with implicit and

explicit functions.

o
Lt
ro| f(ur) —ug

uy
us

Fig. 3.5 Explicit functions can be writ-
ten in residual form and added to the

solver.
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The first two equations are written in implicit form, and the third equation is
given as an explicit function. The first equation could be manipulated to obtain
an explicit function of either u; or uy. The second equation does not have a
closed-form solution and cannot be written as an explicit function for u;. The
third equation is an explicit function of u1 and u5. In this case, we could solve
the first two equations for 11 and uy using a nonlinear solver and then evaluate
f(u1,uz). Alternatively, we can write the whole system as implicit residual
equations by defining the value of f(u1, up) as us,

r1(u1,u2):u%+2u2—1 =0
ro(uq, up) = ug +cos(ug) —up =0
r3(uy, ug, uz) = uy + Uy — U3 =0.

Then we can use the same nonlinear solver to solve for all three equations
simultaneously.

3.4 Discretization of Differential Equations

Many physical systems are modeled by differential equations defined
over a domain. The domain can be spatial (one or more dimensions),
temporal, or both. When time is considered, then we have a dynamic
model. When a differential equation is defined in a domain with one
degree of freedom (one-dimensional in space or time), then we have an
ordinary differential equation (ODE), whereas any domain defined by
more than one variable results in a partial differential equation (PDE).

Differential equations need to be discretized over the domain to be
solved numerically. There are three main methods for the discretization
of differential equations: the finite-difference method, the finite-volume
method, and the finite-element method. The finite-difference method
approximates the derivatives in the differential equations by the value
of the relevant quantities at a discrete number of points in a mesh (see
Fig. 3.6). The finite-volume method is based on the integral form of the
PDEs. It divides the domain into control volumes called cells (which
also form a mesh), and the integral is evaluated for each cell. The values
of the relevant quantities can be defined either at the centroids of the
cells or at the cell vertices. The finite-element model divides the domain
into elements (which are similar to cells) over which the quantities are
interpolated using predefined shape functions. The states are computed
at specific points in the element that are not necessarily at the element
boundaries. Governing equations can also include integrals, which can
be discretized with quadrature rules.
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With any of these discretization methods, the final result is a
set of algebraic equations that we can write as r(#) = 0 and solve
for the state variables u. This is a potentially large set of equations
depending on the domain and discretization (e.g., it is common to
have millions of equations in three-dimensional computational fluid
dynamics problems). The number of state variables of the discretized
model is equal to the number of equations for a complete and well-
defined model. In the most general case, the set of equations could be
implicit and nonlinear.

When a problem involves both space and time, the prevailing ap-
proach is to decouple the discretization in space from the discretization
in time—called the method of lines (see Fig. 3.7). The discretization in
space is performed first, yielding an ODE in time. The time derivative
can then be approximated as a finite difference, leading to a time-
integration scheme.

The discretization process usually yields implicit algebraic equations
that require a solver to obtain the solution. However, discretization
in some cases yields explicit equations, in which case a solver is not
required.

3.5 Numerical Errors

Numerical errors (or computation errors) can be categorized into three
main types: roundoff errors, truncation errors, and errors due to coding.
Numerical errors are involved with each of the modeling steps between
the mathematical model and the states (see Fig. 3.1). The error involved
in the discretization step is a type of truncation error. The errors
introduced in the coding step are not usually discussed as numerical
errors, but we include them here because they are a likely source of error
in practice. The errors in the computation step involve both roundoff
and truncation errors. The following subsections describe each of these
erTor sources.

An absolute error is the magnitude of the difference between the exact
value (x*) and the computed value (x), which we can write as |x — x*|.

Finite element

Element =

Fig. 3.6 Discretization methods in one
spatial dimension.

PDE

u(z, t)

ODE
uy(t)

Fig. 3.7 PDEs in space and time are
often discretized in space first to yield
an ODE in time.
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The relative error is a more intrinsic error measure and is defined as

_x-x

= (3.3)

This is the more useful error measure in most cases. When the exact
value x* is close to zero, however, this definition breaks down. To
address this, we avoid the division by zero by using

=7

=T (3.4)

This error metric combines the properties of absolute and relative errors.
When |x*| > 1, this metric is similar to the relative error, but when
|x*| < 1, it becomes similar to the absolute error.

3.5.1 Roundoff Errors

Roundoff errors stem from the fact that a computer cannot represent
all real numbers with exact precision. Errors in the representation of
each number lead to errors in each arithmetic operation, which in turn
might accumulate throughout a program.

There is an infinite number of real numbers, but not all numbers can
be represented in a computer. When a number cannot be represented
exactly, it is rounded. In addition, a number might be too small or too
large to be represented.

Computers use bits to represent numbers, where each bit is either
0 or 1. Most computers use the Institute of Electrical and Electronics
Engineers (IEEE) standard for representing numbers and performing
finite-precision arithmetic. A typical representation uses 32 bits for
integers and 64 bits for real numbers.

Basic operations that only involve integers and whose result is an
integer do not incur numerical errors. However, there is a limit on the
range of integers that can be represented. When using 32-bit integers,
1 bit is used for the sign, and the remaining 31 bits can be used for
the digits, which results in a range from —231 = _D2 147,483, 648 to
231 -1 =12,147,483,647. Any operation outside this range would result
in integer overflow.*

Real numbers are represented using scientific notation in base 2:

x = significand x 2eXPonent, (3.5)

The 64-bit representation is known as the double-precision floating-point
format, where some digits store the significand and others store the
exponent. The greatest positive and negative real numbers that can

*Some programming languages, such as
Python, have arbitrary precision integers
and are not subject to this issue, albeit with
some performance trade-offs.
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be represented using the IEEE double-precision representation are
approximately 103%® and —103%. Operations that result in numbers
outside this range result in overflow, which is a fatal error in most
computers and interrupts the program execution.

There is also a limit on how close a number can come to zero,
approximately 10732 when using double precision. Numbers smaller
than this result in underflow. The computer sets such numbers to
zero by default, and the program usually proceeds with no harmful
consequences.

One important number to consider in roundoff error analysis is the
machine precision, € p1, which represents the precision of the computa-
tions. This is the smallest positive number ¢ such that

1+e>1 (3.6)

when calculated using a computer. This number is also known as
machine zero. Typically, the double precision 64-bit representation uses
1 bit for the sign, 11 bits for the exponent, and 52 bits for the significand.
Thus, when using double precision, ey = 272 ~ 22 x 107, A
double-precision number has about 16 digits of precision, and a relative
representation error of up to €4( may occur.

SEIEERE Machine precision

Suppose that three decimal digits are available to represent a number (and
that we use base 10 for simplicity). Then, €4( = 0.005 because any number
smaller than this results in 1 + ¢ = 1 when rounded to three digits. For
example, 1.00 + 0.00499 = 1.00499, which rounds to 1.00. On the other hand,
1.00 + 0.005 = 1.005, which rounds to 1.01 and satisfies Eq. 3.6.

SEMEERSN Relative representation error

If we try to store 24.11 using three digits, we get 24.1. The relative error is

24.11-24.1
24.11

which is lower than the maximum possible representation error of €4 = 0.005
established in Ex. 3.4.

~ 0.0004,

When operating with numbers that contain errors, the result is
subject to a propagated error. For multiplication and division, the relative
propagated error is approximately the sum of the relative errors of the
respective two operands.
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For addition and subtraction, an error can occur even when the
two operands are represented exactly. Before addition and subtraction,
the computer must convert the two numbers to the same exponent.
When adding numbers with different exponents, several digits from
the small number vanish (see Fig. 3.8). If the difference in the two
exponents is greater than the magnitude of the exponent of ¢, the
small number vanishes completely—a consequence of Eq. 3.6. The
relative error incurred in addition is still € 4.

Difference in exponent Lost digits from b

| | |
[ | [
co LTI TP ]
| |

+b 0. 00O OO OO O0OO0O0O

\
Digits from a Affected digits

On the other hand, subtraction can incur much greater relative
errors when subtracting two numbers that have the same exponent and
are close to each other. In this case, the digits that match between the
two numbers cancel each other and reduce the number of significant
digits. When the relative difference between two numbers is less than
machine precision, all digits match, and the subtraction result is zero
(see Fig. 3.9). This is called subtractive cancellation and is a serious issue
when approximating derivatives via finite differences (see Section 6.4).

‘ Common digits
\

|
|
co JPTTTTTITPT T TT]
—eof [T T T TTT]
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\ \ \
Common digits are lost Remaining digits

Sometimes, minor roundoff errors can propagate and result in
much more significant errors. This can happen when a problem is ill-
conditioned or when the algorithm used to solve the problem is unstable.
In both cases, small changes in the inputs cause large changes in the
output. Ill-conditioning is not a consequence of the finite-precision
computations but is a characteristic of the model itself. Stability is a
property of the algorithm used to solve the problem. When a problem

Fig. 3.8 Adding or subtracting num-
bers of differing exponents results in
a loss in the number of digits cor-
responding to the difference in the
exponents. The gray boxes indicate
digits that are identical between the
two numbers.

Fig. 3.9 Subtracting two numbers that
are close to each other results in a loss
of the digits that match.



3 NuMERICAL MODELS AND SOLVERS 57

is ill-conditioned, it is challenging to solve it in a stable way. When a
problem is well conditioned, there is a stable algorithm to solve it.

S EIEREN Effect of roundoff error on function representation

Let us examine the function f(x) = x? — 4x + 4 near its minimum, at x = 2.
If we use double precision and plot many points in a small interval, we can see
that the function exhibits the step pattern shown in Fig. 3.10. The numerical
minimum of this function is anywhere in the interval around x = 2 where the
numerical value is zero. This interval is much larger than the machine precision
(epm=22x 10~16). An additional error is incurred in the function computation
around x = 2 as a result of subtractive cancellation. This illustrates the fact that
all functions are discontinuous when using finite-precision arithmetic.

3.5.2 Truncation Errors

In the most general sense, truncation errors arise from performing a
finite number of operations where an infinite number of operations
would be required to get an exact result." Truncation errors would
arise even if we could do the arithmetic with infinite precision.

When discretizing a mathematical model with partial derivatives as
described in Section 3.4, these are approximated by truncated Taylor
series expansions that ignore higher-order terms. When the model
includes integrals, they are approximated as finite sums. In either case,
a mesh of points where the relevant states and functions are evaluated
is required. Discretization errors generally decrease as the spacing
between the points decreases.

1ol Perform a mesh refinement study

When using a model that depends on a mesh, perform a mesh refinement
study. This involves solving the model for increasingly finer meshes to check if
the metrics of interest converge in a stable way and verify that the convergence
rate is as expected for the chosen numerical discretization scheme. A mesh
refinement study is also useful for finding the mesh that provides the best
compromise between computational time and accuracy. This is especially
important in optimization because the model is solved many times.

3.5.3 Iterative Solver Tolerance Error

Many methods for solving numerical models involve an iterative proce-
dure that starts with a guess for the states # and then improves that

2-5-1078 2.0 2+5-1078

Fig. 3.10 With double precision, the
minimum of this quadratic function
is in an interval much larger than
machine zero.

tRoundoff error, discussed in the previ-
ous section, is sometimes also referred to
as truncation error because digits are trun-
cated. However, we avoid this confusing
naming and only use truncation error to
refer to a truncation in the number of op-
erations.
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guess at each iteration until reaching a specified convergence tolerance.
The convergence is usually measured by a norm of the residuals, ||7(u)]],
which we want to drive to zero. Iterative linear solvers and Newton-type
solvers are examples of iterative methods (see Section 3.6).

A typical convergence history for an iterative solver is shown in
Fig. 3.11. The norm of the residuals decreases gradually until a limit
is reached (near 107! in this case). This limit represents the lowest
error achieved with the iterative solver and is determined by other
sources of error, such as roundoff and truncation errors. If we terminate
before reaching the limit (either by setting a convergence tolerance to a
value higher than 107!° or setting an iteration limit to lower than 400
iterations), we incur an additional error. However, it might be desirable
to trade off a less precise solution for a lower computational effort.

1i[s)ei?A Find the level of the numerical noise in your model

It is crucial to know the error level in your model because this limits the
type of optimizer you can use and how well you can optimize. In Ex. 3.6, we
saw that if we plot a function at a small enough scale, we can see discrete steps
in the function due to roundoff errors. When accumulating all sources of error
in a more elaborate model (roundoff, truncation, and iterative), we no longer
have a neat step pattern. Instead, we get numerical noise, as shown in Fig. 3.12.
The noise level can be estimated by the amplitude of the oscillations and gives
us the order of magnitude of the total numerical error.
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3.5.4 Programming Errors

Most of the literature on numerical methods is too optimistic and does
not explicitly discuss programming errors, commonly known as bugs.
Most programmers, especially beginners, underestimate the likelihood
that their code has bugs.
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o

Fig. 3.11 Norm of residuals versus the
number of iterations for an iterative
solver.

Fig.3.12 To find the level of numerical
noise of a function of interest with re-
spect to an input parameter (left), we
magnify both axes by several orders
of magnitude and evaluate the func-
tion at points that are closely spaced
(right).
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It is helpful to adopt sound programming practices, such as writing
clear, modular code. Clear code has consistent formatting, meaningful
naming of variable functions, and helpful comments. Modular code
reuses and generalizes functions as much as possible and avoids copying
and pasting sections of code.”> Modular code allows for more flexible
usage. Breaking up programs into smaller functions with well-defined
inputs and outputs makes debugging much more manageable.

There are different types of bugs relevant to numerical models:
generic programming errors, incorrect memory handling, and algorith-
mic or logical errors. Programming errors are the most frequent and
include typos, type errors, copy-and-paste errors, faulty initializations,
missing logic, and default values. In theory, careful programming and
code inspection can avoid these errors, but you must always test your
code in practice. This testing involves comparing your result with a
case where you know the solution—the reference result. You should
start with the simplest representative problem and then build up from
that. Interactive debuggers are helpful because let you step through
the code and check intermediate variable values.

1)lsrefel| Debugging is a skill that takes practice

The overall attitude toward programming should be that all code has bugs
until it is verified through testing. Programmers who are skilled at debugging
are not necessarily any better at spotting errors by reading code or by stepping
through a debugger than average programmers. Instead, effective programmers
use a systematic approach to narrow down where the problem is occurring.

Beginners often try to debug by running the entire program. Even experi-
enced programmers have a hard time debugging at that level. One primary
strategy discussed in this section is to write modular code. It is much easier
to test and debug small functions. Reliable complex programs are built up
through a series of well-tested modular functions. Sometimes we need to
simplify or break up functions even further to narrow down the problem. We
might need to streamline and remove pieces, make sure a simple case works,
then slowly rebuild the complexity.

You should also become comfortable reading and understanding the error
messages and stack traces produced by the program. These messages seem
obscure at first, but through practice and researching what the error messages
mean, they become valuable information sources.

Of course, you should carefully reread the code, looking for errors, but
reading through it again and again is unlikely to yield new insights. Instead,
it can be helpful to step away from the code and hypothesize the most likely
ways the function could fail. You can then test and eliminate hypotheses to
narrow down the problem.

72. Wilson et al., Best practices for scientific
computing, 2014.

$The term debugging was used in engineer-
ing prior to computers, but Grace Hop-
per popularized this term in the program-
ming context after a glitch in the Harvard
Mark II computer was found to be caused
by a moth.


https://dx.doi.org/10.1371/journal.pbio.1001745
https://dx.doi.org/10.1371/journal.pbio.1001745
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Memory handling issues are much less frequent than programming
errors, but they are usually more challenging to track. These issues
include memory leaks (a failure to free unused memory), incorrect use
of memory management, buffer overruns (e.g., array bound violations),
and reading uninitialized memory. Memory issues are challenging to
track because they can result in strange behavior in parts of the code that
are far from the source of the error. In addition, they might manifest
themselves in specific conditions that are hard to reproduce consistently.
Memory debuggers are essential tools for addressing memory issues.
They perform detailed bookkeeping of all allocation, deallocation, and
memory access to detect and locate any irregularities.S

Whereas programming errors are due to a mismatch between the
programmer’s intent and what is coded, the root cause of algorithmic
or logical errors is in the programmer’s intent itself. Again, testing is
the key to finding these errors, but you must be sure that the reference
result is correct.

1lleIel8 Use sound code testing practices

Automated testing takes effort to implement but ultimately saves time,
especially for larger, long-term projects. Unit tests check for the internal
consistency of a small piece (a “unit”) of code and should be implemented as
each piece of code is developed. Integration tests are designed to demonstrate
that different code components work together as expected. Regression testing
consists of running all the tests (usually automatically) anytime the code has
changed to ensure that the changes have not introduced bugs. It is usually
impossible to test for all potential issues, but the more you can test, the more
coverage you have. Whenever a bug has been found, a test should be developed
to catch that same type of bug in the future.

Running the analysis within an optimization loop can reveal bugs
that do not manifest themselves in a single analysis. Therefore, you
should only run an optimization test case after you have tested the
analysis code in isolation.

As previously mentioned, there is a higher incentive to reduce the
computational cost of an analysis when it runs in an optimization loop
because it will run many times. When you first write your code, you
should prioritize clarity and correctness as opposed to speed. Once the
code is verified through testing, you should identify any bottlenecks
using a performance profiling tool. Memory performance issues can
also arise from running the analysis in an optimization loop instead
of running a single case. In addition to running a memory debugger,

8See Grotker et al.”? for more details on
how to debug and profile code.

73. Grotker et al., The Developer’s Guide to
Debugging, 2012.


https://https://www.google.ca/books/edition/The_Developer_s_Guide_to_Debugging/OlHMSAAACAAJ
https://https://www.google.ca/books/edition/The_Developer_s_Guide_to_Debugging/OlHMSAAACAAJ
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you can also run a memory profiling tool to identify opportunities to
reduce memory usage.

3.6 Overview of Solvers

There are several methods available for solving the discretized gov-
erning equations (Eq. 3.1). We want to solve the governing equations
for a fixed set of design variables, so x will not appear in the solution
algorithms. Our objective is to find the state variables u such that
r(u) =0.

This is not a book about solvers, but it is essential to understand the
characteristics of these solvers because they affect the cost and precision
of the function evaluations in the overall optimization process. Thus,
we provide an overview and some of the most relevant details in this
section.” In addition, the solution of coupled systems builds on these
solvers, as we will see in Section 13.2. Finally, some of the optimization
algorithms detailed in later chapters use these solvers.

There are two main types of solvers, depending on whether the
equations to be solved are linear or nonlinear (Fig. 3.13). Linear solution
methods solve systems of the form r(u) = Au — b = 0, where the matrix
A and vector b are not dependent on u. Nonlinear methods can handle
any algebraic system of equations that can be written as r(u) = 0.

* Ascher and Greif’* provide a more de-
tailed introduction to the numerical meth-
ods mentioned in this chapter.

74. Ascher and Greif, A First Course in
Numerical Methods, 2011.

LU factorization HCholesky factorizationj

Linear

Iterative

Newton
+ linear solver

QR factorization J

Nonlinear Krylov subspace

Nonlinear
variants of

Fixed point ]— Gauss—Seidel

fixed point

Linear systems can be solved directly or iteratively. Direct meth-
ods are based on the concept of Gaussian elimination, which can be
expressed in matrix form as a factorization into lower and upper tri-
angular matrices that are easier to solve (LU factorization). Cholesky
factorization is a more efficient variant of LU factorization that applies
only to symmetric positive-definite matrices.

Whereas direct solvers obtain the solution u at the end of a process,
iterative solvers start with a guess for u and successively improve it

Fig. 3.13 Overview of solution meth-
ods for linear and nonlinear systems.


https://https://www.google.ca/books/edition/A_First_Course_in_Numerical_Methods/eGDMSIqPYdYC
https://https://www.google.ca/books/edition/A_First_Course_in_Numerical_Methods/eGDMSIqPYdYC
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with each iteration, as illustrated in Fig. 3.14. Iterative methods can
be fixed-point iterations, such as Jacobi, Gauss—Seidel, and successive
over-relaxation (SOR), or Krylov subspace methods. Krylov subspace
methods include the conjugate gradient (CG) and generalized minimum
residual (GMRES) methods.” Direct solvers are well established and
are included in the standard libraries for most programming languages.
Iterative solvers are less widespread in standard libraries, but they are
becoming more commonplace. Appendix B describes linear solvers in
more detail.

Direct methods are the right choice for many problems because
they are generally robust. Also, the solution is guaranteed for a fixed
number of operations, O(n°®) in this case. However, for large systems
where A is sparse, the cost of direct methods can become prohibitive,
whereas iterative methods remain viable. Iterative methods have other
advantages, such as being able to trade between computational cost
and precision. They can also be restarted from a good guess (see
Appendix B.4).

1j[srefel| Do not compute the inverse of A

Because some numerical libraries have functions to compute A~!, you
might be tempted to do this and then multiply by a vector to compute u = A~1b.
This is a bad idea because finding the inverse is computationally expensive.
Instead, use LU factorization or another method from Fig. 3.13.

When it comes to nonlinear solvers, the most efficient methods are
based on Newton’s method, which we explain later in this chapter
(Section 3.8). Newton’s method solves a sequence of problems that

are linearizations of the nonlinear problem about the current iterate.

The linear problem at each Newton iteration can be solved using any
linear solver, as indicated by the incoming arrow in Fig. 3.13. Although
efficient, Newton’s method is not robust in that it does not always
converge. Therefore, it requires modifications so that it can converge
reliably.

Finally, it is possible to adapt linear fixed-point iteration methods to
solve nonlinear equations as well. However, unlike the linear case, it
might not be possible to derive explicit expressions for the iterations in
the nonlinear case. For this reason, fixed-point iteration methods are

often not the best choice for solving a system of nonlinear equations.

However, as we will see in Section 13.2.5, these methods are useful for
solving systems of coupled nonlinear equations.

*See Saad”® for more details on iterative
methods in the context of large-scale nu-
merical models.

75. Saad, Iterative Methods for Sparse
Linear Systems, 2003.
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Fig. 3.14 Whereas direct methods
only yield the solution at the end
of the process, iterative methods pro-
duce approximate intermediate re-
sults.


https://https://www.google.ca/books/edition/Iterative_Methods_for_Sparse_Linear_Syst/qtzmkzzqFmcC
https://https://www.google.ca/books/edition/Iterative_Methods_for_Sparse_Linear_Syst/qtzmkzzqFmcC
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For time-dependent problems, we require a way to solve for the
time history of the states, u(f). As mentioned in Section 3.3, the most
popular approach is to decouple the temporal discretization from the
spatial one. By discretizing a PDE in space first, this method formulates
an ODE in time of the following form:

j—;{ =—r(u,t), (3.7)
which is called the semi-discrete form. A time-integration scheme is
then used to solve for the time history. The integration scheme can be
either explicit or implicit, depending on whether it involves evaluating
explicit expressions or solving implicit equations. If a system under a
certain condition has a steady state, these techniques can be used to
solve the steady state (du/dt = 0).

3.7 Rate of Convergence

Iterative solvers compute a sequence of approximate solutions that hope-
fully converge to the exact solution. When characterizing convergence,
we need to first establish if the algorithm converges and, if so, how
fast it converges. The first characteristic relates to the stability of the
algorithm. Here, we focus on the second characteristic quantified
through the rate of convergence.

The cost of iterative algorithms is often measured by counting the
number of iterations required to achieve the solution. Iterative algo-
rithms often require an infinite number of iterations to converge to the
exact solution. In practice, we want to converge to an approximate solu-
tion close enough to the exact one. Determining the rate of convergence
arises from the need to quantify how fast the approximate solution is
approaching the exact one.

In the following, we assume that we have a sequence of points,
X0, X1,...,Xk, ..., that represent approximate solutions in the form of
vectors in any dimension and converge to a solution x*. Then,

Hm e — 271 =0, (3.8)

which means that the norm of the error tends to zero as the number of
iterations tends to infinity.

The rate of convergence of a sequence is of order p with asymptotic
error constant y when p is the largest number that satisfies*

0< lim e =¥l _o (3.9)

koo [l — x*|1”

*Some authors refer to p as the rate of
convergence. Here, we characterize the
rate of convergence by two metrics: order
and error constant.
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Asymptotic here refers to the fact that this is the behavior in the limit,
when we are close to the solution. There is no guarantee that the initial
and intermediate iterations satisfy this condition.

To avoid dealing with limits, let us consider the condition expressed
in Eq. 3.9 at all iterations. We can relate the error from one iteration to
the next by

Ik = "l =y llxe = 2|17 (3.10)

When p = 1, we have linear order of convergence; when p = 2, we have

quadratic order of convergence. Quadratic convergence is a highly

valued characteristic for an iterative algorithm, and in practice, orders of

convergence greater than p = 2 are usually not worthwhile to consider.
When we have linear convergence, then

llxker = 27N =y llxe =271, (3.11)

where y converges to a constant but varies from iteration to iteration.
In this case, the convergence is highly dependent on the value of the
asymptotic error constant y. If yx > 1, then the sequence diverges—a
situation to be avoided. If 0 < yx < 1 for every k, then the norm of the
error decreases by a constant factor for every iteration. Suppose that
y = 0.1 for all iterations. Starting with an initial error norm of 0.1, we
get the sequence

1071,1072,107%,107%,107%,107%,1077, ... . (3.12)

Thus, after six iterations, we get six-digit precision. Now suppose that
y = 0.9. Then we would have

1071,9.0x1072,8.1x 1072,7.3 x 1072, 6.6 X 1072,
59x1072,53%x1072,.... (3.13)

This corresponds to only one-digit precision after six iterations. It
would take 131 iterations to achieve six-digit precision.
When we have quadratic convergence, then

lxter — x| =y g — 27| (3.14)

If y = 1, then the error norm sequence with a starting error norm of 0.1
would be
1071,1072,107%,1078, ... . (3.15)

This yields more than six digits of precision in just three iterations!
In this case, the number of correct digits doubles at every iteration.
When y > 1, the convergence will not be as fast, but the series will still
converge.



3 NUMERICAL MODELS AND SOLVERS 65

If p > 1 and limy yx = 0, we have superlinear convergence,
which includes quadratic and higher rates of convergence. There is a
special case of superlinear convergence that is relevant for optimization
algorithms, which is when p = 1 and y — 0. This case is desirable
because in practice, it behaves similarly to quadratic convergence and
can be achieved by gradient-based algorithms that use first derivatives
(as opposed to second derivatives). In this case, we can write

ks = 27l =y llxe =271, (3.16)

where limy_,. yx = 0. Now we need to consider a sequence of values
for y that tends to zero. For example, if yx = 1/(k + 1), starting with an
error norm of 0.1, we get

1071,5%x1071,1.7x1071,4.2x 1072,8.3 x 1074,
1.4%x1074,20x107°,.... (3.17)

Thus, we achieve four-digit precision after six iterations. This special
case of superlinear convergence is not quite as good as quadratic
convergence, but it is much better than either of the previous linear
convergence examples.

We plot these sequences in Fig. 3.15. Because the points are just
scalars and the exact solution is zero, the error norm is just x;. The
first plot uses a linear scale, so we cannot see any differences beyond
two digits. To examine the differences more carefully, we need to use a
logarithmic axis for the sequence values, as shown in the plot on the
right. In this scale, each decrease in order of magnitude represents one
more digit of precision.

019 10°1 o

Linear
p=1y=09

0.08 1 Superlinear

Linear
p= 1
y=0.1

107 4 Quadratic

p=2

0 2 4 6 0 2 4 6

The linear convergence sequences show up as straight lines in
Fig. 3.15 (right), but the slope of the lines varies widely, depending
on the value of the asymptotic error constant. Quadratic convergence
exhibits an increasing slope, reflecting the doubling of digits for each

Fig. 3.15 Sample sequences for lin-
ear, superlinear, and quadratic cases
plotted on a linear scale (left) and a
logarithmic scale (right).
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iteration. The superlinear sequence exhibits poorer convergence than
the best linear one, but we can see that the slope of the superlinear curve
is increasing, which means that for a large enough k, it will converge at
a higher rate than the linear one.

1l[s1elsl Use a logarithmic scale when plotting convergence

When using a linear scale plot, you can only see differences in two significant
digits. To reveal changes beyond three digits, you should use a logarithmic
scale. This need frequently occurs in plotting the convergence behavior of
optimization algorithms.

When solving numerical models iteratively, we can monitor the
norm of the residual. Because we know that the residuals should be
zero for an exact solution, we have

ksl = yi llrell” (3.18)

If we monitor another quantity, we do not usually know the exact
solution. In these cases, we can use the ratio of the step lengths of each

iteration: X
ks = 2N Nl — xkll
ok = x|l llxk = xk—all

(3.19)

The order of convergence can be estimated numerically with the values
of the last available four iterates using
[l =kl
10810 =5l
[k = Xkl
ko1 = x|

(3.20)

Finally, we can also monitor any quantity (function values, state
variables, or design variables) by normalizing the step length in the
same way as Eq. 3.4,

|2+ — Xkl
—_— 3.21
T+ Tl 21

3.8 Newton-Based Solvers

As mentioned in Section 3.6, Newton’s method is the basis for many
nonlinear equation solvers. Newton’s method is also at the core of the
most efficient gradient-based optimization algorithms, so we explain it
here in more detail. We start with the single-variable case for simplicity
and then generalize it to the n-dimensional case.
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We want to find u* such that r(u*) = 0, where, for now, r and u
are scalars. Newton’s method for root finding estimates a solution
at each iteration k by approximating r (ux) to be a linear function.
The linearization is done by taking a Taylor series of r about u; and
truncating it to obtain the approximation

r(ug + Au) =~ v (ug) + Aur’ (uy) , (3.22)

where 1’ = dr/du. For conciseness, we define r; = r (ux). Now we can
find the step Au that makes this approximate residual zero,

r
rk+Aur,=0 = Au= —r—lf , (3.23)
k
where we need to assume that rl’( # 0.

Thus, the update for each step in Newton’s algorithm is

Ukl = Uk — :—;,: . (3.24)
If r, = 0, the algorithm will not converge because it yields a step to
infinity. Small enough values of r; also cause an issue with large steps,
but the algorithm might still converge.
One useful modification of Newton’s method is to replace the deriva-
tive with a forward finite-difference approximation (see Section 6.4)
based on the residual values of the current and last iterations,

Tk+1 — Tk
A~ ——— . (3.25)
Uk+1 — Uk

Then, the update is given by

Upp1 — Uk
U4l = Uk — Tk (7";:—1—7‘]() . (326)
-

This is the secant method, which is useful when the derivative is not
available. The convergence rate is not quadratic like Newton’s method,
but it is superlinear.

I ElEEVA Newton's method and the secant method for a single variable

Suppose we want to solve the equation (1) = 2u3 +4u? +u -2 = 0. Because
(1) = 6u2 + 8u + 1, the Newton iteration is

3 2 _
Zuk +4uk +up—2

Uyl = Ug —
6u7 + 8uy + 1

When we start with the guess 1 = 1.5 (left plot in Fig. 3.16), the iterations
are well behaved, and the method converges quadratically. We can see the
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geometric interpretation of Newton’s method: For each iteration, it takes the
tangent to the curve and finds the intersection with r = 0.

When we start with 1y = —0.5 (right plot in Fig. 3.16), the first step goes in
the wrong direction but recovers in the second iteration. The third iteration is
close to the point with the zero derivative and takes a large step. In this case,
the iterations recover and then converge normally. However, we can easily
envision a case where an iteration is much closer to the point with the zero
derivative, causing an arbitrarily long step.

We can also use the secant method (Eq. 3.26) for this problem, which gives
the following update:

(Zui + 4u]% +up — 2) (Upy1 — Ug)

Uyl = Uk —

uy .+ 4u]%+1 +Upq — Zui - 4u]% — Uy .

3
k+1
The iterations for the secant method are shown in Fig. 3.17, where we can see
the successive secant lines replacing the exact tangent lines used in Newton’s
method.

Newton’s method converges quadratically as it approaches the
solution with a convergence constant of
rl/ (u *)
27 (u*)

. (3.27)

This means that if the derivative is close to zero or the curvature tends
to a large number at the solution, Newton’s method will not converge
as well or not at all.

Now we consider the general case where we have n nonlinear
equations of n unknowns, expressed as r(1) = 0. Similar to the single-
variable case, we derive the Newton step from a truncated Taylor
series. However, the Taylor series needs to be multidimensional in
both the independent variable and the function. Consider first the
multidimensionality of the independent variable, u, for a component
of the residuals, r;(u). The first two terms of the Taylor series about
uy for a step Au (which is now a vector with arbitrary direction and

Fig. 3.16 Newton iterations starting
from different starting points.

u* u up Ug

Fig. 3.17 Secant method applied to a
one-dimensional function.
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magnitude) are

n

or;
ri (ug + Au) ~ r; (ug) + ZAuj&—L;
j=1 J

. (3.28)

U=y

Because we have n residuals, i = 1,...,n, we can write the second
term in matrix form as JAu, where | is an (n X 1) square matrix whose
elements are

31’,‘
= = 3.29
i = 5 (3:29)
This matrix is called the Jacobian.
Similar to the single-variable case, we want to find the step that

makes the two terms zero, which yields the linear system

]kAuk =—Tk. (3.30)

After solving this linear system, we can update the solution to

Uk = Ug + Aug . (3.31)

Thus, Newton’s method involves solving a sequence of linear systems
given by Eq. 3.30. The linear system can be solved using any of the linear
solvers mentioned in Section 3.6. One popular option for solving the
Newton step is the Krylov method, which results in the Newton-Krylov
method for solving nonlinear systems. Because the Krylov method only
requires matrix-vector products of the form v, we can avoid computing
and storing the Jacobian by computing this product directly (using
finite differences or other methods from Chapter 6). In Section 4.4.3 we
adapt Newton’s method to perform function minimization instead of
solving nonlinear equations.

The multivariable version of Newton’s method is subject to the same
issues we uncovered for the single-variable case: it only converges
if the starting point is within a specific region, and it can be subject
to ill-conditioning. To increase the likelihood of convergence from
any starting point, Newton’s method requires a globalization strategy
(see Section 4.2). The ill-conditioning issue has to do with the linear
system (Eq. 3.30) and can be quantified by the condition number of
the Jacobian matrix. Ill-conditioning can be addressed by scaling and
preconditioning.

There is an analog of the secant method for n dimensions, which is
called Broyden’s method. This method is much more involved than its
one-dimensional counterpart because it needs to create an approximate
Jacobian based on directional finite-difference derivatives. Broyden’s
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method is described in Appendix C.1 and is related to the quasi-Newton
optimization methods of Section 4.4.4.

S EIERS Newton's method applied to two nonlinear equations

Suppose we have the following nonlinear system of two equations:

Uz = ;—1, Uz = \/ﬂ .

This corresponds to the two lines shown in Fig. 3.18, where the solution is at "
their intersection, u = (1, 1). (In this example, the two equations are explicit,
and we could solve them by substitution, but they could have been implicit.) 4
To solve this using Newton’s method, we need to write these as residuals:

1
rH=up——=0 27
Ul
1’221/!2—\/1/[120. " u
0 ‘ ‘ |
The Jacobian can be derived analytically, and the Newton step is given by the 0 1 2 3
linear system "
1
l ”_12 1 [Aul] _ [ Uy — Ml—] ] Fig. 3.18 Newton iterations.
__1 - — Vil
i 1 Au2 us ui

Starting from u = (2, 3) yields the iterations shown in the following table, with
the quadratic convergence shown in Fig. 3.19.
Il

" 0 T Irl ]
2.000000 3.000000  2.24 2.96 10 1
0485281 0.878680  5.29x 1071 1.20 1076 |
0760064 0.893846  2.62x 1071 422 %1071 .|
0.952668 0.982278 5.05x 1072 6.77 x 1072
0998289 0999417  1.81x1073 231 %1073 107
0.999998  0.999 999 2.32 %1076 2.95x 1076 10715 :
1.000000 1.000000  3.82x 10712 48710712 ! . ’
1.000000 1.000000 0.0 0.0

Fig. 3.19 The norm of the residual
exhibits quadratic convergence.

3.9 Models and the Optimization Problem

When performing design optimization, we must compute the values
of the objective and constraint functions in the optimization problem
(Eqg. 1.4). Computing these functions usually requires solving a model
for the given design x at one or more specific conditions.” The model *As previously mentioned, the process of

. . . . . solving a model is also known as the anal-
often includes governing equations that define the state variables u as g o simutation.
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an implicit function of x. In other words, for a given x, there is a u
that solves r(u; x) = 0, as illustrated in Fig. 3.20. Here, the semicolon
in r(u; x) indicates that x is fixed when the governing equations are
solved for u.

The objective and constraints are typically explicit functions of the
state and design variables, as illustrated in Fig. 3.21 (this is a more
detailed version of Fig. 1.14). There is also an implicit dependence of
the objective and constraint functions on x through u. Therefore, the
objective and constraint functions are ultimately fully determined by
the design variables. In design optimization applications, solving the
governing equations is usually the most computationally intensive part
of the overall optimization process.

When we first introduced the general optimization problem (Eq. 1.4),
the governing equations were not included because they were assumed
to be part of the computation of the objective and constraints for a
given x. However, we can include them in the problem statement for
completeness as follows:

minimize f(x;u)
by varying x; i=1,...,1,
subjectto gj(x;u) <0 j=1,...,n,
he(x;u) =0 k=1,...,ny, (3.32)
ginisfi i=1,...,1,
while solving 7(u;x)=0 I1=1,...,ny
by varying u I=1,...,n,.
Here, “while solving” means that the governing equations are solved
at each optimization iteration to find a valid u for each value of x.

The semicolon in f(x; u) indicates that u is fixed while the optimizer
determines the next value of x.

SENIIERN Structural sizing optimization

Recalling the truss problem of Ex. 3.2, suppose we want to minimize the
mass of the structure (m) by varying the cross-sectional areas of the truss
members (a), subject to stress constraints.

The structural mass is an explicit function that can be written as

15
m = Z paili,
i=1

where p is the material density, a; is the cross-sectional area of each member i,
and [; is the member length. This function depends on the design variables
directly and does not depend on the displacements.

!
X — ——]

r(u; x)

r

Fig. 3.20 For a general model, the state
variables u are implicit functions of
the design variables x through the
solution of the governing equations.

W
Solve u
r(u;x) =0

"1
gx,u
L h(x,u)

Fig. 3.21 Computing the objective (f)
and constraint functions (g,h) for a
given set of design variables (x) usu-
ally involves the solution of a numeri-
cal model (r = 0) by varying the state
variables ().
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We can write the optimization problem statement as follows:

minimize m(a)

by varying a; > amin i=1,...,15
subject to |o]-(a,u)| — Omax < 0 j=1,...,15
while solving Ku—-¢q =0 (system of 18 equations)
by varying u; I=1,...,18.

The governing equations are a linear set of equations whose solution determines
the displacements (1) of a given design (a) for a load condition (7). We
mentioned previously that the objective and constraint functions are usually
explicit functions of the state variables, design variables, or both. As we saw in
Ex. 3.2, the mass is an explicit function of the cross-sectional areas. In this case,
it does not even depend on the state variables. The constraint function is also
explicit, but in this case, it is just a function of the state variables. This example
illustrates a common situation where the solution of the state variables requires
the solution of implicit equations (structural solver), whereas the constraints
(stresses) and objective (weight) are explicit functions of the states and design
variables.

From a mathematical perspective, the model governing equations
r(x,u) = 0 can be considered equality constraints in an optimization
problem. Some specialized optimization approaches add these equa-
tions to the optimization problem and let the optimization algorithm
solve both the governing equations and optimization simultaneously.
This is called a full-space approach and is also known as simultaneous
analysis and design (SAND) or one-shot optimization. The approach is
illustrated in Fig. 3.22 and stated as follows:

minimize f(x, u)

by varying x; i=1,...,1,
uj l = 1, N (]
subjectto gj(x,u) <0 j=1,...,ng (3.33)

he(x,u)=0 k=1,...,ny
giniSEi i=1,...,ny
rx,u)=0 I=1,...,n,.

This approach is described in more detail in Section 13.4.3.

More generally, the optimization constraints and equations in a
model are interchangeable. Suppose a set of equations in a model can
be satisfied by varying a corresponding set of state variables. In that case,
these equations and variables can be moved to the optimization problem
statement as equality constraints and design variables, respectively.

X, u
Optimizer

r
e
glx,u

fogh h(x, )

Fig. 3.22 In the full-space approach,
the governing equations are solved
by the optimizer by varying the state
variables.




3 NuMERICAL MODELS AND SOLVERS 73

Unless otherwise stated, we assume that the optimization model gov-
erning equations are solved by a dedicated solver for each optimization
iteration, as stated in Eq. 3.32.

S El BRI Structural sizing optimization using a full-space approach

To solve the structural sizing problem (Ex. 3.9) using a full-space approach,
we forgo the linear solver by adding u to the set of design variables and letting
the optimizer enforce the governing equations. This results in the following
problem:

minimize m(a)

by varying a; > amin i=1,...,15
u I=1,...,18

subject to |aj(a,u)| — Omax <0 j=1,...,15
Ku—-g=0 (system of 18 equations).

1i[s)eivA| Test your analysis before you attempt optimization

Before you optimize, you should be familiar with the analysis (model and
solver) that computes the objective and constraints. If possible, make several
parameter sweeps to see what the functions look like—whether they are smooth,
whether they seem unimodal or not, what the trends are, and the range of
values. You should also get an idea of the computational effort required and if
that varies significantly. Finally, you should test the robustness of the analysis
to different inputs because the optimization is likely to ask for extreme values.

3.10 Summary

It is essential to understand the models that compute the objective and
constraint functions because they directly affect the performance and
effectiveness of the optimization process.

The modeling process introduces several types of numerical errors
associated with each step of the process (discretization, programming,
computation), limiting the achievable precision of the optimization.
Knowing the level of numerical error is necessary to establish what
precision can be achieved in the optimization. Understanding the
types of errors involved helps us find ways to reduce those errors.
Programming errors—"“bugs”—are often underestimated; thorough
testing is required to verify that the numerical model is coded correctly.
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Alack of understanding of a given model’s numerical errors is often the
cause of a failure in optimization, especially when using gradient-based
algorithms.

Modeling errors arise from discrepancies between the mathematical
model and the actual physical system. Although they do not affect
the optimization process’s performance and precision, modeling errors
affect the accuracy and determine how valid the result is in the real
world. Therefore, model validation and an understanding of modeling
error are also critical.

In engineering design optimization problems, the models usually
involve solving large sets of nonlinear implicit equations. The compu-
tational time required to solve these equations dominates the overall
optimization time, and therefore, solver efficiency is crucial. Solver
robustness is also vital because optimization often asks for designs that
are very different from what a human designer would ask for, which
tests the limits of the model and the solver.

We presented an overview of the various types of solvers available
for linear and nonlinear equations. Newton-type methods are highly
desirable for solving nonlinear equations because they exhibit second-
order convergence. Because Newton-type methods involve solving a
linear system at each iteration, a linear solver is always required. These
solvers are also at the core of several of the optimization algorithms in
later chapters.



3 NUMERICAL MODELS AND SOLVERS 75

Problems

3.1 Answer true or false and justify your answer.

a. A model developed to perform well for analysis will always
do well in a numerical optimization process.

b. Modeling errors have nothing to do with computations.

c. Explicit and implicit equations can always be written in
residual form.

d. Subtractive cancellation is a type of roundoff error.

e. Programming errors can always be eliminated by carefully
reading the code.

f. Quadratic convergence is only better than linear convergence
if the asymptotic convergence error constant is less than or
equal to one.

g. Logarithmic scales are desirable when plotting convergence
because they show errors of all magnitudes.

h. Newton solvers always require a linear solver.

i. Some linear iterative solvers can be used to solve nonlinear
problems.

j- Direct methods allow us to trade between computational
cost and precision, whereas iterative methods do not.

k. Newton’s method requires the derivatives of all the state
variables with respect to the residuals.

1. In the full-space optimization approach, the state variables
become design variables, and the governing equations be-
come constraints.

3.2 Choose an engineering system that you are familiar with and
describe each of the components illustrated in Fig. 3.1 for that
system. List all the options for the mathematical and numerical
models that you can think of, and describe the assumptions for
each model. What type of solver is usually used for each model
(see Section 3.6)? What are the state variables for each model?

3.3 Consider the following mathematical model:

2
u
1 2 _
Z+MZ_1
duqur, = 1

f = 4(141 +M2).
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Solve this model by hand. Write these equations in residual form
and use a numerical solver to obtain the same solution.

3.4 Reproduce a plot similar to the one shown in Fig. 3.10 for

f(x) =cos(x)+1

in the neighborhood of x = 7 .

3.5 Consider the residual equation

r(w)=u®—6u?>+12u—8=0.

. Find the solution using your own implementation of New-

ton’s method.

. Tabulate the residual for each iteration number.
. What is the lowest error you can achieve?

. Plot the residual versus the iteration number using a linear

axis. How many digits can you discern in this plot?

. Make the same plot using a logarithmic axis for the residual

and estimate the rate of convergence. Discuss whether the
rate is as expected or not.

. Exploration: Try different starting points. Can you find a
predictable trend and explain it?

3.6 Kepler’s equation, which we mentioned in Section 2.2, defines the
relationship between a planet’s polar coordinates and the time
elapsed from a given initial point and is stated as follows:

E—esin(E) =M,

where M is the mean anomaly (a parameterization of time), E is

the

eccentric anomaly (a parameterization of polar angle), and ¢

is the eccentricity of the elliptical orbit.

a
b
c

d

. Use Newton’s method to find E when e = 0.7 and M = 7t/2.
. Devise a fixed-point iteration to solve the same problem.
. Compare the number of iterations and rate of convergence.

. Exploration: Plot E versus M in the interval [0, 27t] for e =
[0,0.1,0.5,0.9] and interpret your results physically.

3.7 Consider the equation from Prob. 3.5 where we replace one of the

coe

fficients with a parameter a as follows:

r(u) =au’ —6u? +12u-8=0.
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a. Produce a plot similar to Fig. 3.12 by perturbing a in the
neighborhood of a = 1.2 using a solver convergence tolerance
of |r] <107°.

b. Exploration: Try smaller tolerances and see how much you
can decrease the numerical noise.

3.8 Reproduce the solution of Ex. 3.8 and then try different initial
guesses. Can you define a distinct region from where Newton’s
method converges?

3.9 Choose a problem that you are familiar with and find the magni-
tude of numerical noise in one or more outputs of interest with
respect to one or more inputs of interest. What means do you
have to decrease the numerical noise? What is the lowest possible
level of noise you can achieve?



Unconstrained Gradient-Based Optimization

In this chapter we focus on unconstrained optimization problems with
continuous design variables, which we can write as

minimize f(x), (4.1)

where x = [x1,...,x,] is composed of the design variables that the
optimization algorithm can change.

We solve these problems using gradient information to determine a
series of steps from a starting guess (or initial design) to the optimum, as
shown in Fig. 4.1. We assume the objective function to be nonlinear, C2
continuous, and deterministic. We do not assume unimodality or multi-
modality, and there is no guarantee that the algorithm finds the global
optimum. Referring to the attributes that classify an optimization prob-
lem (Fig. 1.22), the optimization algorithms discussed in this chapter
range from first to second order, perform a local search, and evaluate the
function directly. The algorithms are based on mathematical principles
rather than heuristics.

Although most engineering design problems are constrained, the
constrained optimization algorithms in Chapter 5 build on the methods
explained in the current chapter.

s D

By the end of this chapter you should be able to:

1. Understand the significance of gradients, Hessians, and
directional derivatives.

2. Mathematically define the optimality conditions for an
unconstrained problem.

3. Describe, implement, and use line-search-based methods.

4. Explain the pros and cons of the various search direction
methods.

5. Understand the trust-region approach and how it contrasts
with the line search approach.

79

A

Fig. 4.1 Gradient-based optimization
starts with a guess, xo, and takes a
sequence of steps in n-dimensional
space that converge to an optimum,

%

X,
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4.1 Fundamentals

To determine the step directions shown in Fig. 4.1, gradient-based
methods need the gradient (first-order information). Some methods
also use curvature (second-order information). Gradients and curvature
are required to build a second-order Taylor series, a fundamental
building block in establishing optimality and developing gradient-
based optimization algorithms.

4.1.1 Derivatives and Gradients

Recall that we are considering a scalar objective function f(x), where
x is the vector of design variables, x = [x1, x2, ..., x,]. The gradient of
this function, Vf(x), is a column vector of first-order partial derivatives
of the function with respect to each design variable:

view=|2L 9 @2)

dx1’ dxy” " Oxy, |

where each partial derivative is defined as the following limit:

af o fa, e xit e, xn) = f(X, X, X))
— =lim .
3xi e—=0 &

(4.3)

Each component in the gradient vector quantifies the function’s local
rate of change with respect to the corresponding design variable, as
shown in Fig. 4.2 for the two-dimensional case. In other words, these
components represent the slope of the function along each coordinate
direction. The gradient is a vector pointing in the direction of the
greatest function increase from the current point.

Vf

The gradient vectors are normal to the surfaces of constant f in  Fig. 4.2 Components of the gradient
n-dimensional space (isosurfaces). In the two-dimensional case, gradient ~ Vector in the two-dimensional case.
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vectors are perpendicular to the function contour lines, as shown in

Flg 42 *In this book, most of the illustrations and
examples are based on two-dimensional
problems because they are easy to visual-

SEINIENN Gradient of a polynomial function ize. However, the principles and methods

apply to n dimensions.

Consider the following function of two variables:
flx1, x2) = x5 +2x1x3 — x3 = 20x7 .

The gradient can be obtained using symbolic differentiation, yielding

Vf(xlr x2) =

Sx% + Zx% -20
4x1xp — 3x§ )

This defines the vector field plotted in Fig. 4.3, where each vector points in the
direction of the steepest local increase.

At I

S /\ /\\\ “1

an D i \ ¥
[T Maximum?| | | [ \
H» + <‘> P <o |
\ \ Minimum/ |
SO X

Y%

s
=t
X

<0

Minimum”’
- —

>

g

Fig. 4.3 Gradient vector field shows
how gradients point toward maxima
If a function is simple, we can use symbolic differentiation as we and away from minima.
did in Ex. 4.1. However, symbolic differentiation has limited utility
for general engineering models because most models are far more
complicated; they may include loops, conditionals, nested functions,
and implicit equations. Fortunately, there are several methods for com-
puting derivatives numerically; we cover these methods in Chapter 6.
Each gradient component has units that correspond to the units
of the function divided by the units of the corresponding variable.
Because the variables might represent different physical quantities,
each gradient component might have different units.
From an engineering design perspective, it might be helpful to think
about relative changes, where the derivative is given as the percentage
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change in the function for a 1 percent increase in the variable. This
relative derivative can be computed by nondimensionalizing both the
function and the variable, that is,

of x

T (4.4)

where f and x are the values of the function and variable, respectively,
at the point where the derivative is computed.

S EIEPA Interpretation of derivatives for wing design problem

Consider the wing design problem from Ex. 1.1, where the objective function
is the required power (P). For the derivative of power with respect to span
(dP/Jb), the units are watts per meter (W/m). For a wing with ¢ = 1 m and
b =12 m, we have P = 1087.85 W and dP/db = —41.65 W/m. This means that
for an increase in span of 1 m, the linear approximation predicts a decrease in
power of 41.65 W (to P = 1046.20). However, the actual power atb = 13 m is
1059.77 W because the function is nonlinear (see Fig. 4.4). The relative derivative
for this same design can be computed as (JP/db)(b/P) = —0.459, which means
that for a 1 percent increase in span, the linear approximation predicts a 0.459
percent decrease in power. The actual decrease is 0.310 percent.

1.2 1

1,075 +

1059.77
1046.20

The gradient components quantify the function’s rate of change in
each coordinate direction (x;), but sometimes we are interested in the
rate of change in a direction that is not a coordinate direction. The rate
of change in a direction p is quantified by a directional derivative, defined
as

0 = iy LDV IE)
We can find this derivative by projecting the gradient onto the desired
direction p using the dot product

4.5)

Vof(x) =VfTp. (4.6)

Fig. 4.4 Power versus span and the
corresponding derivative.
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When p is a unit vector aligned with one of the Cartesian coordinates i,
this dot product yields the corresponding partial derivative df /dx;. A
two-dimensional example of this projection is shown in Fig. 4.5.

From the gradient projection, we can see why the gradient is the
direction of the steepest increase. If we use this definition of the dot
product,

Vof(x)=VfTp = |V£|||p|| cos 0, 4.7)

where 0 is the angle between the two vectors, we can see that this is
maximized when 6 = 0°. That is, the directional derivative is largest
when p points in the same direction as Vf.

If O is in the interval (=90, 90)°, the directional derivative is positive
and is thus in a direction of increase, as shown in Fig. 4.6. If 0 is in the
interval (90, 180]°, the directional derivative is negative, and p points
in a descent direction. Finally, if 6 = £90°, the directional derivative
is 0, and thus the function value does not change for small steps; it
is locally flat in that direction. This condition occurs when Vf and p
are orthogonal; therefore, the gradient is orthogonal to the function
isosurfaces.

Positive directional
derivative (VfTp > 0)

I
Negative directional
derivative (VfTp < 0)
AN

\ \ Céntour line tangent
N\ N (VfTp=0)

/,// — —— ~ \ -
S/ AN

Fig. 4.5 Projection of the gradient in
an arbitrary unit direction p.

Fig. 4.6 The gradient Vf is always
orthogonal to contour lines (surfaces),
and the directional derivative in the
direction p is given by VfTp.
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To get the correct slope in the original units of x, the direction should
be normalized as p = p/ ||p|| However, in some of the gradient-based
algorithms of this chapter, p is not normalized because the length
contains useful information. If p is not normalized, the slopes and
variable axis are scaled by a constant.

S ElSREN Directional derivative of a quadratic function

Consider the following function of two variables:

fx1,x2) = x% + 2x% - X1Xp.
The gradient can be obtained using symbolic differentiation, yielding

2x1 —x2
4xy — x1|

Vf(xlle) = [

At point x = [-1, 1], the gradient is
-3
VF(-1,1) = [ 5 ] .

Taking the derivative in the normalized direction p = [2/ V5, -1/4/5], we obtain

2/V5]_ 11

-1 /\/5 - V5 ’

which we show in Fig. 4.7 (left). We use a p with unit length to get the slope of
the function in the original units.

Vpr = [_3/ 5] [

X+ tl’p

A projection of the function in the p direction can be obtained by plotting  Fig. 4.7 Function contours and direc-
f along the line defined by x + ap, where « is the independent variable, as ﬁlon p (leff)(id(ine'g?mer}Siorllﬂ S!ice
shown in Fig. 4.7 (middle). The projected slope of the function in that direction aongp (mi ) e)’. irectional deriva-
. k : i tive for all directions on polar plot
corresponds to the slope of this single-variable function. The polar plot in (right).
Fig. 4.7 (right) shows how the directional derivative changes with the direction
of p. The directional derivative has a maximum in the direction of the gradient,
has the largest negative magnitude in the opposite direction, and has zero

values in the directions orthogonal to the gradient.
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4.1.2 Curvature and Hessians

The rate of change of the gradient—the curvature—is also useful infor-
mation because it tells us if a function’s slope is increasing (positive
curvature), decreasing (negative curvature), or stationary (zero curva-
ture).

In one dimension, the gradient reduces to a scalar (the slope), and
the curvature is also a scalar that can be calculated by taking the second
derivative of the function. To quantify curvature in n dimensions, we
need to take the partial derivative of each gradient component j with
respect to each coordinate direction i, yielding

I*f
(9x,-8xj '

(4.8)

If the function f has continuous second partial derivatives, the order of
differentiation does not matter, and the mixed partial derivatives are
equal; thus

?*f  9*f 49
89(71‘89(]‘ B 8xj8x,- ’ ( ’ )
This property is known as the symmetry of second derivatives or equality
of mixed partials.t
Considering all gradient components and their derivatives with
respect to all coordinate directions results in a second-order tensor. This
tensor can be represented as a square (n X n) matrix of second-order

partial derivatives called the Hessian:

The discovery and proof of the symmetry
of second derivatives property has a long
history.”®

76. Higgins, A note on the history of mixed
partial derivatives, 1940.

P*f P*f >f ]
ox7 dx19x2 9x19xy
f ’f ’f
Hf(x) _ dx70x1 axg dx0x, (4.10)
f ?f ’f
| dx,0x1  dx,dxn ox?
The Hessian is expressed in index notation as:
Hf . = 7f 4.11
fff_Qxlﬁxj' (1D

Because of the symmetry of second derivatives, the Hessian is a sym-
metric matrix with n(n + 1)/2 independent elements.
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Each row i of the Hessian is a vector that quantifies the rate of
change of all components j of the gradient vector with respect to the
direction 7. On the other hand, each column j of the matrix quantifies
the rate of change of component j of the gradient vector with respect to
all coordinate directions i. Because the Hessian is symmetric, the rows
and columns are transposes of each other, and these two interpretations
are equivalent.

We can find the rate of change of the gradient in an arbitrary
normalized direction p by taking the product Hp. This yields an n-
vector that quantifies the rate of change of the gradient in the direction
p, where each component of the vector is the rate of the change of the
corresponding partial derivative with respect to a movement along p.
Therefore, this product is defined as follows:

Hp =V, (Vf(x)) = lim Vil + 6? Vi)

(4.12)

Because of the symmetry of second derivatives, we can also interpret
this as the rate of change in the directional derivative of the function
along p with respect to each of the components of p.

To find the curvature of the one-dimensional function along a
direction p, we need to project Hp onto direction p as

V, (Vpf(x)) = pTHp, (4.13)

which yields a scalar quantity. Again, if we want to get the curvature in
the original units of x, p should be normalized.

For an n-dimensional Hessian, it is possible to find directions v;
(where i = 1,...,n) along which the projected curvature aligns with
that direction, that is,

Hou =xv. (4.14)

This is an eigenvalue problem whose eigenvectors represent the principal
curvature directions, and the eigenvalues x quantify the corresponding
curvatures. If each eigenvector is normalized as 9 = v/||v||, then the
corresponding « is the curvature in the original units.

S EII YN Hessian and principal curvature directions of a quadratic

Consider the following quadratic function of two variables:
fx1,x2) = x% + Zx% - Xx1X3,

whose contours are shown in Fig. 4.8 (left). These contours are ellipses that
have the same center. The Hessian of this quadratic is

2 -1
H =
SN
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which is constant. To find the curvature in the direction p = [-1/2, —/3/2], we
compute

-3 >

pTHp = [_71 %5] [—21 _41]

The principal curvature directions can be computed by solving the eigenvalue
problem (Eq. 4.14). This yields two eigenvalues and two corresponding

‘71]=7—\/§

eigenvectors,

1-v2
1

1+v2

KA=3+\/§, Vp = 1

], and KB=3—\/§, Ug =

By plotting the principal curvature directions superimposed on the function
contours (Fig. 4.8, left), we can see that they are aligned with the ellipses” major
and minor axes. To see how the curvature varies as a function of the direction,
we make a polar plot of the curvature pTHp, where p is normalized (Fig. 4.8,
right). The maximum curvature aligns with the first principal curvature
direction, as expected, and the minimum curvature corresponds to the second
principal curvature direction.

(-1,0) (1,0)

SEMEEIEE Hessian of two-variable polynomial

Consider the same polynomial from Ex. 4.1. Differentiating the gradient
we obtained previously yields the Hessian:

6x 1 4x 2

H(xq, = .
(¥1,%2) [4x2 4x1 — 6XQ]

We can visualize the variation of the Hessian by plotting the principal curvatures

at different points (Fig. 4.9).

Fig. 4.8 Contours of f for Ex. 4.4 and
the two principal curvature direc-
tions in red. The polar plot shows
the curvature, with the eigenvectors
pointing at the directions of principal
curvature; all other directions have
curvature values in between.
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4.1.3 Taylor Series

The Taylor series provides a local approximation to a function and is
the foundation for gradient-based optimization algorithms.

For an n-dimensional function, the Taylor series can predict the
function along any direction p. This is done by projecting the gradient
and Hessian onto the desired direction p to get an approximation of
the function at any nearby point x + p:#

flx+p) = f@) +VfTp+ spTHEp O () . @19

We use a second-order Taylor series (ignoring the cubic term)
because it results in a quadratic, the lowest-order Taylor series that
can have a minimum. For a function that is C2 continuous, this
approximation can be made arbitrarily accurate by making ||p|| small
enough.

S EMEEEEN Second-order Taylor series expansion of two-variable function

Using the gradient and Hessian of the two-variable polynomial from Ex. 4.1
and Ex. 4.5, we can use Eq. 4.15 to construct a second-order Taylor expansion
about xq,

2 02 AT
fp) = f (x0) + 337 2% 20] " T[6x1 4xp ]p

4x1xp — 3x§ 4x, 4xq1 —6xp

Figure 4.10 shows the resulting Taylor series expansions about different points.

We perform three expansions, each about three critical points: the minimum
(left), the maximum (middle), and the saddle point (right). The expansion
about the minimum yields a convex quadratic that is a good approximation of
the original function near the minimum but becomes worse as we step farther

Fig. 4.9 Principal curvature direc-
tion and magnitude variation. Solid
lines correspond to positive curva-
ture, whereas dashed lines are for
negative curvature.

#For a more extensive introduction to the
Taylor series, see Appendix A.1.
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away. The expansion about the maximum shows a similar trend except that the
approximation is a concave quadratic. Finally, the expansion about the saddle
point yields a saddle function.

4.1.4 Optimality Conditions

To find the minimum of a function, we must determine the mathematical
conditions that identify a given point x as a minimum. There is only a
limited set of problems for which we can prove global optimality, so
in general, we are only interested in local optimality. A point x*is a
local minimum if f(x*) < f(x) for all x in the neighborhood of x*. In
other words, there must be no descent direction starting from the local
minimum.

A second-order Taylor series expansion about x* for small steps of
size p yields

* * * 1 *
fx*+p)=f(x)+Vf(x )Tp+§pTH(x ... (4.16)
For x* to be an optimal point, we must have f(x* + p) > f(x*) for all p.

This implies that the first- and second-order terms in the Taylor series
have to be nonnegative, that is,

Vix)Tp + %pTH(x*)p >0 forall p. (4.17)

Fig. 410 The second-order Taylor
series expansion uses the function
value, gradient, and Hessian at a
point to construct a quadratic model
about that point. The model can vary
drastically, depending on the func-
tion and the point location. The one-
dimensional slices are in the x1 direc-
tion and at x, values corresponding
to the critical points.
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Because the magnitude of p is small, we can always find a p such
that the first term dominates. Therefore, we require that

Vi(x*)Tp >0 forall p. (4.18)

Because p can be in any arbitrary direction, the only way this inequality
can be satisfied is if all the elements of the gradient are zero (refer to
Fig. 4.6),

Vf(x")=0. (4.19)

This is the first-order necessary optimality condition for an unconstrained
problem. This is necessary because if any element of p is nonzero, there
are descent directions (e.g., p = —Vf) for which the inequality would
not be satisfied.

Because the gradient term has to be zero, we must now satisfy the
remaining term in the inequality (Eq. 4.17), that is,

pTH(x*)p 20 forall p. (4.20)

From Eq. 4.13, we know that this term represents the curvature in
direction p, so this means that the function curvature must be positive
or zero when projected in any direction. You may recognize this
inequality as the definition of a positive-semidefinite matrix. In other
words, the Hessian H(x*) must be positive semidefinite.

For a matrix to be positive semidefinite, its eigenvalues must all
be greater than or equal to zero. Recall that the eigenvalues of the
Hessian quantify the principal curvatures, so as long as all the principal
curvatures are greater than or equal to zero, the curvature along an
arbitrary direction is also greater than or equal to zero.

These conditions on the gradient and curvature are necessary condi-
tions for a local minimum but are not sufficient. They are not sufficient
because if the curvature is zero in some direction p (i.e., pTH(x*)p = 0),
we have no way of knowing if it is a minimum unless we check the
third-order term. In that case, even if it is a minimum, it is a weak
minimum.

The sufficient conditions for optimality require the curvature to be
positive in any direction, in which case we have a strong minimum.
Mathematically, this means that pTH(x*)p > 0 for all nonzero p, which
is the definition of a positive-definite matrix. If H is a positive-definite
matrix, every eigenvalue of H is posi’cive.§

Figure 4.11 shows some examples of quadratic functions that are
positive definite (all positive eigenvalues), positive semidefinite (non-
negative eigenvalues), indefinite (mixed eigenvalues), and negative
definite (all negative eigenvalues).

SFor other approaches to determine if
a matrix is positive definite, see Ap-
pendix A.6.
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= —\ . i 112017
*’;N\N Saddle point AR = mum
A\
Positive definite Positive semidefinite Indefinite Negative definite

In summary, the necessary optimality conditions for an unconstrained Fig. 4.11 Quadratic functions with
optimization problem are different types of Hessians.

Vi(x") =0
. . . . (4.21)
H(x") is positive semidefinite .

The sufficient optimality conditions are

VF(x') =0

: » . (4.22)
H(x") is positive definite .

SENIEEVA Finding minima analytically

Consider the following function of two variables:
f= O.5x‘1L + in’ + 1.5x% + x% —2x1x3.

We can find the minima of this function by solving for the optimality conditions
analytically.

To find the critical points of this function, we solve for the points at which
the gradient is equal to zero,

d

a—f in" + 6x% +3x1 —2x7 0
—f 2xy —2x1 0
QXQ

From the second equation, we have that x, = x7. Substituting this into the first
equation yields
X (2x§+6x1 +1) - 0.

The solution of this equation yields three points:

0 3 V7 V73
xA= , xB= % \%7’ xC= 57 §
0 277 272
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To classify these points, we need to compute the Hessian matrix. Differentiating
the gradient, we get

9*f P’ f
52 9x10x 6x2+12x1 +3 -2
X 10Xx2 1
H(x1/x2) = a2}‘ &Zf =

-2 2

dx20x1 9x3

The Hessian at the first point is

H(xa) =

3 =2
-2 2|7

whose eigenvalues are k1 ~ 0.438 and xp = 4.561. Because both eigenvalues
are positive, this point is a local minimum. For the second point,

H(xp) = [3 (3:;\/7) _22} .

The eigenvalues are k1 ~ 1.737 and xp = 17.200, so this point is another local
minimum. For the third point,

H(xc)=[ - 9

9-3V7 —z] _

The eigenvalues for this Hessian are «1 = —0.523 and x =~ 3.586, so this point
is a saddle point.

Figure 4.12 shows these three critical points. To find out which of the two
local minima is the global one, we evaluate the function at each of these points.
Because f (xg) < f (xa), xp is the global minimum.

x4: local minimum

X -1

Fig. 4.12 Minima and saddle point
locations.

We may be able to solve the optimality conditions analytically for
simple problems, as we did in Ex. 4.7. However, this is not possible
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in general because the resulting equations might not be solvable in
closed form. Therefore, we need numerical methods that solve for these
conditions.

When using a numerical approach, we seek points where V f(x*) = 0,
but the entries in Vf do not converge to exactly zero because of finite-
precision arithmetic. Instead, we define convergence for the first
criterion based on the maximum component of the gradient, such that

VAl <=, (4.23)

where 7 is some tolerance. A typical absolute tolerance is T = 107°
or a six-order magnitude reduction in gradient when using a relative
tolerance. Absolute and relative criteria are often combined in a metric
such as the following;:

VAl << (1+ 194l . (4.24)

where Vfj is the gradient at the starting point.

The second optimality condition (that H must be positive semidefi-
nite) is not usually checked explicitly. If we satisfy the first condition,
then all we know is that we have reached a stationary point, which
could be a maximum, a minimum, or a saddle point. However, as
shown in Section 4.4, the search directions for the algorithms of this
chapter are always descent directions, and therefore in practice, they
should converge to a local minimum.

For a practical algorithm, other exit conditions are often used besides
the reduction in the norm of the gradient. A function might be poorly
scaled, be noisy, or have other numerical issues that prevent it from
ever satisfying this optimality condition (Eq. 4.24). To prevent the
algorithm from running indefinitely, it is common to set a limit on
the computational budget, such as the number of function calls, the
number of major iterations, or the clock time. Additionally, to detect a
case where the optimizer is not making significant progress and not
likely to improve much further, we might set criteria on the minimum
step size and the minimum change in the objective. Similar to the
conditions on the gradient, the minimum change in step size could be
limited as follows:

Ik = xk-1lleo < Tx (1 + [|xk-1]lc0) - (4.25)

The absolute and relative conditions on the objective are of the same
form, although they only use an absolute value rather than a norm
because the objective is scalar.
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112 Check the exit message when using an optimizer

Optimizers usually include an exit message when returning a result. Inex-
perienced users often take whatever solution the optimizer returns without
checking this message. However, as discussed previously, the optimizer may
terminate without satisfying first-order optimality (Eq. 4.24). Check the exit
message and study the optimizer’s documentation to make sure you understand
the result. If the message indicates that this is not a definite optimum, you
should investigate further.

You might have to increase the limit on the number of iterations if the
optimization reached this limit. When terminating due to small step sizes
or function changes, you might need to improve your numerical model by
reducing the noise (see Tip 3.2) or by smoothing it (Tip 4.7). Another likely
culprit is scaling (Tip 4.4). Finally, you might want to explore the design space
around the point where the optimizer is stuck (Tip 4.2) and more specifically,
see what is happening with the line search (Tip 4.3).

4.2 Two Overall Approaches to Finding an Optimum

Although the optimality conditions derived in the previous section
can be solved analytically to find the function minima, this analytic
approach is not possible for functions that result from numerical models.
Instead, we need iterative numerical methods to find minima based
only on the function values and gradients.

In Chapter 3, we reviewed methods for solving simultaneous sys-
tems of nonlinear equations, which we wrote as r(u) = 0. Because
the first-order optimality condition (Vf = 0) can be written in this
residual form (where r = Vf and u = x), we could try to use the solvers
from Chapter 3 directly to solve unconstrained optimization problems.
Although several components of general solvers for r(u) = 0 are used
in optimization algorithms, these solvers are not the most effective
approaches in their original form. Furthermore, solving Vf = 0 is not
necessarily sufficient—it finds a stationary point but not necessarily a
minimum. Optimization algorithms require additional considerations
to ensure convergence to a minimum.

Like the iterative solvers from Chapter 3, gradient-based algorithms
start with a guess, X, and generate a series of points, x1,x2,..., Xk, .
that converge to a local optimum, x*, as previously illustrated in Fig. 4. 1
At each iteration, some form of the Taylor series about the current point
is used to find the next point.

A truncated Taylor series is, in general, only a good model within a
small neighborhood, as shown in Fig. 4.13, which shows three quadratic
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models of the same function based on three different points. All
quadratic approximations match the local gradient and curvature at
the respective points. However, the Taylor series quadratic about the
first point (left plot) yields a quadratic without a minimum (the only
critical point is a saddle point). The second point (middle plot) yields
a quadratic whose minimum is closer to the true minimum. Finally,
the Taylor series about the actual minimum point (right plot) yields a
quadratic with the same minimum, as expected, but we can see how
the quadratic model worsens the farther we are from the point.

Because the Taylor series is only guaranteed to be a good model
locally, we need a globalization strategy to ensure convergence to an
optimum. Globalization here means making the algorithm robust
enough that it can converge to a local minimum when starting from
any point in the domain. This should not be confused with finding the
global minimum, which is a separate issue (see Tip 4.8). There are two
main globalization strategies: line search and trust region.

The line search approach consists of three main steps for every
iteration (Fig. 4.14):

1. Choose a suitable search direction from the current point. The
choice of search direction is based on a Taylor series approxima-
tion.

2. Determine how far to move in that direction by performing a line
search.

3. Move to the new point and update all values.

The two first steps can be seen as two separate subproblems. We
address the line search subproblem in Section 4.3 and the search
direction subproblem in Section 4.4.

Trust-region methods also consist of three steps (Fig. 4.15):

1. Create a model about the current point. This model can be based
on a Taylor series approximation or another type of surrogate
model.

Fig. 4.13 Taylor series quadratic mod-
els are only guaranteed to be accurate
near the point about which the series
is expanded (x).

Fig. 4.14 Line search approach.

X0

Update trust-
region size, A
Update x

No

Fig. 4.15 Trust-region approach.
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2. Minimize the model within a trust region around the current point
to find the step.

3. Move to the new point, update values, and adapt the size of the
trust region.

We introduce the trust-region approach in Section 4.5. However, we
devote more attention to algorithms that use the line search approach
because they are more common in general nonlinear optimization.

Both line search and trust-region approaches use iterative processes
that must be repeated until some convergence criterion is satisfied. The
first step in both approaches is usually referred to as a major iteration,
whereas the second step might require more function evaluations
corresponding to minor iterations.

1)) ¥M Before optimizing, explore the design space

Before coupling your model solver with an optimizer, it is a good idea to
explore the design space. Ensure that the solver is robust and can handle a wide
variety of inputs within your provided bounds without errors. Plotting the
multidimensional design space is generally impossible, but you can perform a
series of one-dimensional sweeps. From the starting point, plot the objective
with all design variables fixed except one. Vary that design variable across
a range, and repeat that process for several design variables. These one-
dimensional plots can identify issues such as analysis failures, noisy outputs,
and discontinuous outputs, which you can then fix. These issues should
be addressed before attempting to optimize. This same technique can be
helpful when an optimizer becomes stuck; you can plot the behavior in a small
neighborhood around the point of failure (see Tip 4.3).

4.3 Line Search

Gradient-based unconstrained optimization algorithms that use a line
search follow Alg. 4.1. We start with a guess xo and provide a con-
vergence tolerance 7 for the optimality condition.* The final output is
an optimal point x* and the corresponding function value f(x*). As
mentioned in the previous section, there are two main subproblems
in line search gradient-based optimization algorithms: choosing the
search direction and determining how far to step in that direction. In
the next section, we introduce several methods for choosing the search
direction. The line search method determines how far to step in the
chosen direction and is usually independent of the method for choosing
the search direction. Therefore, line search methods can be combined

*This algorithm, and others in this section,
use a basic convergence check for simplic-
ity. See the end of Section 4.1.4 for better
alternatives and additional exit criteria.
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with any method for finding the search direction. However, the search
direction method determines the name of the overall optimization
algorithm, as we will see in the next section.

Gradient-based unconstrained optimization using a line
search
Inputs:
X Starting point
T: Convergence tolerance
Outputs:
x*: Optimal point

f(x™): Minimum function value

k=0

while HV}"”OO > 7 do
Determine search direction, py
Determine step length, aj
Xk+1 = Xk + Qg Pk
k=k+1

end while

Initialize iteration counter

Optimality condition

Use any of the methods from Section 4.4
Use a line search algorithm

Update design variables

Increment iteration index

For the line search subproblem, we assume that we are given a
starting location at xx and a suitable search direction pj along which to
search (Fig. 4.16). The line search then operates solely on points along
direction py starting from xx, which can be written as

Xk+1 = Xk + apk, (4.26)

where the scalar a is always positive and represents how far we go in
the direction p. This equation produces a one-dimensional slice of
n-dimensional space, as illustrated in Fig. 4.17.

o
Xk Xk+1 = Xk + QkPk

The line search determines the magnitude of the scalar a, which in
turn determines the next point in the iteration sequence. Even though

Xk + apk

Fig. 4.16 The line search starts from
a given point x; and searches solely
along direction py.

Fig. 4.17 The line search projects
the n-dimensional problem onto one
dimension, where the independent
variable is a.
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xr and py are n-dimensional, the line search is a one-dimensional
problem with the goal of selecting ar.

Line search methods require that the search direction py be a descent
direction so that V fi Tpx < 0 (see Fig. 4.18). This guarantees that f can be
reduced by stepping some distance along this direction with a positive
a.

The goal of the line search is not to find the value of a that min-
imizes f (xx + apx) but to find a point that is “good enough” using
as few function evaluations as possible. This is because finding the
exact minimum along the line would require too many evaluations of
the objective function and possibly its gradient. Because the overall
optimization needs to find a point in n-dimensional space, the search
direction might change drastically between line searches, so spending
too many iterations on each line search is generally not worthwhile.

Consider the bean function whose contours are shown in Fig. 4.19.
At point x, the direction py is a descent direction. However, it would
be wasteful to spend a lot of effort determining the exact minimum in
the py direction because it would not take us any closer to the minimum
of the overall function (the dot on the right side of the plot). Instead,
we should find a point that is good enough and then update the search
direction.

To simplify the notation for the line search, we define the single-
variable function

Pla) = f (xx +apk) , (4.27)

where a = 0 corresponds to the start of the line search (xy in Fig. 4.17),
and thus ¢(0) = f(xx). Then, using x = x; + api, the slope of the
single-variable function is

’ J (f(X)) S af axi
¢'(a) = “on L a_ng . (4.28)
Substituting into the derivatives results in
¢’ (@) = Vf (x + apr) " p, (4.29)

which is the directional derivative along the search direction. The slope
at the start of a given line search is

¢’ (0)=VfiTpx.

Because px must be a descent direction, ¢’(0) is always negative. Fig-
ure 4.20 is a version of the one-dimensional slice from Fig. 4.17 in this
notation. The a axis and the slopes scale with the magnitude of py.

(4.30)

Fig. 4.18 The line search direction
must be a descent direction.

S

Fig. 4.19 The descent direction does
not necessarily point toward the min-
imum, in which case it would be
wasteful to do an exact line search.

a=0 a

Fig. 4.20 For the line search, we de-
note the function as ¢(a) with the
same value as f. The slope ¢’(«) is
the gradient of f projected onto the
search direction.
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4.3.1 Sufficient Decrease and Backtracking

The simplest line search algorithm to find a “good enough” point relies

on the sufficient decrease condition combined with a backtracking algorithm.

The sufficient decrease condition, also known as the Armijo condition, is
given by the inequality
P(a) < ¢(0) + pag’(0), (4.31)

where (7 is a constant such that 0 < y; < 1.F The quantity a¢’(0)
represents the expected decrease of the function, assuming the function
continued at the same slope. The multiplier p; states that Eq. 4.31 will
be satisfied as long we achieve even a small fraction of the expected
decrease, as shown in Fig. 4.21. In practice, this constant is several
orders of magnitude smaller than 1, typically 1 = 107, Because py
is a descent direction, and thus ¢’(0) = Vf,Tpr < 0, there is always a
positive « that satisfies this condition for a smooth function.

The concept is illustrated in Fig. 4.22, which shows a function with
a negative slope at « = 0 and a sufficient decrease line whose slope is
a fraction of that initial slope. When starting a line search, we know
the function value and slope at a = 0, so we do not really know how
the function varies until we evaluate it. Because we do not want to
evaluate the function too many times, the first point whose value is
below the sufficient decrease line is deemed acceptable. The sufficient
decrease line slope in Fig. 4.22 is exaggerated for illustration purposes;
for typical values of 1, the line is indistinguishable from horizontal
when plotted.

@’ (0)

?(0) N
Sufficient
decrease line

a=0 a

Acceptable range Acceptable range

Line search algorithms require a first guess for a. As we will see
later, some methods for finding the search direction also provide good
guesses for the step length. However, in many cases, we have no idea
of the scale of function, so our initial guess may not be suitable. Even if

*This condition can be problematic near
a local minimum because ¢(0) and ¢(a)
are so similar that their subtraction is inac-
curate. Hager and Zhang’” introduced a
condition with improved accuracy, along
with an efficient line search based on a se-
cant method.

77. Hager and Zhang, A new conjugate

8 8 Jug
gradient method with guaranteed descent and
an efficient line search, 2005.

¢(0)

u1¢’(0)

Sufficient
decrease

Expected decrease

a=0 @

Fig. 4.21 The sufficient decrease line
has a slope that is a small fraction
of the slope at the start of the line
search.

Fig. 4.22 Sufficient decrease condi-
tion.
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we do have an educated guess for ¢, it is only a guess, and the first step
might not satisfy the sufficient decrease condition.

A straightforward algorithm that is guaranteed to find a step that
satisfies the sufficient decrease condition is backtracking (Alg. 4.2).
This algorithm starts with a maximum step and successively reduces
the step by a constant ratio p until it satisfies the sufficient decrease
condition (a typical value is p = 0.5). Because the search direction is a
descent direction, we know that we will achieve an acceptable decrease
in function value if we backtrack enough.

\felqidalnsR“WA Backtracking line search algorithm

Inputs:

Qinit > 0: Initial step length
0 < p1 < 1: sufficient decrease factor (typically small, e.g., y1 = 107%)
0< p < 1: Backtracking factor (e.g., p = 0.5)

Outputs:

a”: Step size satisfying sufficient decrease condition

@ = Qjnit

while ¢(a) > $(0) + p1ap’(0) do  Function value is above sufficient decrease line
a=pa Backtrack

end while

Although backtracking is guaranteed to find a point that satisfies
sufficient decrease, there are two undesirable scenarios where this
algorithm performs poorly. The first scenario is that the guess for the
initial step is far too large, and the step sizes that satisfy sufficient de-
crease are smaller than the starting step by several orders of magnitude.
Depending on the value of p, this scenario requires a large number of
backtracking evaluations.

The other undesirable scenario is where our initial guess immedi-
ately satisfies sufficient decrease. However, the function’s slope is still
highly negative, and we could have decreased the function value by
much more if we had taken a larger step. In this case, our guess for the
initial step is far too small.

Even if our original step size is not too far from an acceptable step
size, the basic backtracking algorithm ignores any information we have
about the function values and gradients. It blindly takes a reduced step
based on a preselected ratio p. We can make more intelligent estimates
of where an acceptable step is based on the evaluated function values
(and gradients, if available). The next section introduces a more
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sophisticated line search algorithm that deals with these scenarios
much more efficiently.

S EIEERN Backtracking line search

Consider the following function:

fx1,x2) = 0.1x§ = 1.5x] +5x% +0.1x5 +3x3 — 9xp + 0.5x71 %7 .

Suppose we do a line search starting from x = [-1.25,1.25] in the direction
p = [4,0.75], as shown in Fig. 4.23. Applying the backtracking algorithm with
1 =107* and p = 0.7 produces the iterations shown in Fig. 4.24. The sufficient
decrease line appears to be horizontal, but that is because the small negative
slope cannot be discerned in a plot for typical values of 1. Using a large initial
step of ainit = 1.2 (Fig. 4.24, left), several iterations are required. For a small
initial step of ainit = 0.05 (Fig. 4.24, right), the algorithm satisfies sufficient

decrease at the first iteration but misses the opportunity for further reductions.

30 5 30 -
20 20
fo10 f 10
0+ /‘/—\ 04
N N
-10 ‘ ‘ ‘ ‘ ‘ -10 ‘ ‘ : | | |
0 0.2 0.4 0.6 0.8 1 12 0 0.2 0.4 0.6 0.8 1 12

at Qinit a’ = aipit a

4.3.2 Strong Wolfe Conditions

One major weakness of the sufficient decrease condition is that it accepts
small steps that marginally decrease the objective function because 1
in Eq. 4.31 is typically small. We could increase yu; (i.e., tilt the red
line downward in Fig. 4.22) to prevent these small steps; however, that
would prevent us from taking large steps that still result in a reasonable
decrease. A large step that provides a reasonable decrease is desirable
because large steps generally lead to faster convergence. Therefore, we
want to prevent overly small steps while not making it more difficult
to accept reasonable large steps. We can accomplish this by adding a
second condition to construct a more efficient line search algorithm.
Just like guessing the step size, it is difficult to know in advance how
much of a function value decrease to expect. However, if we compare

Fig. 4.23 A line search direction for
an example problem.

Fig. 4.24 Backtracking using different
initial steps.
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the slope of the function at the candidate point with the slope at the
start of the line search, we can get an idea if the function is “bottoming
out”, or flattening, using the sufficient curvature condition:

9" ()] < p2|9"(0)] - (4.32)

This condition requires that the magnitude of the slope at the new
point be lower than the magnitude of the slope at the start of the line
search by a factor of i, as shown in Fig. 4.25. This requirement is called
the sufficient curvature condition because by comparing the two slopes,
we quantify the function’s rate of change in the slope—the curvature.
Typical values of u> range from 0.1 to 0.9, and the best value depends
on the method for determining the search direction and is also problem
dependent. As s tends to zero, enforcing the sufficient curvature
condition tends toward a point where ¢’(a) = 0, which would yield an
exact line search.

The sign of the slope at a point satisfying this condition is not
relevant; all that matters is that the function slope be shallow enough.
The idea is that if the slope ¢’(a) is still negative with a magnitude
similar to the slope at the start of the line search, then the step is too
small, and we expect the function to decrease even further by taking
a larger step. If the slope ¢’(a) is positive with a magnitude similar
to that at the start of the line search, then the step is too large, and we
expect to decrease the function further by taking a smaller step. On
the other hand, when the slope is shallow enough (either positive or
negative), we assume that the candidate point is near a local minimum,
and additional effort yields only incremental benefits that are wasteful
in the context of the larger problem.

The sufficient decrease and sufficient curvature conditions are
collectively known as the strong Wolfe conditions. Figure 4.26 shows
acceptable intervals that satisfy the strong Wolfe conditions, which are
more restrictive than the sufficient decrease condition (Fig. 4.22).

¢’(0)
¢(0) N u1¢’(0)

Sufficient
decrease line

2¢'(0)

a=0

L—»‘ e

Acceptable range Acceptable range

+12¢9’(0) =129’ (0)

a=0 @

Fig. 4.25 The sufficient curvature con-
dition requires the function slope
magnitude to be a fraction of the ini-
tial slope.

Fig. 4.26 Steps that satisfy the strong
Wolfe conditions.
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The sufficient decrease slope must be shallower than the sufficient
curvature slope, thatis, 0 < y; < y» < 1. This is to guarantee that
there are steps that satisfy both the sufficient decrease and sufficient
curvature conditions. Otherwise, the situation illustrated in Fig. 4.27
could take place.

We now present a line search algorithm that finds a step satisfying
the strong Wolfe conditions. Enforcing the sufficient curvature condi-
tion means we require derivative information (¢’), at least using the
derivative at the beginning of the line search that we already computed
from the gradient. There are various line search algorithms in the
literature, including some that are derivative-free. Here, we detail a line
search algorithm based on the one developed by Moré and Thuente.”**
The algorithm has two phases:

1. The bracketing phase finds an interval within which we are certain
to find a point that satisfies the strong Wolfe conditions.

2. The pinpointing phase finds a point that satisfies the strong Wolfe
conditions within the interval provided by the bracketing phase.

The bracketing phase is given by Alg. 4.3 and illustrated in Fig. 4.28.
For brevity, we use a notation in the following algorithms where,
for example, ¢o = $(0) and Piow = P(a1ow). Overall, the bracketing
algorithm increases the step size until it either finds an interval that
must contain a point satisfying the strong Wolfe conditions or a point
that already meets those conditions.

We start the line search with a guess for the step size, which defines
the first interval. For a smooth continuous function, we are guaranteed
to have a minimum within an interval if either of the following hold:

1. The function value at the candidate step is higher than the value
at the start of the line search.

2. The step satisfies sufficient decrease, and the slope is positive.

These two scenarios are illustrated in the top two rows of Fig. 4.28. In
either case, we have an interval within which we can find a point that
satisfies the strong Wolfe conditions using the pinpointing algorithm.
The order in arguments to the pinpoint functionin Alg. 4.3 is significant
because this function assumes that the function value corresponding
to the first « is the lower one. The third row in Fig. 4.28 illustrates the
scenario where the point satisfies the strong Wolfe conditions, in which
case the line search is finished.

If the point satisfies sufficient decrease and the slope at that point
is negative, we assume that there are better points farther along the
line, and the algorithm increases the step size. This larger step and the

u19’(0)

2¢'(0)

a=0 a

Fig.4.271If up < 1, there might be no
point that satisfies the strong Wolfe
conditions.

78. Moré and Thuente, Line search algo-
rithms with guaranteed sufficient decrease,
1994.

A similar algorithm is detailed in Chap-
ter 3 of Nocedal and Wright.”’

79. Nocedal and Wright, Numerical Opti-
mization, 2006.
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previous one define a new interval that has moved away from the line
search starting point. We repeat the procedure and check the scenarios
for this new interval. To save function calls, bracketing should return
not just a* but also the corresponding function value and gradient to
the outer function.

\elgidalnaR“%eN Bracketing phase for the line search algorithm

Inputs:

Qinit > 0: Initial step size
qbo, (/)6 computed in outer routine, pass in to save function call
0 < p1 < 1t sufficient decrease factor
1 < pp < 1: Sufficient curvature factor
0 > 1: Step size increase factor (e.g., o = 2)
Outputs:

a*: Acceptable step size (satisfies the strong Wolfe conditions)

a1 =0 Define initial bracket
a2 = Qinit

$1= ¢o

qbi = (Pé Used in pinpoint

first = true
while true do

P2 = p(az) Compute ¢, on this line if user provides derivatives

if [qbz > o + ;11(12(%] or [not firstand ¢, > (;51] then
a* = pinpoint(aq,ap,...) 1 = low, 2 = high
return a*

end if

¢)'2 =¢’(a2) If not computed previously

if |(Pé| < —‘uz(f)é then Step is acceptable; exit line search
return a* = ap

else if (j)é > 0 then Bracketed minimum
a* = pinpoint (ap, a1, ...) Find acceptable step, 2 = low, 1 = high
return a*

else Slope is negative
a1 =an
ap = 0an Increase step

end if

first = false

end while

If the bracketing phase does not find a point that satisfies the
strong Wolfe conditions, it finds an interval where we are guaranteed
to find such a point in the pinpointing phase described in Alg. 4.4
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— —— Minimum bracketed; call pinpoint
A
a1 2%}
> —_— —
a1 [2%)
Conditions are met;

line search is done

Fig. 4.28 Visual representation of the
bracketing algorithm. The sufficient
decrease line is drawn as if a1 were
Ly — \F the starting point for the line search,

which is the case for the first line
search iteration but not necessarily
the case for later iterations.

ay | ar

and illustrated in Fig. 4.29. The intervals generated by this algorithm,
bounded by ajow and anigh, always have the following properties:

1. The interval has one or more points that satisfy the strong Wolfe
conditions.

2. Among all the points generated so far that satisfy the sufficient
decrease condition, o has the lowest function value.

3. The slope at ajo,, decreases toward apigh.

The first step of pinpointing is to find a new point within the
given interval. Various techniques can be used to find such a point.
The simplest one is to select the midpoint of the interval (bisection),
but this method is limited to a linear convergence rate. It is more
efficient to perform interpolation and select the point that minimizes the
interpolation function, which can be done analytically (see Section 4.3.3).
Using this approach, we can achieve quadratic convergence.

Once we have a new point within the interval, four scenarios are
possible, as shown in Fig. 4.29. The first scenario is that ¢ (a,,) is above
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the sufficient decrease line or greater than or equal to ¢(ajow). In that
scenario, a, becomes the new ay;gn, and we have a new smaller interval.

In the second, third, and fourth scenarios, ¢ (ap) is below the
sufficient decrease line, and ¢ (a)) < ¢(aow). In those scenarios, we
check the value of the slope ¢’ (a;). In the second and third scenarios,
we choose the new interval based on the direction in which the slope
predicts a local decrease. If the slope is shallow enough (fourth scenario),
we have found a point that satisfies the strong Wolfe conditions.

\=(elqial0aR:®q Pinpoint function for the line search algorithm

Inputs:

dlow- Interval endpoint with lower function value

Qhigh' Interval endpoint with higher function value

@0, Plow~ (Phigh/ ¢6 Computed in outer routine

qb{ow, Cpiﬁgh: One, if not both, computed previously

0 < pp < 1: sufficient decrease factor

U1 < p2 < 1: Sufficient curvature factor
Outputs:

a®: Step size satisfying strong Wolfe conditions

k=0
while true do
Find ap in interval (@1ow, high) Use interpolation (see Section 4.3.3)
Uses ¢low, Phigh, and ¢’ from at least one endpoint
Pp =9 (ap) Also evaluate ¢, if derivatives available
if ¢pp > Po + prapPy or dp > Plow then
Qhigh = &p Also update ¢nigh = ¢p, and if cubic interpolation ¢

’

_
high = ¢

else ’
(j);, = (j)’ (a/p) If not already computed
if ¢, | < —p2¢ then
at = ap
return ap
else if ¢}, (ahigh — alow) > 0 then
Qhigh = Xlow
end if
Alow = Ap
end if
k=k+1
end while

In theory, the line search given in Alg. 4.3 followed by Alg. 4.4 is
guaranteed to find a step length satisfying the strong Wolfe conditions.
In practice, some additional considerations are needed for improved
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robustness. One of these criteria is to ensure that the new point
in the pinpoint algorithm is not so close to an endpoint as to cause
the interpolation to be ill-conditioned. A fallback option in case
the interpolation fails could be a simpler algorithm, such as bisection.
Another criterion is to ensure that the loop does not continue indefinitely
in case finite-precision arithmetic leads to indistinguishable function
value changes. A limit on the number of iterations might be necessary.

:
S —
|

Qlow QAp Qhigh Qlow (high

i

Kl

Qhigh Xlow

2]

Qlow (high

— Done

o

SEIUEEEN Line search with bracketing and pinpointing

Let us perform the same line search as in Alg. 4.2 but using bracketing
and pinpointing instead of backtracking. In this example, we use quadratic
interpolation, the pinpointing phase uses a step size increase factor of ¢ = 2,
and the sufficient curvature factor is yp = 0.9. Bracketing is achieved in the
first iteration by using a large initial step of ainit = 1.2 (Fig. 4.30, left). Then
pinpointing finds an improved point through interpolation. The small initial
step of ainit = 0.05 (Fig. 4.30, right) does not satisfy the strong Wolfe conditions,

Fig. 4.29 Visual representation of the
pinpointing algorithm. The labels
in red indicate the new interval end-
points.
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30 & 30 &
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Qinit Qinit o a

and the bracketing phase moves forward toward a flatter part of the function.
The result is a point that is much better than the one obtained with backtracking.

1ol When stuck, plot the line search

When gradient-based optimizers cannot move away from a non-optimal
point, it usually happens during the line search. To understand why the
optimizer is stuck, plot the iterations along the line search, add more points, or
plot the whole line if you can afford to. Even if you have a high-dimensional
problem, you can always plot the line search, which will be understandable
because it is one-dimensional.

4.3.3 Interpolation for Pinpointing

Interpolation is recommended to find a new point within each interval
at the pinpointing phase. Once we have an interpolation function,
we find the new point by determining the analytic minimum of that
function. This accelerates the convergence compared with bisection. We
consider two options: quadratic interpolation and cubic interpolation.

Because we have the function value and derivative at one endpoint
of the interval and at least the function value at the other endpoint, one
option is to perform quadratic interpolation to estimate the minimum
within the interval.

The quadratic can be written as

J)(zx) =co+ i+ ca?, (4.33)

where ¢, c1, and c; are constants to be determined by interpolation.
Suppose that we have the function value and the derivative at a;
and the function value at a», as illustrated in Fig. 4.31. These values
correspond to ajow and anigh in the pinpointing algorithm, but we use

Fig. 4.30 Example of a line search
iteration with different initial steps.
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the more generic indices 1 and 2 because the formulas of this section
are not dependent on which one is lower or higher. Then, the boundary
conditions at the endpoints are

qb(oq) =cCcot+crag + Cga%

P(az) = co + 202 + 203 (4.34)

(1)/(0(1) =c1+2c01 .

We can use these three equations to find the three coefficients based
on function and derivative values. Once we have the coefficients for
the quadratic, we can find the minimum of the quadratic analytically
by finding the point a* such that ¢’(a*) = 0, which is a* = —¢1/2c,.
Substituting the analytic solution for the coefficients as a function of
the given values into this expression yields the final expression for the
minimizer of the quadratic:

e o 201 [9a2) ~9an)] + ¢'(@) (o - o)
2 [¢p(az) = plar) + p'(ar)(ar — az)]

Performing this quadratic interpolation for successive intervals is
similar to the Newton method and also converges quadratically. The
pure Newton method also models a quadratic, but it is based on the
information at a single point (function value, derivative, and curvature),
as opposed to information at two points.

If computing additional derivatives is inexpensive, or we already
evaluated ¢’ (a;) (either as part of Alg. 4.3 or as part of checking the
strong Wolfe conditions in Alg. 4.4), then we have the function values
and derivatives at both points. With these four pieces of information,
we can perform a cubic interpolation,

(4.35)

cﬁ(a) =g+ cra + cra® + cz3a®, (4.36)

as shown in Fig. 4.32. To determine the four coefficients, we apply the
boundary conditions:

¢(a1) =co+craq + cza% + 6304“;’

¢(a2) = co + cra2 + czoz% + c;;a% (4.37)
qb’(al) =c1 +2ca1 + 3C3(1% .

qb'(az) =1+ 2000 + 3C3(X§ .

Using these four equations, we can find expressions for the four co-
efficients as a function of the four pieces of information. Similar
to the quadratic interpolation function, we can find the solution for
(f)’(a*) = ¢1 + 2cpa* + 3cza*? = 0 as a function of the coefficients. There

Pla)

a1 a*

Fig. 4.31 Quadratic interpolation
with two function values and one
derivative.

Fig. 4.32 Cubic interpolation with
function values and derivatives at
endpoints.
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could be two valid solutions, but we are only interested in the minimum,
for which the curvature is positive; that is, <j~)”(0¢*) = 2c¢y + 6c3a* > 0.
Substituting the coefficients with the expressions obtained from solving
the boundary condition equations and selecting the minimum solution
yields

P'(a2) + B2 — B
¢'(a2) — ¢’(ar) + 262

a"=ar—(ap—aq) (4.38)

where
P(a1) — p(az)

a1 - & (4.39)
B2 = sign(az - an)yJB2 — '(ar) ' (a2).

These interpolations become ill-conditioned if the interval becomes

B1=¢'(a1) +¢’(az2) -3

too small. The interpolation may also lead to points outside the bracket.
In such cases, we can switch to bisection for the problematic iterations.

4.4 Search Direction

As stated at the beginning of this chapter, each iteration of an uncon-
strained gradient-based algorithm consists of two main steps: deter-
mining the search direction and performing the line search (Alg. 4.1).
The optimization algorithms are named after the method used to find
the search direction, px, and can use any suitable line search. We start
by introducing two first-order methods that only require the gradient
and then explain two second-order methods that require the Hessian,
or at least an approximation of the Hessian.

441 Steepest Descent

The steepest-descent method (also called gradient descent) is a simple and
intuitive method for determining the search direction. As discussed in
Section 4.1.1, the gradient points in the direction of steepest increase,
so —V f points in the direction of steepest descent, as shown in Fig. 4.33.
Thus, our search direction at iteration k is simply

p=-Vf. (4.40)

One major issue with the steepest descent is that, in general, the
entries in the gradient and its overall scale can vary greatly depending
on the magnitudes of the objective function and design variables. The
gradient itself contains no information about an appropriate step length,
and therefore the search direction is often better posed as a normalized

Fig. 4.33 The steepest-descent direc-
tion points in the opposite direction
of the gradient.
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direction,
Vfi
Pk =— J .
IV fiell

Algorithm 4.5 provides the complete steepest descent procedure.

\f={elalalna“%W Steepest descent

Inputs:

(4.41)

X(Q: Starting point

T: Convergence tolerance
Outputs:

x*: Optimal point

f(x™): Minimum function value

k=0 Initialize iteration counter
while ||Vf||oo > 7 do Optimality condition
Pk = _HV_f:” Normalized steepest descent direction
Estimate ainjt from Eq. 4.43
ay = linesearch (pk, ainit) Perform a line search
Xk+1 = Xk + Qi Pk Update design variables
k=k+1 Increment iteration index
end while

Regardless of whether we choose to normalize the search direction
or not, the gradient does not provide enough information to inform
a good guess of the initial step size for the line search. As we saw in
Section 4.3, this initial choice has a large impact on the efficiency of
the line search because the first guess could be orders of magnitude
too small or too large. The second-order methods described later in
this section are better in this respect. In the meantime, we can make
a guess of the step size for a given line search based on the result of
the previous one. Assuming that we will obtain a decrease in objective
function at the current line search that is comparable to the previous
one, we can write

apVfiTpk = ag-1V fr-1"pr-1- (4.42)
Solving for the step length, we obtain the guess
Vf1"pra
Ak = A1~ 443
k =17y [ATD ( )

Although this expression could be simplified for the steepest descent,
we leave it as is so that it is applicable to other methods. If the slope of
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the function increases in magnitude relative to the previous line search,
this guess decreases relative to the previous line search step length, and
vice versa. This is just the first step length in the new line search, after
which we proceed as usual.

Although steepest descent sounds like the best possible search
direction for decreasing a function, it generally is not. The reason is
that when a function curvature varies significantly with direction, the
gradient alone is a poor representation of function behavior beyond a
small neighborhood, as illustrated previously in Fig. 4.19.

SEI NI Steepest descent with varying amount of curvature

Consider the following quadratic function:
flx1,x0) = x5 +pa3,

where f can be set to adjust the curvature in the x, direction. In Fig. 4.34, we
show this function for g = 1,5,15. The starting point is xg = (10,1). When
B =1 (left), this quadratic has the same curvature in all directions, and the
steepest-descent direction points directly to the minimum. When g > 1 (middle
and right), this is no longer the case, and steepest descent shows abrupt changes
in the subsequent search directions. This zigzagging is an inefficient way to
approach the minimum. The higher the difference in curvature, the more
iterations it takes.

\1 iforaﬁi(\)n

-5 0 5 10

The behavior shown in Ex. 4.10 is expected, and we can show it
mathematically. Assuming we perform an exact line search at each
iteration, this means selecting the optimal value for a along the line

—— 111 iterations-

&
[

—

-5 0 5 10

Fig. 4.34 Iteration history for a
quadratic function, with three differ-
ent curvatures, using the steepest-
descent method with an exact line
search (small enough ).
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search: ]
of (v +ap) _
da
af (xk+1) 0=
o
If (Xk+1) J (xk + acpk) (4.44)
=0=>
X1 da
Vi prk=0=
—Pr+1Tpr =0.

Hence, each search direction is orthogonal to the previous one. When
performing an exact line search, the gradient projection in the line search
direction vanishes at the minimum, which means that the gradient is
orthogonal to the search direction, as shown in Fig. 4.35.

120 ¢

80 +

40 +

Fig. 4.35 The gradient projection in
the line search direction vanishes at
@ the line search minimum.

As discussed in the last section, exact line searches are not desirable,
so the search directions are not orthogonal. However, the overall
zigzagging behavior still exists.

SEMEENEN Steepest descent applied to the bean function

We now find the minimum of the bean function,

S
iterations

2
fln ) = A-xl+(1-nP + 5 (2 -23)

using the steepest-descent algorithm with an exact line search, and a conver-
gence tolerance of ||V f||e < 107°. The optimization path is shown in Fig. 4.36.
Although it takes only a few iterations to get close to the minimum, it takes
many more to satisfy the specified convergence tolerance.

Fig. 4.36 Steepest-descent optimiza-
tion path.
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1) Scale the design variables and the objective function

Problem scaling is one of the most crucial considerations in practical
optimization. Steepest descent is susceptible to scaling, as demonstrated in
Ex. 4.10. Even though we will learn about less sensitive methods, poor scaling
can decrease the effectiveness of any method for general nonlinear functions.

A common cause of poor scaling is unit choice. For example, consider a
problem with two types of design variables, where one type is the material
thickness, on the order of 107 m, and the other type is the length of the
structure, on the order of 1 m. If both distances are measured in meters, the
derivative in the thickness direction is much larger than the derivative in the
length direction. In other words, the design space would have a valley that
is steep in one direction and shallow in the other. The optimizer would have
great difficulty in navigating this type of design space.

Similarly, if the objective is power and a typical value is 10° W, the gradients
would likely be relatively small, and satisfying convergence tolerances may be
challenging.

A good rule of thumb is to scale the objective function and every design
variable to be around unity. The scaling of the objective is only needed after
the model analysis computes the function and can be written as

f=Fflsy, (4.45)

where s is the scaling factor, which could be the value of the objective at the
starting point, f(xp), or another typical value. Multiplying the functions by a
scalar does not change the optimal solution but can significantly improve the
ability of the optimizer to find the optimum.

Scaling the design variables is more involved because scaling them changes
the value that the optimizer would pass to the model and thus changes their
meaning. In general, we might use different scaling factors for different types
of variables, so we represent these as an n-vector, sy. Starting with the physical
design variables, x(, we obtain the scaled variables by dividing them by the
scaling factors:

X0 = X0 @ Sx, (4.46)

where @ denotes element-wise division. Then, because the optimizer works
with the scaled variables, we need to convert them back to physical variables
by multiplying them by the scaling factors:

X =X0sy, (4.47)

where © denotes element-wise multiplication. Finally, we must also convert

the scaled variables to their physical values after the optimization is completed.

The complete process is shown in Fig. 4.37.

It is not necessary that the objective and all variables be precisely 1—which
is impossible to maintain as the optimization progresses. Instead, this heuristic
suggests that the objective and all variables should have an order of magnitude
of 1. If one of the variables or functions is expected to vary across multiple
orders of magnitude during an optimization, one effective way to scale is to

x f
Model

Fig. 4.37 Scaling works by providing
a scaled version of the design vari-
ables and objective function to the op-
timizer. However, the model analysis
still needs to work with the original
variables and function.
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take the logarithm. For example, suppose the objective was expected to vary
across multiple orders of magnitude. In that case, we could minimize log(f)
instead of minimizing f.*

This heuristic still does not guarantee that the derivatives are well scaled,
but it provides a reasonable starting point for further fine-tuning of the problem
scaling. A scaling example is discussed in Ex. 4.19.

Sometimes, additional adjustment is needed if the objective is far less
sensitive to some of the design variables than others (i.e., the entries in the
gradient span various orders of magnitude). A more appropriate but more
involved approach is to scale the variables and objective function such that the
gradient elements have a similar magnitude (ideally of order 1). Achieving a
well-scaled gradient sometimes requires adjusting inputs and outputs away
from the earlier heuristic. Sometimes this occurs because the objective is much
less sensitive to a particular variable.

4.4.2 Conjugate Gradient

Steepest descent generally performs poorly, especially if the problem is
not well scaled, like the quadratic example in Fig. 4.34. The conjugate
gradient method updates the search directions such that they do
not zigzag as much. This method is based on the linear conjugate
gradient method, which was designed to solve linear equations. We
first introduce the linear conjugate gradient method and then adapt it
to the nonlinear case.

For the moment, let us assume that we have the following quadratic
objective function:

flx)= %xTAx -bTx, (4.48)

where A is a positive definite Hessian, and b is the gradient at x = 0.
The constant term is omitted with no loss of generality because it does
not change the location of the minimum. To find the minimum of this
quadratic, we require

Vi(x') = Ax*—b =0. (4.49)

Thus, finding the minimum of a quadratic amounts to solving the linear
system Ax = b, and the residual vector is the gradient of the quadratic.

If A were a positive-definite diagonal matrix, the contours would be
elliptical, as shown in Fig. 4.38 (or hyper-ellipsoids in the n-dimensional
case), and the axes of the ellipses would align with the coordinate direc-
tions. In that case, we could converge to the minimum by successively
performing an exact line search in each coordinate direction for a total
of n line searches.

*If f can be negative, a transformation is
required to ensure that the logarithm ar-
gument is always positive.

~2 iterations-

Fig. 4.38 For a quadratic function
with elliptical contours and the princi-
pal axis aligned with the coordinate
axis, we can find the minimum in
n steps, where 1 is the number of
dimensions, by using a coordinate
search.
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In the more general case (but still assuming A to be positive definite),
the axes of the ellipses form an orthogonal coordinate system in some
other orientation. A coordinate search would no longer work as well in
this case, as illustrated in Fig. 4.39.

Recall from Section 4.1.2 that the eigenvectors of the Hessian repre-
sent the directions of principal curvature, which correspond to the axes
of the ellipses. Therefore, we could successively perform a line search
along the direction defined by each eigenvector and again converge
to the minimum with 7 line searches, as illustrated in Fig. 4.40. The
problem with this approach is that we would have to compute the
eigenvectors of A, a computation whose cost is O(n3).

Fortunately, the eigenvector directions are not the only set of direc-
tions that can minimize the quadratic function in # line searches. To
find out which directions can achieve this, let us express the path from
the origin to the minimum of the quadratic as a sequence of n steps
with directions p; and length «;,

X = aipi. (4.50)

Thus, we have represented the solution as a linear combination of n
vectors. Substituting this into the quadratic (Eq. 4.48), we get

n-1
fe)=f (Z az-pz-)
i=0

1 n-1 T n—-1 n—-1
=5 ( aipi| A Z ajpj|=b7 (Z aipi) (4.51)
i=0 =0 i=0
1 n-1n-1 n-1
= E Z, ]ZO aiajp,-TApj - g Olipri .

Suppose that the vectors pg, p1, . .., pu—1 are conjugate with respect to
A; that is, they have the following property:

piTAp; =0, forall i#j. (4.52)

Then, the double-sum term in Eq. 4.51 can be simplified to a single sum
and we can write

n-1

. 1
f(x) = Z (EaﬁpiTApi —aibTp;| . (4.53)
i=0

Because each term in this sum involves only one direction p;, we have
reduced the original problem to a series of one-dimensional quadratic

Fig. 4.39 For a quadratic function
with the elliptical principal axis not
aligned with the coordinate axis,
more iterations are needed to find the
minimum using a coordinate search.

) itefatioﬁi

Fig. 4.40 We can converge to the min-
imum of a quadratic function by min-
imizing along each Hessian eigenvec-
tor.
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functions that can be minimized one at a time. Two possible conjugate
directions are shown for the two-dimensional case in Fig. 4.41.

Each one-dimensional problem corresponds to minimizing the
quadratic with respect to the step length «;. Differentiating each term
and setting it to zero yields

bTPi

(Iip,‘TApi - bTP,' =0 = a; = piTApz' ,

(4.54)

which corresponds to the result of an exact line search in direction p;.
There are many possible sets of vectors that are conjugate with

respect to A, including the eigenvectors. The conjugate gradient method

finds these directions starting with the steepest-descent direction,

po=-Vf(x0), (4.55)

and then finds each subsequent direction using the update,

Pk = =V fi + Br-1Pk-1 - (4.56)

For a positive §, the result is a new direction somewhere between the
current steepest descent and the previous search direction, as shown in
Fig. 4.42. The factor g is set such that p; and py-; are conjugate with
respect to A. One option to compute a f that achieves conjugacy is
given by the Fletcher—Reeves formula,

B = VATV fx

This formula is derived in Appendix B.4 as Eq. B.40 in the context of
linear solvers. Here, we replace the residual of the linear system with
the gradient of the quadratic because they are equivalent. Using the
directions given by Eq. 4.56 and the step lengths given by Eq. 4.54,
we can minimize a quadratic in n steps, where n is the size of x.
The minimization shown in Fig. 4.41 starts with the steepest-descent
direction and then computes one update to converge to the minimum in
two iterations using exact line searches. The linear conjugate gradient
method is detailed in Alg. B.2.

However, we are interested in minimizing general nonlinear func-
tions. We can adapt the linear conjugate gradient method to the
nonlinear case by doing the following:

1. Use the gradient of the nonlinear function in the search direction
update (Eq. 4.56) and the expression for  (Eq. 4.57). This gradient
can be computed using any of the methods in Chapter 6.

2 1terat10r5\

Fig. 4.41 By minimizing along a se-
quence of conjugate directions in
turn, we can find the minimum of
a quadratic in n steps, where # is the
number of dimensions.

Fig. 4.42 The conjugate gradient
search direction update combines the
steepest-descent direction with the
previous conjugate gradient direc-
tion.
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2. Perform an inexact line search instead of doing the exact line
search. This frees us from providing the Hessian vector products
required for an exact line search (see Eq. 4.54). A line search that
satisfies the strong Wolfe conditions is a good choice, but we need
a stricter range in the sufficient decrease and sufficient curvature
parameters (0 < yy < pp < 1/2)." This stricter requirement on p»
is necessary with the Fletcher-Reeves formula (Eq. 4.57) to ensure
descent directions. As a first guess for « in the line search, we can
use the same estimate proposed for steepest descent (Eq. 4.43).

3. Reset the search direction periodically back to the steepest-descent
direction. In practice, resetting is often helpful to remove old
information that is no longer useful. Some methods reset every n
iterations, motivated by the fact that the linear case only generates
n conjugate vectors. A more mathematical approach resets the
direction when

VATV fral .

VAVl
The full procedure is given in Alg. 4.6. As with steepest descent, we
may use normalized search directions.

The nonlinear conjugate gradient method is no longer guaranteed
to converge in n steps like its linear counterpart, but it significantly
outperforms the steepest-descent method. The change required relative
to steepest descent is minimal: save information on the search direction
and gradient from the previous iteration, and add the § term to the
search direction update. Therefore, there is rarely a reason to prefer
steepest descent. The parameter § can be interpreted as a “damping
parameter” that prevents each search direction from varying too much
relative to the previous one. When the function steepens, the damping
becomes larger, and vice versa.

The formula for § in Eq. 4.57 is only one of several options. Another
well-known option is the Polak—Ribiére formula, which is given by

_ VAT (Vi = Vi)
£ Vfc-1"Vfier

The conjugate gradient method with the Polak-Ribiere formula tends
to converge more quickly than with the Fletcher-Reeves formula, and
this method does not require the more stringent range for 1. However,
regardless of the value of y, the strong Wolfe conditions still do not
guarantee that py is a descent direction (8 might become negative). This
issue can be addressed by forcing f to remain nonnegative:

(4.58)

(4.59)

B «— max(0,p). (4.60)

*For more details on the line search re-
quirements, see Sec. 5.2 in Nocedal and
Wright.””

79. Nocedal and Wright, Numerical Opti-
mization, 2006.


https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-0-387-40065-5
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This equation automatically triggers a reset whenever § = 0 (see
Eq. 4.56), so in this approach, other checks on resetting can be removed
from Alg. 4.6.

\elgidalns ‘NS Nonlinear conjugate gradient

Inputs:

X(Q: Starting point

T: Convergence tolerance
Outputs:

x*: Optimal point

f(x™): Minimum function value

k=0
while ||V fx||o > 7 do
if k = 0 or reset = true then

= ——fk
Pk = TTVAT
else VATYA
_ TV i
Pr = V1TV

Pk = —”g—ﬁ” + BrPr-1
end if
ay = linesearch (py, init)
X1 = Xg + agPi
k=k+1

Initialize iteration counter
Optimality condition

first direction, and at resets

Conjugate gradient direction update

Perform a line search
Update design variables

Increment iteration index

end while

2 ElIBNPA Conjugate gradient applied to the bean function

Minimizing the same bean function from Ex. 4.11 and the same line search
algorithm and settings, we get the optimization path shown in Fig. 4.43. The
changes in direction for the conjugate gradient method are smaller than for
steepest descent, and it takes fewer iterations to achieve the same convergence
tolerance.

4.4.3 Newton's Method

The steepest-descent and conjugate gradient methods use only first-
order information (the gradient). Newton’s method uses second-order
(curvature) information to get better estimates for search directions. The
main advantage of Newton’s method is that, unlike first-order methods,

—
—— 22 iterations

R

Fig. 4.43 Conjugate gradient opti-
mization path.
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it provides an estimate of the step length because the curvature predicts
where the function derivative is zero.

In Section 3.8, we presented Newton’s method for solving nonlinear
equations. Newton’s method for minimizing functions is based on the
same principle, but instead of solving r(1) = 0, we solve for Vf(x) = 0.

Asin Section 3.8, we can derive Newton’s method for one-dimensional
function minimization from the Taylor series approximation,

fxk+s)~ f(xe)+sf (xp)+ %s2f” (xk) - (4.61)

We now include a second-order term to get a quadratic that we can
minimize. We minimize this quadratic approximation by differentiating
with respect to the step s and setting the derivative to zero, which yields

' " [’ (xx)
xp)+sf(xx) =0 = s=- . 4.62
f (k) +sf” (xx) ) (4.62)
Thus, the Newton update is
f/
Xps1 = Xf — (4.63)
k

We could also derive this equation by taking Newton’s method for root
finding (Eq. 3.24) and replacing r(u) with f’(x).

S EIEZNEN Newton's method for one-dimensional minimization

Suppose we want to minimize the following single-variable function:

flx)=(x-2* +2x% —4x +4.

The first derivative is
f(x) = 4(x —2)% + 4x — 4,

and the second derivative is
F(x) =12(x —2)* + 4.

Starting from xp = 3, we can form the quadratic (Eq. 4.61) using the function
value and the first and second derivatives evaluated at that point, as shown
in the top plot in Fig. 4.44. Then, the minimum of the quadratic is given
analytically by the Newton update (Eq. 4.63). We successively form quadratics
at each iteration and minimize them to find the next iteration. This is equivalent
to finding the zero of the function’s first derivative, as shown in the bottom plot
in Eq. 4.63.

Fig. 4.44 Newton’s method for find-
ing roots can be adapted for func-
tion minimization by formulating it
to find a zero of the derivative. We
step to the minimum of a quadratic
at each iteration (top) or equivalently
find the root of the function’s first
derivative (bottom).
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Like the one-dimensional case, we can build an n-dimensional
Taylor series expansion about the current design point:

fxk+s)= fr + Vi s + %STHkS , (4.64)

where s is a vector centered at x;. Similar to the one-dimensional case,
we can find the step s; that minimizes this quadratic model by taking
the derivative with respect to s and setting that equal to zero:

df (xx +5)

= = 4.65
IS Vfi+Hgs =0. (4.65)

Thus, each Newton step is the solution of a linear system where the
matrix is the Hessian,

Hisk = -V (4.66)

This linear system is analogous to the one used for solving nonlinear
systems with Newton’s method (Eq. 3.30), except that the Jacobian
becomes the Hessian, the residual is the gradient, and the design
variables replace the states. We can use any of the linear solvers
mentioned in Section 3.6 and Appendix B to solve this system.

When minimizing the quadratic function from Ex. 4.10, Newton’s
method converges in one step for any value of 8, as shown in Fig. 4.45.
Thus, Newton’s method is scale invariant

Because the function is quadratic, the quadratic “approximation”
from the Taylor series is exact, so we can find the minimum in one
step. It will take more iterations for a general nonlinear function, but
using curvature information generally yields a better search direction
than first-order methods. In addition, Newton’s method provides a
step length embedded in s; because the quadratic model estimates
the stationary point location. Furthermore, Newton’s method exhibits
quadratic convergence.

Although Newton’s method is powerful, it suffers from a few issues
in practice. One issue is that the Newton step does not necessarily
result in a function decrease. This issue can occur if the Hessian is not
positive definite or if the quadratic predictions overshoot because the
actual function has more curvature than predicted by the quadratic
approximation. Both of these possibilities are illustrated in Fig. 4.46.

If the Hessian is not positive definite, the step might not even be in
a descent direction. Replacing the real Hessian with a positive-definite
Hessian can mitigate this issue. The quasi-Newton methods in the next
section force a positive-definite Hessian by construction.

To fix the overshooting issue, we can use a line search instead of
blindly accepting the Newton step length. We would set pir = s,

ol

-5 0 5 10

Fig. 4.45 Iteration history for a
quadratic function using an exact line
search and Newton’s method. Un-
surprisingly, only one iteration is re-
quired.
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Xk+1 Xk Xk Xk41

Negative curvature Overshoot

with ainit = 1 as the first guess for the step length. In this case, we
have a much better guess for & compared with the steepest-descent
or conjugate gradient cases because this guess is based on the local
curvature. Even if the first step length given by the Newton step
overshoots, the line search would find a point with a lower function
value.

The trust-region methods in Section 4.5 address both of these issues
by minimizing the function approximation within a specified region
around the current iteration.

Another major issue with Newton’s method is that the Hessian can
be difficult or costly to compute. Even if available, the solution of the
linear system in Eq. 4.65 can be expensive. Both of these considerations
motivate the quasi-Newton methods, which we explain next.

S El) SN Newton method applied to the bean function

Minimizing the same bean function from Exs. 4.11 and 4.12, we get the
optimization path shown in Fig. 4.47. Newton’s method takes fewer iterations
than steepest descent (Ex. 4.11) or conjugate gradient (Ex. 4.12) to achieve the
same convergence tolerance. The first quadratic approximation is a saddle

function that steps to the saddle point, away from the minimum of the function.

However, in subsequent iterations, the quadratic approximation becomes
convex, and the steps take us along the valley of the bean function toward the
minimum.

Fig. 4.46 Newton's method in its pure
form is vulnerable to negative curva-
ture (in which case it might step away
from the minimum) and overshoot-
ing (which might result in a function
increase).
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4.4.4 Quasi-Newton Methods Fig. 4.47 Newton’s method mini-
mizes a sequence of quadratic ap-
As mentioned in Section 4.4.3, Newton’s method is efficient because the proximations of the function at each

second-order information results in better search directions, but it has gf;:g‘lt;aﬁisase it converges in
the significant shortcoming of requiring the Hessian. Quasi-Newton
methods are designed to address this issue. The basic idea is that
we can use first-order information (gradients) along each step in the
iteration path to build an approximation of the Hessian.
In one dimension, we can adapt the secant method (see Eq. 3.26) for
function minimization. Instead of estimating the first derivative, we
now estimate the second derivative (curvature) using two successive
first derivatives, as follows:

k+1 — .

” ,k+1 B f’k (4 67)
Xk+1 — Xk

Then we can use this approximation in the Newton step (Eq. 4.63) to
obtain an iterative procedure that requires only first derivatives instead
of first and second derivatives.

The quadratic approximation based on this approximation of the
second derivative is

4.68
Xk+1 — Xk ( )

fk+1 (Xk+1+8) = fre1 + sfk’+1 t

2 (Leazty).

Taking the derivative of this approximation with respect to s, we get

f~,:+1 (Xkr1+8) = fi 4 +5 (M) .

4.69
Xk+1 — Xk ( )
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For s = 0, which corresponds to xj.1, we get f,; ) (xk+1) = f,: +1» Which
tells us that the slope of the approximation matches the slope of the
actual function at x4, as expected.

Also, by stepping backward to xj by setting s = — (xx4+1 — Xx), we
find that f,: .1 (xx) = f{. Thus, the nature of this approximation is such
that it matches the slope of the actual function at the last two points, as
shown in Fig. 4.48.

In n dimensions, things are more involved, but the principle is
the same: use first-derivative information from the last two points
to approximate second-derivative information. Instead of iterating
along the x-axis as we would in one dimension, the optimization in n
dimensions follows a sequence of steps (as shown in Fig. 4.1) for the
separate line searches. We have gradients at the endpoints of each step,
so we can take the difference between the gradients at those points to
get the curvature along that direction. The question is: How do we
update the Hessian, which is expressed in the coordinate system of x,
based on directional curvatures in directions that are not necessarily
aligned with the coordinate system?

Quasi-Newton methods use the quadratic approximation of the
objective function,

~ 1 ~
flxe+p) = fi+ VfiTp+ SpTHip, (4.70)

where H is an approximation of the Hessian. Similar to Newton’s
method, we minimize this quadratic with respect to p, which yields the
linear system

Hipr = -Vfx. (4.71)

We solve this linear system for py, but instead of accepting it as the final
step, we perform a line search in the p; direction. Only after finding a
step size a that satisfies the strong Wolfe conditions do we update the
point using

Xk+1 = Xk + QkPk - (4.72)

Quasi-Newton methods update the approximate Hessian at every
iteration based on the latest information using an update of the form

Hii1 = Hy + AHy, (4.73)

where the update AH is a function of the last two gradients. The first
Hessian approximation is usually set to the identity matrix (or a scaled
version of it), which yields a steepest-descent direction for the first line
search (set H = I in Eq. 4.71 to verify this).

X Xk+1

Fig. 4.48 The quadratic approxima-
tion based on the secant method
matches the slopes at the two last
points and the function value at the
last point.



4 UNCONSTRAINED GRADIENT-BASED OPTIMIZATION 125

We now develop the requirements for the approximate Hessian
update. Suppose we just obtained the new point xy1 after a line search
starting from x in the direction py. We can write the new quadratic
based on an updated Hessian as follows:

- 1 -
f(xks1+p) = ferr + VfisaTp + 5pTHeap (4.74)

We can assume that the new point’s function value and gradient are
given, but we do not have the new approximate Hessian yet. Taking
the gradient of this quadratic with respect to p, we obtain

VF (xke1+p) = Virr + Heap - (4.75)

In the single-variable case, we observed that the quadratic approx-
imation based on the secant method matched the slope of the actual
function at the last two points. Therefore, it is logical to require the
n-dimensional quadratic based on the approximate Hessian to match
the gradient of the actual function at the last two points.

The gradient of the new approximation (Eq. 4.75) matches the
gradient at the new point xy41 by construction (just set p = 0). To
find the gradient predicted by the new approximation (Eq. 4.75) at the
previous point xi, we set p = xy — X1 = —apx (which is a backward
step from the end of the last line search to the start of the line search) to
get

VF (xk1 — axpr) = Vfist — axHiapi - (4.76)
Now, we enforce that this must be equal to the actual gradient at that
point,
Vfis1 — axHenpe = Vi =

. (4.77)
arHipr = Vi — V.
To simplify the notation, we define the step as
Sk = Xk+1 — Xk = QkPk, (4.78)
and the difference in the gradient as
Ve = Vi1 — V. (4.79)
Figure 4.49 shows the step and the corresponding gradients.
Rewriting Eq. 4.77 using this notation, we get
His15k = yk - (4.80)

This is called the secant equation and is a fundamental requirement
for quasi-Newton methods. The result is intuitive when we recall the

YV

Fig. 4.49 Quasi-Newton methods use
the gradient at the endpoint of each
step to estimate the curvature in the
step direction and update an approx-
imation of the Hessian.
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meaning of the product of the Hessian with a vector (Eq. 4.12): it is the
rate of change of the Hessian in the direction defined by that vector.
Thus, it makes sense that the rate of change of the curvature predicted
by the approximate Hessian should match the difference between the
gradients.

We need H to be positive definite. Using the secant equation
(Eq. 4.80) and the definition of positive definiteness (sTHs > 0), we see
that this requirement implies that the predicted curvature is positive
along the step; that is,

SkTyk > 0. (4.81)

This is called the curvature condition, and it is automatically satisfied if
the line search finds a step that satisfies the strong Wolfe conditions.

The secant equation (Eq. 4.80) is a linear system of n equations
where the step and the gradients are known. However, there are
n(n +1)/2 unknowns in the approximate Hessian matrix (recall that it is
symmetric), so this equation is not sufficient to determine the elements
of H. The requirement of positive definiteness adds one more equation,
but those are not enough to determine all the unknowns, leaving us
with an infinite number of possibilities for H.

To find a unique H k+1, we rationalize that among all the matrices
that satisfy the secant equation (Eq. 4.80), Hy41 should be the one
closest to the previous approximate Hessian, Hy. This makes sense
intuitively because the curvature information gathered in one step is
limited (because it is along a single direction) and should not change the
Hessian approximation more than necessary to satisfy the requirements.

The original quasi-Newton update, known as DFP, was first pro-
posed by Davidon and then refined by Fletcher and also Powell (see
historical note in Section 2.3).”’?! The DFP update formula has been
superseded by the BFGS formula, which was independently developed
by Broyden, Fletcher, Goldfarb, and Shanno.*’~* BFGS is currently
considered the most effective quasi-Newton update, so we focus on this
update. However, Appendix C.2.1 has more details on DFP.

The formal derivation of the BFGS update formula is rather involved,
so we do not include it here. Instead, we work through an informal
derivation that provides intuition about this update and quasi-Newton
methods in general. We also include more details in Appendix C.2.2.

Recall that quasi-Newton methods add an update to the previous
Hessian approximation (Eq. 4.73). One way to think about an update
that yields a matrix close to the previous one is to consider the rank
of the update, AH. The lower the rank of the update, the closer the
updated matrix is to the previous one. Also, the curvature information
contained in this update is minimal because we are only gathering

#The secant equation is also known as the
quasi-Newton condition.

20. Davidon, Variable metric method for
minimization, 1991.

21. Fletcher and Powell, A rapidly con-
vergent descent method for minimization,
1963.

80. Broyden, The convergence of a class
of double-rank minimization algorithms 1.
General considerations, 1970.

81. Fletcher, A new approach to variable
metric algorithms, 1970.
82. Goldfarb, A family of variable-metric

methods derived by variational means, 1970.

83. Shanno, Conditioning of quasi-Newton
methods for function minimization, 1970.


https://dx.doi.org/10.1137/0801001
https://dx.doi.org/10.1137/0801001
https://dx.doi.org/10.1093/comjnl/6.2.163
https://dx.doi.org/10.1093/comjnl/6.2.163
https://dx.doi.org/10.1093/imamat/6.1.76
https://dx.doi.org/10.1093/imamat/6.1.76
https://dx.doi.org/10.1093/imamat/6.1.76
https://dx.doi.org/10.1093/comjnl/13.3.317
https://dx.doi.org/10.1093/comjnl/13.3.317
https://dx.doi.org/10.1090/s0025-5718-1970-0258249-6
https://dx.doi.org/10.1090/s0025-5718-1970-0258249-6
https://dx.doi.org/10.1090/s0025-5718-1970-0274029-x
https://dx.doi.org/10.1090/s0025-5718-1970-0274029-x
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information in one direction for each update. Therefore, we can reason
that the rank of the update matrix should be the lowest possible rank
that satisfies the secant equation (Eq. 4.80).

The update must be symmetric and positive definite to ensure
a symmetric positive-definite Hessian approximation. If we start
with a symmetric positive-definite approximation, then all subsequent
approximations remain symmetric and positive definite. As it turns
out, it is possible to derive a rank 1 update matrix that satisfies the
secant equation, but this update is not guaranteed to be positive definite.
However, we can get positive definiteness with a rank 2 update.

We can obtain a symmetric rank 2 update by adding two symmetric
rank 1 matrices. One convenient way to obtain a symmetric rank 1
matrix is to perform a self outer product of a vector, which takes a vector
of size n and multiplies it with its transpose to obtain an (# X n) matrix,
as shown in Fig. 4.50. Matrices resulting from vector outer products
have rank 1 because all the columns are linearly dependent.

With two linearly independent vectors (1 and v), we can get a rank
2 update using

His1 = He + auu™ + pooT, (4.82)

where a and § are scalar coefficients. Substituting this into the secant
equation (Eq. 4.80), we have

Hisyk + auuTsg + pooTsk = yi . (4.83)

Because the new information about the function is encapsulated in the
vectors y and s, we can reason that # and v should be based on these
vectors. It turns out that using s on its own does not yield a useful
update (one term cancels out), but Hs does. Setting u = y and v = Hs
in Eq. 4.83 yields

~ ~ ~ T
Hisk + aykyx sk + BHisk (HkSk) Sk = Yk - (4.84)

Rearranging this equation, we have
v (1— ayrTsk) = Hisy (1 + ﬁskTﬁksk) . (4.85)

Because the vectors y; and Hysy are not parallel in general (because the
secant equation applies to Hy,1, not to Hy), the only way to guarantee
this equality is to set the terms in parentheses to zero. Thus, the scalar

coefficients are , ,
o= , = (4.86)
YrTsk sk THgsk

(nx1) (1xn) (nxn)

Fig. 4.50 The self outer product of a
vector produces a symmetric (1 X 1)
matrix of rank 1.
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Substituting these coefficients and the chosen vectors back into Eq. 4.82,
we get the BEGS update,

YrYiT 3 gkskSkTHk

Hi1 = Hi + — =
Yk 'Sk sk THysk

(4.87)

Although we did not explicitly enforce positive definiteness, the rank 2
update is positive definite, and therefore, all the Hessian approxima-
tions are positive definite, as long as we start with a positive-definite
approximation.

Now recall that we want to solve the linear system that involves
this matrix (Eq. 4.71), so it would be more efficient to approximate
the inverse of the Hessian directly instead. The inverse can be found
analytically from the update (Eq. 4.87) using the Sherman—Morrison—
Woodbury formula.$ Defining V as the approximation of the inverse of
the Hessian, the final result is

Vk+1 = (I = GkskykT) Vk (I = O'kykSkT) + okSkSkT, (4.88)
where ,
(= . (4.89)
YkTSk

Figure 4.51 shows the sizes of the vectors and matrices involved in this
equation.

(nxn) (nxXn) (Ix1)(nx1) (I1xn) (nxn) (nxn) (1x1) (nx1)
Now we can replace the potentially costly solution of the linear
system (Eq. 4.71) with the much cheaper matrix-vector product,

pk = —ViVfi, (4.90)

where V is the estimate for the inverse of the Hessian.

Algorithm 4.7 details the steps for the BFGS algorithm. Unlike
first-order methods, we should not normalize the direction vector py
because the length of the vector is meaningful. Once we have curvature
information, the quasi-Newton step should give a reasonable estimate
of where the function slope flattens. Thus, as advised for Newton’s
method, we set ainit = 1. Alternatively, this would be equivalent to
using a normalized direction vector and then setting ajni¢ to the initial
magnitude of p. However, optimization algorithms in practice use

8This formula is also known as the Wood-
bury matrix identity. Given a matrix and an
update to that matrix, it yields an explicit
expression for the inverse of the updated
matrix in terms of the inverses of the ma-
trix and the update (see Appendix C.3).

Vea (=\| ¢ |"EEsEw ) U ¢ |E3 (TR R o [ RET

(1xn) (1x1) (nx1) (1xn)

Fig. 4.51 Sizes of each term of the
BFGS update (Eq. 4.88).
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ainit = 1 to signify that a full (quasi-) Newton step was accepted (see
Tip 4.5).

As discussed previously, we need to start with a positive-definite
estimate to maintain a positive-definite inverse Hessian. Typically, this
is the identity matrix or a weighted identity matrix, for example:

Vo = 1. (4.91)
IV Aol
This makes the first step a normalized steepest-descent direction:
. v
po=-WVfo=- . (4.92)
VAl
Inputs:
X Starting point
T: Convergence tolerance
Outputs:
x*: Optimal point
f(x™): Minimum function value
k=0 Initialize iteration counter
Qinit = 1 Initial step length for line search
while ||kaHoo > 7 do Optimality condition
if k = 0 or reset = true then
Vi = ”;WI
else
S =Xj — Xj-1 Last step
¥y =Vfr—=Vfi Curvature along last step
Vi = (I-osyT) Vi_1 (I - oysT) + ossT Quasi-Newton update
end if
p = —Vkak Compute quasi-Newton step
a = linesearch (p, lxinit) Should satisfy the strong Wolfe conditions
Xk+1 = X +ap Update design variables
k=k+1 Increment iteration index
end while

In a practical algorithm, V might require occasional resets to the
scaled identity matrix. This is because as we iterate in the design
space, curvature information gathered far from the current point might
become irrelevant and even counterproductive. The trigger for this
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reset could occur when the directional derivative VfTp is greater than
some threshold. That would mean that the slope along the search
direction is shallow; in other words, the search direction is close to
orthogonal to the steepest-descent direction.

Another well-known quasi-Newton update is the symmetric rank 1
(SR1) update, which we derive in Appendix C.2.3. Because the update
is rank 1, it does not guarantee positive definiteness. Why would we be
interested in a Hessian approximation that is potentially indefinite? In
practice, the matrices produced by SR1 have been found to approximate
the true Hessian matrix well, often better than BFGS. This alternative is
more common in trust-region methods (see Section 4.5), which depend
more strongly on an accurate Hessian and do not require positive
definiteness. It is also sometimes used for constrained optimization
problems where the Hessian of the Lagrangian is often indefinite, even
at the minimizer.

SEI NN BFGS applied to the bean function

Minimizing the same bean function from previous examples using BFGS, we
get the optimization path shown in Fig. 4.52. We also show the corresponding
quadratic approximations for a few selected steps of this minimization in
Fig. 4.53. Because we generate approximations to the inverse, we invert those

approximations to get the Hessian approximation for the purpose of illustration.

We initialize the inverse Hessian to the identity matrix, which results in

a quadratic with circular contours and a steepest-descent step (Fig. 4.53, left).

Using the BEGS update procedure, after two iterations,
x2 = (0.1197030, —0.043079) ,
and the inverse Hessian approximation is

- [0435747  —0.202020
27120202020  0.222556 |

The exact inverse Hessian at the same point is

H™ (xp) =
(x2) [0.035946 0.169535

0.450435 0.035946]
The predicted curvature improves, and it results in a good step toward the
minimum, as shown in the middle plot of Fig. 4.53. The one-dimensional
slice reveals how the approximation curvature in the line search direction is
higher than the actual; however, the line search moves past the approximation
minimum toward the true minimum.

By the end of the optimization, at x* = (1.213412, 0.824123), the BFGS

estimate is
~. _10.276946 0.224010

~10.224010 0.347847| ’

Fig. 4.52 BFGS optimization path.
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X2

whereas the exact one is

0.276901 0.223996

H'(x) = .
(9= 0223996 0.347867

Now the estimate is much more accurate. In the right plot of Fig. 4.53, we can
see that the minimum of the approximation coincides with the actual minimum.
The approximation is only accurate locally, worsening away from the minimum.

445 Limited-Memory Quasi-Newton Methods

When the number of design variables is large (millions or billions), it
might not be possible to store the Hessian inverse approximation matrix
in memory. This motivates limited-memory quasi-Newton methods,
which make it possible to handle such problems. In addition, these
methods also improve the computational efficiency of medium-sized
problems (hundreds or thousands of design variables) with minimal
sacrifice in accuracy.

Recall that we are only interested in the matrix-vector product V'V f
to find each search direction using Eq. 4.90. As we will see in this
section, we can compute this product without ever actually forming
the matrix V. We focus on doing this for the BEGS update because
this is the most popular approach (known as L-BFGS), although similar
techniques apply to other quasi-Newton update formulas.

The BFGS update (Eq. 4.88) is a recursive sequence:

Vi = [(I-0osyV(I - oysT) +assT],_, , (4.93)

k=7

Fig. 4.53 Minimization of the bean
function using BFGS. The first
quadratic approximation has circular
contours (left). After two iterations,
the quadratic approximation im-
proves, and the step approaches the
minimum (middle). Once converged,
the minimum of the quadratic ap-
proximation coincides with the bean
function minimum (right).
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where

o= L . (4.94)

sTy

If we save the sequence of s and y vectors and specify a starting value
for Vp, we can compute any subsequent V;. Of course, what we want
is V4V fy, which we can also compute using an algorithm with the
recurrence relationship. However, such an algorithm would not be
advantageous from the memory-usage perspective because we would
have to store a long sequence of vectors and a starting matrix.

To reduce the memory usage, we do not store the entire history of
vectors. Instead, we limit the storage to the last m vectors for s and
y. In practice, m is usually between 5 and 20. Next, we make the
starting Hessian diagonal such that we only require vector storage (or
scalar storage if we make all entries in the diagonal equal). A common
choice is to use a scaled identity matrix, which just requires storing one

number,
~ sTy
Vo=—=I, (4.95)
YTy
where the s and y correspond to the previous iteration. Algorithm 4.8
details the procedure.

\P=elaialnaR“ %W Compute search direction using L-BFGS

Inputs:
V fx: Gradient at point xj

Sk—1,...k-m" History of steps xj — xx-1

Yk-1,...,k—m: History of gradient differences Vfi — Vfi
Outputs:

p: Search direction -V V fi

d=Vfk

fori=k—-1tok—-mby-1do
a; = O'iSde
d=d- aiyi

end for

e USSR

Yi—1Yk-1

d =Vod

fori=k-mtok—-1do
Bi =oiyiTd
d=d+(a; - Bi)si

end for

p=—d

Initialize Hessian inverse approximation as a scaled identity matrix
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Using this technique, we no longer need to bear the memory cost
of storing a large matrix or incur the computational cost of a large
matrix-vector product. Instead, we store a small number of vectors and
require fewer vector-vector products (a cost that scales linearly with n
rather than quadratically).

S EI NI L-BFGS compared with BFGS for the bean function

Minimizing the same bean function from the previous examples, the %
optimization iterations using BFGS and L-BFGS are the same, as shown in ¥ ST BFGS: 7 fterations
Fig. 4.54. The L-BFGS method is applied to the same sequence using the
last five iterations. The number of variables is too small to benefit from the
limited-memory approach, but we show it in this small problem as an example.
At the same x* as in Ex. 4.15, the product VVf is estimated using Alg. 4.8 as

~ | 5.75370 x 10~°

. [—7.38683 X 10—5]

whereas the exact value is:

o —7.49228 x 1070 Fig. 4.54 Optimization paths using
VIV = 590841 x 105 |° BFGS and L-BFGS.

SEMEZNPA Minimizing the total potential energy for a spring system

Many structural mechanics models involve solving an unconstrained energy
minimization problem. Consider a mass supported by two springs, as shown
in Fig. 4.55. Formulating the total potential energy for the system as a function
of the mass position yields the following problem:T

2
minimize 1k] 1[((1 + x1)2 + x2 - (1 + 1]{2 1}([2 - X1)2 + x2 - [2
x1,X2 2 2 2 2

—-mgxy.

T Appendix D.1.8 has details on this prob-

5 lem.

The contours of this function are shown in Fig. 4.56 for the case where
Iy =12,1p =8,k1 =1,kp =10, mg = 7. There is a minimum and a maximum.
The minimum represents the position of the mass at the stable equilibrium
condition. The maximum also represents an equilibrium point, but it is unstable.
All methods converge to the minimum when starting near the maximum. All
four methods use the same parameters, convergence tolerance, and starting
point. Depending on the starting point, Newton’s method can become stuck at
the saddle point, and if a line search is not added to safeguard it, it could have
terminated at the maximum instead.

As expected, steepest descent is the least efficient, and the second-order
methods are the most efficient. The number of iterations and the relative
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saaaaaaay

sasaaaaay
AN

Fig. 4.55 Two-spring system with no
applied force (top) and with applied
l force (bottom).

mg

performance are problem dependent and sensitive to the optimization algorithm
parameters, so we should not analyze the number of iterations too closely.
However, these results show the expected trends for most problems.

12 & 12 %
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-5 0 5 10 15 Fig. 4.56 Minimizing the total poten-
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tial for two-spring system.
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eI NER Comparing methods for the Rosenbrock function

We now test the methods on the following more challenging function:

f (1, 32) = (1= 1) +100 (x5 - x%)Z,

which is known as the Rosenbrock function. This is a well-known optimization
problem because a narrow, highly curved valley makes it challenging to
minimize.| The optimization path and the convergence history for four methods
starting from x = (-1.2,1.0) are shown in Figs. 4.57 and 4.58, respectively.
All four methods use an inexact line search with the same parameters and
a convergence tolerance of ||Vf|lc < 107°. Compared with the previous
two examples, the difference between the steepest-descent and second-order
methods is much more dramatic (two orders of magnitude more iterations!),

I The “bean” function we used in previous
examples is a milder version of the Rosen-
brock function.

owing to the more challenging variation in the curvature (recall Ex. 4.10).

i/

930 jtgf/tio

Ve
10,662 jterations//
/

X2 X2

-1 0 1 -1 0 1
X1 X1

Steepest descent

/. /////

Conjugate gradient

/A1)

36 té/rz;/t'o 24 jté7/tio

Fig. 4.57 Optimization paths for the
Rosenbrock function using steepest
descent, conjugate gradient, BFGS,
and Newton.

Quasi-Newton

Newton

The steepest-descent method converges, but it takes many iterations because
it bounces between the steep walls of the valley while making little progress
along the bottom of the valley. The conjugate gradient method is much
more efficient because it damps the steepest-descent oscillations. Eventually,
the conjugate gradient method achieves superlinear convergence near the
optimum, saving many iterations over the last several orders of magnitude in
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Steepest
descent

IV £l

Quasi-
Newton

Conjugate
gradient

100 10! 102 10%
Major iterations

the convergence criterion. The methods that use second-order information are
even more efficient, exhibiting quadratic convergence in the last few iterations.

The number of major iterations is not always an effective way to
compare performance. For example, Newton’s method takes fewer ma-
jor iterations, but each iteration in Newton’s method is more expensive
than each iteration in the quasi-Newton method. This is because New-
ton’s method requires a linear solution, which is an O(n?) operation, as
opposed to a matrix-vector multiplication, which is an O(n?) operation.
For a small problem like the two-dimensional Rosenbrock function,
this is an insignificant difference, but this is a significant difference
in computational effort for large problems. Additionally, each major
iteration includes a line search, and depending on the quality of the
search direction, the number of function calls contained in each iteration
will differ.

1551 Unit steps indicate good progress

When performing a line search within a quasi-Newton algorithm, we pick
ainit = 1 (a unit step) because this corresponds to the minimum if the quadratic
approximation were perfect. When the quadratic approximation matches the
actual function well enough, the line search should exit after the first evaluation.
On the other hand, if the line search takes many iterations, this indicates a poor
match or other numerical difficulties. If difficulties persist over many major
iterations, plot the line search (Tip 4.3).

Fig. 4.58 Convergence of the four
methods shows the dramatic differ-
ence between the linear convergence
of steepest descent, the superlinear
convergence of the conjugate gradi-
entmethod, and the quadratic conver-
gence of the methods that use second-
order information.
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SEIENER Problem scaling

In Tip 4.4, we discussed the importance of scaling. Let us illustrate this
with an example. Consider a stretched version of the Rosenbrock function from
Ex. 4.18:

2 2\2
f(x1,x0) = (1-1%14) +100 (xz—(l%) ) . (4.96)

The contours of this function have the same characteristics as those of the
original Rosenbrock function shown in Fig. 4.57, but the x1 axis is stretched,
as shown in Fig. 4.59. Because x1 is scaled by such a large number (104), we
cannot show it using the same scale as the x5 axis, otherwise the x; axis would
disappear. The minimum of this function is at x* = [10%,1], where fr=0.

X2

1+
e T
-14 -12 -1 -08 -06 -04 -02 0 0.2 0.4

Let us attempt to minimize this function starting from xy = [-5000, —3].
The gradient at this starting point is Vf(xg) = [-0.0653, —650.0], so the slope
in the x direction is four orders of magnitude times larger than the slope in
the x direction! Therefore, there is a significant bias toward moving along the
x7 direction but little incentive to move in the x1 direction. After an exact line
search in the steepest descent direction, we obtain the step to x4 = [-5000, 0.25]
as shown in Fig. 4.59. The optimization stops at this point, even though it is
not a minimum. This premature convergence is because df /dx] is orders of
magnitude smaller, so both components of the gradient satisfy the optimality
conditions when using a standard relative tolerance.

To address this issue, we scale the design variables as explained in
Tip 4.4. Using the scaling sy = [10%,1], the scaled starting point becomes
%o = [-5000, -3] @ [10%,1] = [-0.5, -3]. Before evaluating the function, we
need to convert the design variables back to their unscaled values, that is,
f) = fEOs).

This scaling of the design variables alone is sufficient to improve the
optimization convergence. Still, let us also scale the objective because it is
large at our starting point (around 900). Dividing the objective by s ¢ = 1000,
the initial gradient becomes V£ (xg) = [-0.00206, —0.6]. This is still not ideally
scaled, but it has much less variation in orders of magnitude—more than
sufficient to solve the problem successfully. The optimizer returns ¥* = [1,1],
where f* = 1.57 x 10712, When rescaled back to the problem coordinates,
x* = [10%,1], f* = 1.57 x 107°.

In this example, the function derivatives span many orders of magnitude,
so dividing the function by a scalar does not have much effect. Instead, we
could minimize log(f), which allows us to solve the problem even without
scaling x. If we also scale x, the number of required iterations for convergence

0.6 0.8 1 1.2 1.4

104

Fig. 4.59 The contours the scaled
Rosenbrock function (Eq. 4.96) are
highly stretched in the x1 direction,
by orders of magnitude more than
what we can show here.
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decreases. Using log(f) as the objective and scaling the design variables as
before yields ¥* = [1,1], where f* = —25.28, which in the original problem
space corresponds to x* = [10%,1], where f* = 1.05 x 10711,

Although this example does not correspond to a physical problem, such
differences in scaling occur frequently in engineering analysis. For example,
optimizing the operating point of a propeller might involve two variables: the
pitch angle and the rotation rate. The angle would typically be specified in
radians (a quantity of order 1) and the rotation rate in rotations per minute
(typically tens of thousands).

Poor scaling causes premature convergence for various reasons. In
Ex. 4.19, it was because convergence was based on a tolerance relative
to the starting gradient, and some gradient components were much
smaller than others. When using an absolute tolerance, premature
convergence can occur when the gradients are small to begin with
(because of the scale of the problem, not because they are near an
optimum). When the scaling is poor, the optimizer is even more
dependent on accurate gradients to navigate the narrow regions of
function improvement.

Larger engineering simulations are usually more susceptible to
numerical noise due to iteration loops, solver convergence tolerances,
and longer computational procedures. Another issue arises when the
derivatives are not computed accurately. In these cases, poorly scaled
problems struggle because the line search directions are not accurate
enough to yield a decrease, except for tiny step sizes.

Most practical optimization algorithms terminate early when this
occurs, not because the optimality conditions are satisfied but because
the step sizes or function changes are too small, and progress is stalled
(see Tip 4.1). A lack of attention to scaling is one of the most frequent
causes of poor solutions in engineering optimization problems.

1Ne“56H Accurate derivatives matter

The effectiveness of gradient-based methods depends strongly on providing
accurate gradients. Convergence difficulties, or apparent multimodal behavior,
are often mistakenly identified as optimization algorithm difficulties or fun-
damental modeling issues when in reality, the numerical issues are caused by
inaccurate gradients. Chapter 6 is devoted to computing accurate derivatives.
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4.5 Trust-Region Methods

In Section 4.2, we mentioned two main approaches for unconstrained
gradient-based optimization: line search and trust region. We described
the line search in Section 4.3 and the associated methods for computing
search directions in Section 4.4. Now we describe trust-region methods,
also known as restricted-step methods. The main motivation for trust-
region methods is to address the issues with Newton’s method (see
Section 4.4.3) and quasi-Newton updates that do not guarantee a
positive definite-Hessian approximation (e.g., SR1, which we briefly
described in Section 4.4.4).

The trust-region approach is fundamentally different from the line
search approach because it finds the direction and distance of the
step simultaneously instead of finding the direction first and then the
distance. The trust-region approach builds a model of the function
to be minimized and then minimizes the model within a trust region,
within which we trust the model to be good enough for our purposes.

The most common model is a local quadratic function, but other
models may be used. When using a quadratic model based on the
function value, gradient, and Hessian at the current iteration, the
method is similar to Newton’s method.

The trust region is centered about the current iteration point and
can be defined as an n-dimensional box, sphere, or ellipsoid of a given
size. Each trust-region iteration consists of the following main steps:

1. Create or update the model about the current point.
2. Minimize the model within the trust region.

3. Move to the new point, update values, and adapt the size of the
trust region.

These steps are illustrated in Fig. 4.60, and they are repeated until
convergence. Figure 4.61 shows the steps to minimize the bean function,
where the circles show the trust regions for each iteration.
The trust-region subproblem solved at each iteration is
minimize f (s)
s (4.97)
subjectto ||s|| < A,

where f(s) is the local trust-region model, s is the step from the current
iteration point, and A is the size of the trust region. We use s instead
of p to indicate that this is a step vector and not simply the direction
vector used in methods based on a line search.

X0

Fig. 4.60 Trust-region methods mini-
mize a model within a trust region for
each iteration, and then they update
the trust-region size and the model
before the next iteration.
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X

The subproblem (Eq. 4.97) defines the trust region as a norm. The
Euclidean norm, ||s||,, defines a spherical trust region and is the most
common type of trust region. Sometimes co-norms are used instead
because they are easy to apply, but 1-norms are rarely used because
they are just as complex as 2-norms but introduce sharp corners that
can be problematic.** The shape of the trust region is dictated by the
norm (see Fig. A.8) and can significantly affect the convergence rate.
The ideal trust-region shape depends on the local function space, and
some algorithms allow for the trust-region shape to change throughout
the optimization.

4.5.1 Quadratic Model with Spherical Trust Region

Using a quadratic trust-region model and the Euclidean norm, we can
define the more specific subproblem:

- 1 -
minimize )= fx + VfiTs + =sTHys

: f(s)=f+Vf > (4.98)
subjectto ||s]l, < A,

where Hy is the approximate (or true) Hessian at our current iterate.
This problem has a quadratic objective and quadratic constraints and
is called a quadratically constrained quadratic program (QCQP). If the
problem is unconstrained and H is positive definite, we can get to the

solution using a single step, s = —H (k)_1 V fr. However, because of
the constraints, there is no analytic solution for the QCQP. Although
the problem is still straightforward to solve numerically (because it is
a convex problem; see Section 11.4), it requires an iterative solution
approach with multiple factorizations.

Similar to the line search, where we only obtain a sufficiently
good point instead of finding the exact minimum, in the trust-region

Fig. 4.61 Path for the trust-region ap-
proach showing the circular trust re-
gions at each step.

84. Conn et al., Trust Region Methods,
2000.


https://books.google.com/books?vid=ISBN0898714605
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subproblem, we seek an approximate solution to the QCQP. Including
the trust-region constraint allows us to omit the requirement that Fy
be positive definite, which is used in most quasi-Newton methods. We
do not detail approximate solution methods to the QCQP, but there are
various options.””#4%

Figure 4.62 compares the bean function with a local quadratic
model, which is built using information about the point where the
arrow originates. The trust-region step seeks the minimum of the local
quadratic model within the circular trust region. Unlike line search
methods, as the size of the trust region changes, the direction of the
step (the solution to Eq. 4.98) might also change, as shown on the right
panel of Fig. 4.62.

4.5.2 Trust-Region Sizing Strategy

This section presents an algorithm for updating the size of the trust
region at each iteration. The trust region can grow, shrink, or remain the
same, depending on how well the model predicts the actual function
decrease. The metric we use to assess the model is the actual function
decrease divided by the expected decrease:

f() - flx+s)
f(0) = f(s)

The denominator in this definition is the expected decrease, which is
always positive. The numerator is the actual change in the function,
which could be a reduction or an increase. An r value close to unity
means that the model agrees well with the actual function. An r value
larger than 1 is fortuitous and means that the actual decrease was even
greater than expected. A negative value of r means that the function

actually increased at the expected minimum, and therefore the model
is not suitable.

(4.99)

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

84. Conn et al., Trust Region Methods,
2000.

85. Steihaug, The conjugate gradient
method and trust regions in large scale
optimization, 1983.

Fig. 4.62 Quadratic model (gray con-
tours) compared to the actual func-
tion (blue contours), and two differ-
ent different trust region sizes (red
circles). The trust-region step sy finds
the minimum of the quadratic model
while remaining within the trust re-
gion. The steepest-descent direction
p is shown for comparison.
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The trust-region sizing strategy in Alg. 4.9 determines the size of
the trust region at each major iteration k based on the value of r¢. The
parameters in this algorithm are not derived from any theory; instead,
they are empirical. This example uses the basic procedure from Nocedal
and Wright’” with the parameters recommended by Conn et al.**

P\ P=felaitalna ‘AR Trust-region algorithm

Inputs:

X(: Starting point

Ag: Initial size of the trust region
Outputs:

x*: Optimal point

while not converged do
Compute or estimate the Hessian

Solve (approximately) for sy Use Eq. 4.97
Compute 7y Use Eq. 4.99
> Resize trust region
if rr < 0.05 then Poor model
Agy1 = Ar/4 Shrink trust region
s =0 Reject step
elseif r, > 0.9 and ||sg|| = Ay then Good model and step to edge
Aks1 = min(2Ag, Amax) Expand trust region
else Reasonable model and step within trust region
Api1 = Ag Maintain trust region size
end if
Xk+1 = Xk + Sk Update location of trust region
k=k+1 Update iteration count
end while

The initial value of A is usually 1, assuming the problem is already
well scaled. One way to rationalize the trust-region method is that the
quadratic approximation of a nonlinear function is guaranteed to be
reasonable only within a limited region around the current point x.
Thus, we minimize the quadratic function within a region around x
within which we trust the quadratic model.

When our model performs well, we expand the trust region. When it
performs poorly, we shrink the trust region. If we shrink the trust region
sufficiently, our local model will eventually be a good approximation
of the actual function, as dictated by the Taylor series expansion.

We should also set a maximum trust-region size (Amax) to prevent
the trust region from expanding too much. Otherwise, it may take

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

84. Conn et al., Trust Region Methods,
2000.
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too long to reduce the trust region to an acceptable size over other
portions of the design space where a smaller trust region is needed.
The same convergence criteria used in other gradient-based methods

are applicable.* *Conn et al.** provide more detail on
trust-region problems, including trust-
region norms and scaling, approaches to

SNl EEWIR Trust-region method applied to the total potential energy of solving the trust-region subproblem, ex-
tensions to the model, and other impor-
tant practical considerations.

spring system
Minimizing the total potential energy function from Ex. 4.17 using a trust-
region method starting from the same points as before yields the optimization
path shown in Fig. 4.63. The initial trust region size is A = 0.3, and the
maximum allowable is Amax = 1.5.

The first few quadratic approximations do not have a minimum because  Fig. 4.63 Minimizing the total poten-
the function has negative curvature around the starting point, but the trust tial for two-spring system using a

. h 1 hen i ) h to the bowl trust-region method shown at differ-
region prevents steps that are too large. When it gets close enough to the bowl  ..¢ iterations. The local quadratic
containing the minimum, the quadratic approximation has a minimum, and  approximation is overlaid on the func-
the trust-region subproblem yields a minimum within the trust region. In the ﬁ}?n contours ;nfi tlhe trust region is
last few iterations, the quadratic is a good model, and therefore the region 'OV as @ reccurce.

remains large.
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S EMISEWAN Trust-region method applied to the Rosenbrock function

We now test the trust-region method on the Rosenbrock function. The
overall path is similar to the other second-order methods, as shown in Fig. 4.64.
The initial trust region size is A = 1, and the maximum allowable is Amax = 5.
At any given point, the direction of maximum curvature of the quadratic
approximation matches the maximum curvature across the valley and rotates
as we track the bottom of the valley toward the minimum.

4.5.3 Comparison with Line Search Methods

Trust-region methods are typically more strongly dependent on accurate
Hessians than are line search methods. For this reason, they are usually
only effective when exact gradients (or better yet, an exact Hessian)
can be supplied. Many optimization packages require the user to
provide the full Hessian, or at least the gradients, to use a trust-region
approach. Trust-region methods usually require fewer iterations than
quasi-Newton methods with a line search, but each iteration is more
computationally expensive because they require at least one matrix
factorization.

Fig. 4.64 Minimization of the Rosen-
brock function using a trust-region
method.
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Scaling can also be more challenging with trust-region approaches.
Newton’s method is invariant with scaling, but a Euclidean trust-region
constraint implicitly assumes that the function changes in each direction
at a similar rate. Some enhancements try to address this issue through
elliptical trust regions rather than spherical ones.

114 Smooth model discontinuities

Many models are defined in a piecewise manner, resulting in a discontinu-
ous function value, discontinuous derivative, or both. This can happen even if
the underlying physical behavior is continuous, such as fitting experimental
data using a non-smooth interpolation. The solution is to modify the implemen-
tation so that it is continuous while remaining consistent with the physics. If the
physics is truly discontinuous, it might still be advisable to artificially smooth
the function, as long as there is no significant increase in the modeling error.
Even if the smoothed version is highly nonlinear, having a continuous first
derivative helps the derivative computation and gradient-based optimization.
Some techniques are specific to the problem, but we discuss some examples
here.

The absolute value function can often be tolerated as the outermost level of
the optimization. However, if propagated through subsequent functions, it can
introduce numerical issues from rapid changes in the function. One possibility
to smooth this function is to round off the vertex with a quadratic function, as
shown in Fig. 4.65. If we force continuity in the function and the first derivative,
then the equation of a smooth absolute value is

|x| if |x|>Ax
f)=1 22 Ax herwi (4.100)
m + 7 otherwise,

where Ax is a user-adjustable parameter representing the half-width of the
transition.

Piecewise functions are often used in fits to empirical data. Cubic splines
or a sigmoid function can blend the transition between two functions smoothly.
We can also use the same technique to blend discrete steps (where the two
functions are constant values) or implement smooth max or min functions.
For example, a sigmoid can be used to blend two functions (fi(x) and fo(x))

together at a transition point x; using

1
flx) = fAilx) + (fz(X)—fl(x)) (m) , (4.101)
where & is a user-selected parameter that controls how sharply the transition
occurs. The left side of Fig. 4.66 shows an example transitioning x and x2 with
xt =0and h = 50.

Fig. 4.65 Smoothed absolute value
function.

* Another option to smooth the max of
multiple functions is aggregation, which
is detailed in Section 5.7.
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0.2 02
fi(x) filx)
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Sigmoid function Cubic spline

Another approach is to use a cubic spline for the blending. Given a transition
point x; and a half-width Ax, we can compute a cubic spline transition as

filx) if x<x
flx) =1 falx) if x>x (4.102)
c1x3 + 02x2 +c3x +c4 otherwise,

where we define x1 = xy — Ax and x, = x; + Ax, and the coefficients c are found
by solving the following linear system:

x? x% x1 1) |1 f1(x1)
3 2
1
R e = fz,(xZ) . (4.103)
3x7 2x1 1 0f|es fl(xl)
3x§ 2x3 1 0f|cq f,(x2)

This ensures continuity in the function and the first derivative. The right side
of Fig. 4.66 shows the same two functions and transition location, blended with
a cubic spline using a half-width of 0.05.

1llof| Gradient-based optimization can find the global optimum

Gradient-based methods are local search methods. If the design space is
fundamentally multimodal, it may be helpful to augment the gradient-based
search with a global search. The simplest and most common approach is to use
a multistart approach, where we run a gradient-based search multiple times,
starting from different points, as shown in Fig. 4.67. The starting points might
be chosen from engineering intuition, randomly generated points, or sampling
methods, such as Latin hypercube sampling (see Section 10.2.1).

Convergence testing is needed to determine a suitable number of starting
points. If all points converge to the same optimum and the starting points are
well spaced, this suggests that the design space might not be multimodal after
all. By using multiple starting points, we increase the likelihood that we find
the global optimum, or at least that we find a better optimum than would be

Fig. 4.66 Smoothly blending two func-
tions.

Fig. 4.67 A multistart approach with
a gradient-based algorithm finds the
global minimum of the Jones func-
tion. We successfully apply the same
strategy to a discontinuous version
of this function in Ex. 7.9.
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found with a single starting point. One advantage of this approach is that it
can easily be run in parallel.

Another approach is to start with a global search strategy (see Chapter 7).
After a suitable initial exploration, the design(s) given by the global search
become starting points for gradient-based optimization(s). This finds points
that satisfy the optimality conditions, which is typically challenging with a
pure gradient-free approach. It also improves the convergence rate and finds
optima more precisely.

4.6 Summary

Gradient-based optimization is powerful because gradients make it
possible to efficiently navigate n-dimensional space in a series of steps
converging to an optimum. The gradient also determines when the
optimum has been reached, which is when the gradient is zero.

Gradients provide only local information, so an approach that
ensures a function decrease when stepping away from the current point
is required. There are two approaches to ensure this: line search and
trust region. Algorithms based on a line search have two stages: finding
an appropriate search direction and determining how far to step in
that direction. Trust-region algorithms minimize a surrogate function
within a finite region around the current point. The region expands or
contracts, depending on how well the optimization within the previous
iteration went. Gradient-based optimization algorithms based on a line
search are more prevalent than trust-region methods, but trust-region
methods can be effective when second derivatives are available.

There are different options for determining the search direction for
each line search using gradient information. Although the negative
gradient points in the steepest-descent direction, following this direction
is not the best approach because it is prone to oscillations. The conjugate
gradient method dampens these oscillations and thus converges much
faster than steepest descent.

Second-order methods use curvature information, which dramati-
cally improves the rate of convergence. Newton’s method converges
quadratically but requires the Hessian of the function, which can be
prohibitive. Quasi-Newton methods circumvent this requirement by
building an approximation of the inverse of the Hessian based on
changes in the gradients along the optimization path. Quasi-Newton
methods also avoid matrix factorization, requiring matrix-vector multi-
plication instead. Because they are much less costly while achieving
better than linear convergence, quasi-Newton methods are widely
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used. Limited-memory quasi-Newton methods can be used when the
problem is too large to fit in computer memory.

The line search in a given direction does not seek to find a minimum
because this is not usually worthwhile. Instead, it seeks to find a “good
enough” point that sufficiently decreases the function and the slope.
Once such a point is found, we select a new search direction and repeat
the process. Second-order methods provide a guess for the first step
length in the line search that further improves overall convergence.

This chapter provides the building blocks for the gradient-based
constrained optimization covered in the next chapter.
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Problems

4.1 Answer true or false and justify your answer.

a.

0.

Gradient-based optimization requires the function to be
continuous and infinitely differentiable.

. Gradient-based methods perform a local search.

. Gradient-based methods are only effective for problems with

one minimum.

. The dot product of Vf with a unit vector p yields the slope

of the f along the direction of p.

. The Hessian of a unimodal function is positive definite or

positive semidefinite everywhere.

. Each column j of the Hessian quantifies the rate of change

of component j of the gradient vector with respect to all
coordinate directions i.

. If the function curvature at a point is zero in some direction,

that point cannot be a local minimum.

. A globalization strategy in a gradient-based algorithm en-

sures convergence to the global minimum.

. The goal of the line search is to find the minimum along a

given direction.

. For minimization, the line search must always start in a

descent direction.

. The direction in the steepest-descent algorithm for a given

iteration is orthogonal to the direction of the previous itera-
tion.

. Newton’s method is not affected by problem scaling.

. Quasi-Newton methods approximate the function Hessian

by using gradients.

. Newton’s method is a good choice among gradient-based

methods because it uses exact second-order information and
therefore converges well from any starting point.

The trust-region method does not require a line search.

4.2 Consider the function

2 4 -1
f(x1,x2,x3) = x7x2 +4x; — X2x3 + X5,

and answer the following;:
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43

44

4.5

4.6

4.7

a. Find the gradient of this function. Where is the gradient not
defined?

b. Calculate the directional derivative of the function at x4 =
(2,-1,5) in the direction p = [6, -2, 3].

c. Find the Hessian of this function. Is the curvature in the
direction p positive or negative?

d. Write the second-order Taylor series expansion of this func-
tion. Plot the Taylor series function along the p direction
and compare it to the actual function.

Consider the function from Ex. 4.1,
fx1,x2) = x? + 2x1x§ - xg —20x7 . (4.104)

Find the critical points of this function analytically and classify
them. What is the global minimum of this function?

Review Kepler’s wine barrel story from Section 2.2. Approximate
the barrel as a cylinder and find the height and diameter of a
barrel that maximizes its volume for a diagonal measurement of
1m.

Consider the following function:
f= x‘l1 + 3x‘;’ + 3x§ —6x1x2 — 2x> .

Find the critical points analytically and classify them. Where is
the global minimum? Plot the function contours to verify your
results.

Consider a slightly modified version of the function from Prob. 4.5,
where we add a x‘z1 term to get

f:x‘ll+x‘2}+3x:f+3x§—6x1x2—2x2.

Can you find the critical points analytically? Plot the function
contours. Locate the critical points graphically and classify them.

Implement the two line search algorithms from Section 4.3, such
that they work in n dimensions (x and p can be vectors of any
size).

a. As a first test for your code, reproduce the results from the
examples in Section 4.3 and plot the function and iterations
for both algorithms. For the line search that satisfies the
strong Wolfe conditions, reduce the value of i, until you get
an exact line search. How much accuracy can you achieve?
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4.8

4.9

b. Test your code on another easy two-dimensional function,
such as the bean function from Ex. 4.11, starting from differ-
ent points and using different directions (but remember that
you must always provide a valid descent direction; other-
wise, the algorithm might not work!). Does it always find a
suitable point? Exploration: Try different values of u; and p
to analyze their effect on the number of iterations.

c. Apply your line search algorithms to the two-dimensional
Rosenbrock function and then the n-dimensional variant
(see Appendix D.1.2). Again, try different points and search
directions to see how robust the algorithm is, and try to tune
Uz and p.

Consider the one-dimensional function
X
x)=-— .
f) x2+2

Solve this problem using your line search implementations from
Prob. 4.7. Start from xp = 0 and with an initial step of ay =
—kf’(xp), where k = 1.

a. How many function evaluations are required for each of the
algorithms? Plot the points where each algorithm terminates
on top of the function.

b. Try a different initial step of k = 20 from the same starting
point. Did your algorithms work as expected? Explain the
behaviors.

c. Start from xy = 30 with k = 20 and discuss the results.

Program the steepest-descent, conjugate gradient, and BFGS
algorithms from Section 4.4. You must have a thoroughly tested
line search algorithm from the previous exercise first. For the
gradients, differentiate the functions analytically and compute
them exactly. Solve each problem using your implementations
of the various algorithms, as well as off-the-shelf optimization
software for comparison.

a. For your first test problem, reproduce the results from the
examples in Section 4.4.

b. Minimize the two-dimensional Rosenbrock function (see
Appendix D.1.2) using the various algorithms and compare
your results starting from x = (-1,2). Compare the total
number of evaluations. Compare the number of minor
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4.10

4.11

4.12

versus major iterations. Discuss the trends. Exploration: Try
different starting points and tuning parameters (e.g., p and
2 in the line search) and compare the number of major and
minor iterations.

c. Benchmark your algorithms on the n-dimensional variant
of the Rosenbrock function (see Appendix D.1.2). Tryn =3
and n = 4 first, then n = 8,16,32,.... What is the highest
number of dimensions you can solve? How does the number
of function evaluations scale with the number of variables?

d. Optional: Implement L-BFGS and compare it with BFGS.

Implement a trust-region algorithm and apply it to one or more
of the test problems from the previous exercise. Compare the
trust-region results with BFGS and the off-the-shelf software.

Consider the aircraft wing design problem described in Ap-
pendix D.1.6. Program the model and solve the problem using an
optimizer of your choice. Plot the optimization path and conver-
gence histories. Exploration: Change the model to fit an aircraft
of your choice by picking the appropriate parameter values and
solve the same optimization problem.

The brachistochrone problem seeks to find the path that minimizes
travel time between two points for a particle under the force of
gravity.” Solve the discretized version of this problem using
an optimizer of your choice (see Appendix D.1.7 for a detailed
description).

a. Plot the optimal path for the frictionless case with n = 10
and compare it to the exact solution (see Appendix D.1.7).

b. Solve the optimal path with friction and plot the resulting
path. Report the travel time between the two points and
compare it to the frictionless case.

c. Study the effect of increased problem dimensionality. Start
with 4 points and double the dimension each time up to
128 points. Plot and discuss the increase in computational
expense with problem size. Example metrics include the
number of major iterations, function evaluations, and com-
putational time. Hint: When solving the higher-dimensional
cases, start with the solution interpolated from a lower-
dimensional case—this is called a warm start.

*This problem was mentioned in Sec-
tion 2.2 as one of the problems that in-
spired developments in calculus of varia-
tions.



Constrained Gradient-Based Optimization

Engineering design optimization problems are rarely unconstrained. In
this chapter, we explain how to solve constrained problems. The meth-
ods in this chapter build on the gradient-based unconstrained methods
from Chapter 4 and also assume smooth functions. We first introduce
the optimality conditions for a constrained optimization problem and
then focus on three main methods for handling constraints: penalty
methods, sequential quadratic programming (SQP), and interior-point
methods.

Penalty methods are no longer used in constrained gradient-based
optimization because they have been replaced by more effective meth-
ods. Still, the concept of a penalty is useful when thinking about
constraints, partially motivates more sophisticated approaches like
interior-point methods, and is often used with gradient-free optimizers.

SQP and interior-point methods represent the state of the art in
nonlinear constrained optimization. We introduce the basics for these
two optimization methods, but a complete and robust implementation
of these methods requires detailed knowledge of a growing body of
literature that is not covered here.

By the end of this chapter you should be able to:

1. State and understand the optimality conditions for a con-
strained problem.

2. Understand the motivation for and the limitations of
penalty methods.

3. Understand the concepts behind state-of-the-art con-
strained optimization algorithms and use them to solve
real engineering problems.

153
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5.1 Constrained Problem Formulation
We can express a general constrained optimization problem as

minimize f(x)
by varying x; i=1,...,1,
subject to  g;(x) <0 j=1,...,ng (5.1)
hi(x) =0 1=1,...,ny

ﬁiﬁxiﬁfi izl/'-'/nXI

where g(x) is the vector of inequality constraints, h(x) is the vector of
equality constraints, and x and x are lower and upper design variable
bounds (also known as bound constraints). Both objective and constraint
functions can be nonlinear, but they should be C? continuous to be
solved using gradient-based optimization algorithms. The inequality
constraints are expressed as “less than” without loss of generality
because they can always be converted to “greater than” by putting a
negative sign on g. We could also eliminate the equality constraints
h = 0 without loss of generality by replacing it with two inequality con-
straints, i < ¢ and —h < ¢, where ¢ is some small number. In practice,
itis desirable to distinguish between equality and inequality constraints
because of numerical precision and algorithm implementation.

S EIEENE Graphical solution of constrained problem

Consider the following two-variable problem with quadratic objective and
constraint functions:

N 1
minimize f(x1,x2) = x% —=—x1—Xxp—2
X1,%2 2

subjectto  g1(x1,x2) = x% —4x1+x+1<0
1
§2(x1,x2) = Ex%”%_xl -4<0.

We can plot the contours of the objective function and the constraint lines
(g1 = 0and g = 0), as shown in Fig. 5.1. We can see the feasible region defined
by the two constraints. The approximate location of the minimum is evident
by inspection. We can visualize the contours for this problem because the
functions can be evaluated quickly and because it has only two dimensions. If
the functions were more expensive, we would not be able to afford the many
evaluations needed to plot the contours. If the problem had more dimensions,
it would become difficult or impossible to visualize the functions and feasible
space fully.

Fig. 5.1 Graphical solution for con-
strained problem showing contours
of the objective, the two constraint
curves, and the shaded infeasible re-
gion.
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1ilsfeRH Do not mistake constraints for objectives

Practitioners sometimes consider metrics to be objectives when it would be
more appropriate to pose them as constraints. This can lead to a multiobjective
problem, which does not have a single optimum and is costly to solve (more on
this in Chapter 9).

A helpful rule of thumb is to ask yourself if improving that metric indefi-
nitely is desirable or whether there is some threshold after which additional
improvements do not matter. For example, you might state that you want to
maximize the range of an electric car. However, there is probably a threshold
beyond which increasing the range does not improve the car’s desirability (e.g.,
if the range is greater than can be driven in one day). In that case, the range
should be posed as a constraint, and the objective should be another metric,
such as efficiency or profitability.

The constrained problem formulation just described does not dis-
tinguish between nonlinear and linear constraints. It is advantageous
to make this distinction because some algorithms can take advantage
of these differences. However, the methods introduced in this chapter
assume general nonlinear functions.

For unconstrained gradient-based optimization (Chapter 4), we
only require the gradient of the objective, Vf. To solve a constrained
problem, we also require the gradients of all the constraints. Because
the constraints are vectors, their derivatives yield a Jacobian matrix. For
the equality constraints, the Jacobian is defined as

o o
T LR I
]h=$= : : = . , (5.2)
dhy, o dhy, Vh
Jxq Xy,
(npxny)

which is an (n;, X ny) matrix whose rows are the gradients of each
constraint. Similarly, the Jacobian of the inequality constraints is an
(ng X ny) matrix.

1i[s17Al Do not specify design variable bounds as nonlinear constraints

The design variable bounds in the general nonlinear constrained problem
(Eq. 5.1) are expressed as x < x < X, where x is the vector of lower bounds and
X is the vector of upper bounds. Bounds are treated differently in optimization
algorithms, so they should be specified as a bound constraint rather than a
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general nonlinear constraint. Some bounds stem from physical limitations
on the engineering system. If not otherwise limited, the bounds should be
sufficiently wide not to constrain the problem artificially. It is good practice to
check your optimal solution against your design variable bounds to ensure that
you have not artificially constrained the problem.

5.2 Understanding n-Dimensional Space

Understanding the optimality conditions and optimization algorithms
for constrained problems requires basic n-dimensional geometry and
linear algebra concepts. Here, we review the concepts in an informal
way.” We sketch the concepts for two and three dimensions to provide
some geometric intuition but keep in mind that the only way to tackle
n dimensions is through mathematics.

There are several essential linear algebra concepts for constrained
optimization. The span of a set of vectors is the space formed by all the

points that can be obtained by a linear combination of those vectors.

With one vector, this space is a line, with two linearly independent
vectors, this space is a two-dimensional plane (see Fig. 5.2), and so
on. With n linearly independent vectors, we can obtain any point in
n-dimensional space.

au + po

) v 4
— au + po + yw

Because matrices are composed of vectors, we can apply the concept

of span to matrices. Suppose we have a rectangular (m X n) matrix A.

For our purposes, we are interested in considering the m row vectors in
the matrix. The rank of A is the number of linearly independent rows
of A, and it corresponds to the dimension of the space spanned by the
row vectors of A.

The nullspace of a matrix A is the set of all n-dimensional vectors p
such that Ap = 0. This is a subspace of n — v dimensions, where r is
the rank of A. One fundamental theorem of linear algebra is that the
nullspace of a matrix contains all the vectors that are perpendicular to the row
space of that matrix and vice versa. This concept is illustrated in Fig. 5.3

*For a more formal introduction to these
concepts, see Chapter 2 in Boyd and
Vandenberghe.* Strang®” providesa com-
prehensive treatment of linear algebra.

86. Boyd and Vandenberghe, Convex
Optimization, 2004.

87. Strang, Linear Algebra and its Applica-
tions, 2006.

Fig. 5.2 Span of one, two, and three
vectors in three-dimensional space.

p
ap \L a

IR

Fig. 5.3 Nullspace of a (2 X 3) matrix
A of rank 2, where a1 and a; are the
row vectors of A.


https://books.google.com/books?vid=ISBN0521833787
https://books.google.com/books?vid=ISBN0521833787
https://books.google.com/books?vid=ISBN0030105676
https://books.google.com/books?vid=ISBN0030105676
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for n = 3, where r = 2, leaving only one dimension for the nullspace.
Any vector v that is perpendicular to p must be a linear combination of
the rows of A, so it can be expressed as v = aa; + ,Ba[r

A hyperplane is a generalization of a plane in n-dimensional space
and is an essential concept in constrained optimization. In a space of n
dimensions, a hyperplane is a subspace with at most n — 1 dimensions.
In Fig. 5.4, we illustrate hyperplanes in two dimensions (a line) and
three dimensions (a two-dimensional plane); higher dimensions cannot
be visualized, but the mathematical description that follows holds for
any 7.
v

pTo=0 pTo >0

pTv >0
X0

j”’ pTo <0

pTo <0

To define a hyperplane of n — 1 dimensions, we just need a point
contained in the hyperplane (xo) and a vector (v). Then, the hyperplane
is defined as the set of all points x = xp + p such that pTv = 0. That is,
the hyperplane is defined by all vectors that are perpendicular to v. To
define a hyperplane with n — 2 dimensions, we would need two vectors,
and so on. In n dimensions, a hyperplane of n — 1 dimensions divides
the space into two half-spaces: in one of these, pTv > 0, and in the other,
pTv < 0. Each half-space is closed if it includes the hyperplane (pTv = 0)
and open otherwise.

When we have the isosurface of a function f, the function gradient
at a point on the isosurface is locally perpendicular to the isosurface.
The gradient vector defines the tangent hyperplane at that point, which is
the set of points such that pTVf = 0. In two dimensions, the isosurface
reduces to a contour and the tangent reduces to a line, as shown
in Fig. 5.5 (left). In three dimensions, we have a two-dimensional
hyperplane tangent to an isosurface, as shown in Fig. 5.5 (right).

Tangent

v plane jw

Tangent
. line

N\

.

*The subspaces spanned by A, AT, and
their respective nullspaces constitute four
fundamental subspaces, which we elabo-
rate on in Appendix A 4.

Fig. 5.4 Hyperplanes and half-spaces
in two and three dimensions.

Fig. 5.5 The gradient of a function
defines the hyperplane tangent to the
function isosurface.
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The intersection of multiple half-spaces yields a polyhedral cone. A
polyhedral cone is the set of all the points that can be obtained by
the linear combination of a given set of vectors using nonnegative
coefficients. This concept is illustrated in Fig. 5.6 (left) for the two-
dimensional case. In this case, only two vectors are required to define
a cone uniquely. In three dimensions and higher there could be any
number of vectors corresponding to all the possible polyhedral “cross
sections”, as illustrated in Fig. 5.6 (middle and right).

au + o
a,p>0

5.3 Optimality Conditions

The optimality conditions for constrained optimization problems are
not as straightforward as those for unconstrained optimization (Sec-
tion 4.1.4). We begin with equality constraints because the mathematics
and intuition are simpler, then add inequality constraints. As in the
case of unconstrained optimization, the optimality conditions for con-
strained problems are used not only for the termination criteria, but
they are also used as the basis for optimization algorithms.

5.3.1 Equality Constraints

First, we review the optimality conditions for an unconstrained problem,
which we derived in Section 4.1.4. For the unconstrained case, we can
take a first-order Taylor series expansion of the objective function with
some step p that is small enough that the second-order term is negligible
and write

fe+p)~ f)+Vf@x)Tp. (5.3)

If x* is a minimum point, then every point in a small neighborhood
must have a greater value,

[ +p) = f(x). (5.4)

Given the Taylor series expansion (Eq. 5.3), the only way that this
inequality can be satisfied is if

Vi(x)Tp =0. (5.5)

Fig. 5.6 Polyhedral cones in two and
three dimensions.
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The condition VfTp = 0 defines a hyperplane that contains the
directions along which the first-order variation of the function is zero.
This hyperplane divides the space into an open half-space of directions
where the function decreases (VfTp < 0) and an open half-space where
the function increases (VfTp > 0), as shown in Fig. 5.7. Again, we are
considering first-order variations.

If the problem were unconstrained, the only way to satisfy the
inequality in Eq. 5.5 would be if Vf(x*) = 0. That is because for any
nonzero Vf, there is an open half-space of directions that result in a
function decrease (see Fig. 5.7). This is consistent with the first-order
unconstrained optimality conditions derived in Section 4.1.4.

However, we now have a constrained problem. The function increase
condition (Eq. 5.5) still applies, but p must also be a feasible direction.
To find the feasible directions, we can write a first-order Taylor series
expansion for each equality constraint function as

hi(x +p) = hij(x) +Vhi(x)Tp, j=1,...,1. (5.6)

Again, the step size is assumed to be small enough so that the higher-
order terms are negligible.

Assuming that x is a feasible point, then 1;(x) = 0 for all constraints
j, and we are left with the second term in the linearized constraint
(Eq. 5.6). To remain feasible a small step away from x, we require that
hj(x + p) = 0 for all j. Therefore, first-order feasibility requires that

Vhi(x)Tp =0, forall j=1,...,np, (5.7)

which means that a direction is feasible when it is orthogonal to all equality
constraint gradients. We can write this in matrix form as

Ju(x)p =0. (5.8)

This equation states that any feasible direction has to lie in the nullspace
of the Jacobian of the constraints, Jj,.

Assuming that Jj, has full row rank (i.e., the constraint gradients are
linearly independent), then the feasible space is a subspace of dimension
ny —ny. For optimization to be possible, we require 1, > ny,. Figure 5.8
illustrates a case where 1, = n;, = 2, where the feasible space reduces
to a single point, and there is no freedom for performing optimization.

For one constraint, Eq. 5.8 reduces to a dot product, and the feasible
space corresponds to a tangent hyperplane, as illustrated on the left side
of Fig. 5.9 for the three-dimensional case. For two or more constraints,
the feasible space corresponds to the intersection of all the tangent
hyperplanes. On the right side of Fig. 5.9, we show the intersection of
two tangent hyperplanes in three-dimensional space (a line).

VfTp <0 \
/ < \ \\ \ A\
Half-space of
function decrease

Fig. 5.7 The gradient f(x), which is
the direction of steepest function in-
crease, splits the design space into
two halves. Here we highlight the
open half-space of directions that re-
sult in function decrease.

Feasible point

vllz

L} k /Z\:l)

Fig. 5.8 If we have two equality con-
straints (n;, = 2) in two-dimensional
space (ny = 2), we are left with no
freedom for optimization.
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For constrained optimality, we need to satisfy both Vf(x*)Tp > 0
(Eq. 5.5) and Ji(x)p = 0 (Eq. 5.8). For equality constraints, if a direction
p is feasible, then —p must also be feasible. Therefore, the only way to
satisfy Vf(x*)Tp > 0isif Vf(x)Tp = 0.

In sum, for x* to be a constrained optimum, we require

Vi(x")Tp =0 forall p such that J,(x*)p=0. (5.9)

In other words, the projection of the objective function gradient onto the
feasible space must vanish. Figure 5.10 illustrates this requirement for a
case with two constraints in three dimensions.

The constrained optimum conditions (Eq. 5.9) require that Vf be
orthogonal to the nullspace of ], (since p, as defined, is the nullspace
of Ji,). The row space of a matrix contains all the vectors that are
orthogonal to its nullspace.* Because the rows of |, are the gradients of
the constraints, the objective function gradient must be a linear combination
of the gradients of the constraints. Thus, we can write the requirements
defined in Eq. 5.9 as a single vector equation,

1p

Vi(x') = —ZAthj(x*), (5.10)
j=1

where A; are called the Lagrange multipliers." There is a multiplier
associated with each constraint. The sign of the Lagrange multipliers
is arbitrary for equality constraints but will be significant later when
dealing with inequality constraints.

Fig. 5.9 Feasible spaces in three di-
mensions for one and two constraints.

Fig. 5.10 If the projection of Vf onto
the feasible space is nonzero, there is
a feasible descent direction (left); if
the projection is zero, the point is a
constrained optimum (right).

*Recall the fundamental theorem of linear
algebra illustrated in Fig. 5.3 and the four
subspaces reviewed in Appendix A 4.

*Despite our convention of reserving
Greek symbols for scalars, we use A to
represent the n-vector of Lagrange mul-
tipliers because it is common usage.
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Therefore, the first-order optimality conditions for the equality
constrained case are
V(") = =Jn(x)TA

hx)=0, (5.11)

where we have reexpressed Eq. 5.10 in matrix form and added the
constraint satisfaction condition.

In constrained optimization, it is sometimes convenient to use the
Lagrangian function, which is a scalar function defined as

L(x,A) = f(x)+h(x)TA. (5.12)

In this function, the Lagrange multipliers are considered to be indepen-
dent variables. Taking the gradient of £ with respect to both x and A
and setting them to zero yields

VoL = Vf(x)+h(x)TA =0

(5.13)
VaL =h(x)=0,

which are the first-order conditions derived in Eq. 5.11.

With the Lagrangian function, we have transformed a constrained
problem into an unconstrained problem by adding new variables,
A. A constrained problem of n, design variables and n;, equality
constraints was transformed into an unconstrained problem with 1, +ny,
variables. Although you might be tempted to simply use the algorithms
of Chapter 4 to minimize the Lagrangian function (Eq. 5.12), some
modifications are needed in the algorithms to solve these problems
effectively (particularly once inequality constraints are introduced).

The derivation of the first-order optimality conditions (Eq. 5.11)
assumes that the gradients of the constraints are linearly independent;
that is, J; has full row rank. A point satisfying this condition is
called a regular point and is said to satisfy linear independence constraint
qualification. Figure 5.11 illustrates a case where the x* is not a regular
point. A special case that does not satisfy constraint qualification is
when one (or more) constraint gradient is zero. In that case, that
constraint is not linearly independent, and the point is not regular.
Fortunately, these situations are uncommon.

The optimality conditions just described are first-order conditions
that are necessary but not sufficient. To make sure that a point is a
constrained minimum, we also need to satisfy second-order conditions.
For the unconstrained case, the Hessian of the objective function has
to be positive definite. In the constrained case, we need to check the
Hessian of the Lagrangian with respect to the design variables in the

Fig. 5.11 The constraint qualification
condition does not hold in this case
because the gradients of the two con-
straints not linearly independent.
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space of feasible directions. The Lagrangian Hessian is

np
Hy = Hy + Z AHy,, (5.14)
j=1

where Hy is the Hessian of the objective, and H ny 18 the Hessian of
equality constraint j. The second-order sufficient conditions are as
follows:

pTHep >0 forall p such that J,p =0. (5.15)

This ensures that the curvature of the Lagrangian is positive when
projected onto any feasible direction.

S EIIEEIPA Equality constrained problem

Consider the following constrained problem featuring a linear objective
function and a quadratic equality constraint:

minimize f(x1,x2) = x1 +2x2
xX1,%2

1
subjectto  h(x1,xp) = Zx% + x% -1=0.

The Lagrangian for this problem is

L(x1,x0,A) = x1 +2x2 + A (ix% +x3 - 1) i

Differentiating this to get the first-order optimality conditions,

L 1
a—x1—1+§AX1—O
9L 5 iohy =0

(9x2

§—4x1+x2 1=0.

Solving these three equations for the three unknowns (x1, x2, A), we obtain two
possible solutions:

w2 e
2
xp = [2] = I\g Ap=-V2.

These two points are shown in Fig. 5.12, together with the objective and
constraint gradients. The optimality conditions (Eq. 5.11) state that the gradient
must be a linear combination of the gradients of the constraints at the optimum.
In the case of one constraint, this means that the two gradients are colinear
(which occurs in this example).
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To determine if either of these points is a minimum, we check the second-
order conditions by evaluating the Hessian of the Lagrangian,

1
A0
_1|2
He [o 2)\]'

The Hessian is only positive definite for the case where 14 = V2, and therefore
x4 is a minimum. Although the Hessian only needs to be positive definite in
the feasible directions, in this case, we can show that it is positive or negative
definite in all possible directions. The Hessian is negative definite for xp, so
this is not a minimum,; instead, it is a maximum.

Figure 5.13 shows the Lagrangian function (with the optimal Lagrange
multiplier we solved for) overlaid on top of the original function and constraint.
The unconstrained minimum of the Lagrangian corresponds to the constrained
minimum of the original function. The Lagrange multiplier can be visualized
as a third dimension coming out of the page. Here we show only the slice for
the Lagrange multiplier that solves the optimality conditions.

€Nl BEFEN Second-order conditions for constrained case

Consider the following problem:
minimize f(x1,x2) = x% +3(xp — 2)2
x1,%2
subjectto  h(x1,x2) = ﬁx% —-x2=0,

where 8 is a parameter that we will vary to change the characteristics of the
constraint.
The Lagrangian for this problem is

L(x1,x2,A) = x% +3(xp =22+ 41 (,Bx% - xz) .

Fig. 5.12 Two points satisfy the first-
order optimality conditions; one is a
constrained minimum, and the other
is a constrained maximum.

Fig. 5.13 The minimum of the La-
grangian function with the optimum
Lagrange multiplier value (A = V2)
is the constrained minimum of the
original problem.
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Differentiating for the first-order optimality conditions, we get

_[2ma+ap]

Solving these three equations for the three unknowns (x1, x2, A), the solution is
[x1,x2,A] = [0,0,-12], which is independent of g.

To determine if this is a minimum, we must check the second-order
conditions by evaluating the Hessian of the Lagrangian,

[20-128) 0
Hy = [ ; 6] |
We only need H s to be positive definite in the feasible directions. The feasible
directions are all p such that ];1" p = 0. In this case, J;, = [2fx1,—1], yielding
Ju(x*) = [0,-1]. Therefore, the feasible directions at the solution can be
represented as p = [«, 0], where a is any real number. For positive curvature
in the feasible directions, we require that

pTHyp =2a%(1-128) > 0.

Thus, the second-order sufficient condition requires that g < 1/12.%

We plot the constraint and the Lagrangian for three different values of
B in Fig. 5.14. The location of the point satisfying the first-order optimality
conditions is the same for all three cases, but the curvature of the constraint
changes the Lagrangian significantly.

X2 X2

For p = —0.5, the Hessian of the Lagrangian is positive definite, and we
have a minimum. For = 0.5, the Lagrangian has negative curvature in the
feasible directions, so the point is not a minimum; we can reduce the objective
by moving along the curved constraint. The first-order conditions alone do
not capture this possibility because they linearize the constraint. Finally, in the
limiting case (8 = 1/12), the curvature of the constraint matches the curvature
of the objective, and the curvature of the Lagrangian is zero in the feasible
directions. This point is not a minimum either.

#This happens to be the same condition
for a positive-definite H ¢ in this case, but
this does not happen in general.

Fig. 5.14 Three different problems il-
lustrating the meaning of the second-
order conditions for constrained
problems.
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5.3.2 Inequality Constraints

We can reuse some of the concepts from the equality constrained
optimality conditions for inequality constrained problems. Recall that
an inequality constraint j is feasible when g;(x*) < 0 and it is said to be
active if ¢;(x*) = 0 and inactive if g;(x*) < 0.

As before, if x* is an optimum, any small enough feasible step p
from the optimum must result in a function increase. Based on the
Taylor series expansion (Eq. 5.3), we get the condition

VF)Tp 20, (5.16)

which is the same as for the equality constrained case. We use the
arc in Fig. 5.15 to show the descent directions, which are in the open
half-space defined by the hyperplane tangent to the gradient of the
objective.

To consider inequality constraints, we use the same linearization as
the equality constraints (Eq. 5.6), but now we enforce an inequality to

get
gi(x +p) = gj(x)+Vgi(x)Tp <0, j=1,...,ng. (5.17)

For a given candidate point that satisfies all constraints, there are
two possibilities to consider for each inequality constraint: whether
the constraint is inactive (g;(x) < 0) or active (g;(x) = 0). If a given
constraint is inactive, we do not need to add any condition for it because
we can take a step p in any direction and remain feasible as long as
the step is small enough. Thus, we only need to consider the active
constraints for the optimality conditions.

For the equality constraint, we found that all first-order feasible
directions are in the nullspace of the Jacobian matrix. Inequality
constraints are not as restrictive. From Eq. 5.17, if constraint j is
active (gj(x) = 0), then the nearby point g;(x + p) is only feasible if
Vgi(x)Tp < 0 for all constraints j that are active. In matrix form, we can
write Jo(x)p < 0, where the Jacobian matrix includes only the gradients
of the active constraints. Thus, the feasible directions for inequality
constraint j can be any direction in the closed half-space, corresponding
to all directions p such that pTg; < 0, as shown in Fig. 5.16. In this
figure, the arc shows the infeasible directions.

The set of feasible directions that satisfies all active constraints is
the intersection of all the closed half-spaces defined by the inequality
constraints, that is, all p such that J¢(x)p < 0. This intersection of the
feasible directions forms a polyhedral cone, as illustrated in Fig. 5.17
for a two-dimensional case with two constraints. To find the cone of

Vftp <0
Descent directions

Fig. 5.15 The descent directions are
in the open half-space defined by the
objective function gradient.

VgTp >0
Infeasible
directions Vg

.
Feasible
directions

Fig. 5.16 The feasible directions for
each constraint are in the closed half-
space defined by the inequality con-
straint gradient.

]: g,0>0
directions

Feasible
directions

Fig. 5.17 Excluding the infeasible di-
rections with respect to each con-
straint (red arcs) leaves the cone of
feasible directions (blue), which is
the polar cone of the active constraint
gradients cone (gray).



5 CoNSTRAINED GRADIENT-BASED OPTIMIZATION 166

feasible directions, let us first consider the cone formed by the active
inequality constraint gradients (shown in gray in Fig. 5.17). This cone
is defined by all vectors d such that

g
d=]o=) 0V, where 0;>0. (5.18)

=1

A direction p is feasible if pTd < 0 for all 4 in the cone. The set of all
feasible directions forms the polar cone of the cone defined by Eq. 5.18
and is shown in blue in Fig. 5.17.

Now that we have established some intuition about the feasible
directions, we need to establish under which conditions there is no
feasible descent direction (i.e., we have reached an optimum). In other
words, when is there no intersection between the cone of feasible
directions and the open half-space of descent directions? To answer
this question, we can use Farkas’ lemma. This lemma states that given
a rectangular matrix (J, in our case) and a vector with the same size
as the rows of the matrix (Vf in our case), one (and only one) of two
possibilities occurs:$

1. There exists a p such that J;p < 0and VfTp < 0. This means that
there is a descent direction that is feasible (Fig. 5.18, left).

2. There exists a o such that Jjo = -Vf with ¢ > 0 (Fig. 5.18,
right). This corresponds to optimality because it excludes the first
possibility.

,
%)

JTo,0>0 V&

directions

/
/Feasible V.f

descent
/ directions Vf
1. Feasible descent direction ex- 2. No feasible descent di-
ists, so point is not an optimum rection exists, so point is an

optimum

The second possibility yields the following optimality criterion for
inequality constraints:

Vf+J,(x)To=0, with ¢2>0. (5.19)

SFarkas’ lemma has other applications be-
yond optimization and can be written in
various equivalent forms. Using the state-

ment by Dax,®® we set A = ]g, X =-p,
c=-Vf,andy =o0.

88. Dax, Classroom note: An elementary
proof of Farkas’ lemma, 1997.

Fig. 5.18 Two possibilities involving
active inequality constraints.


https://dx.doi.org/10.1137/S0036144594295502
https://dx.doi.org/10.1137/S0036144594295502

5 CoNSTRAINED GRADIENT-BASED OPTIMIZATION 167

Comparing with the corresponding criteria for equality constraints
(Eq. 5.13), we see a similar form. However, o corresponds to the
Lagrange multipliers for the inequality constraints and carries the
additional restriction that o > 0.

If equality constraints are present, the conditions for the inequality
constraints apply only in the subspace of the directions feasible with
respect to the equality constraints.

Similar to the equality constrained case, we can construct a La-
grangian function whose stationary points are candidates for optimal
points. We need to include all inequality constraints in the optimality
conditions because we do not know in advance which constraints are
active. To represent inequality constraints in the Lagrangian, we replace
them with the equality constraints defined by

gi+si=0, j=1,...,ng, (5.20)

where s; is a new unknown associated with each inequality constraint
called a slack variable. The slack variable is squared to ensure it is
nonnegative In that way, Eq. 5.20 can only be satisfied when g; is
feasible (g; < 0). The significance of the slack variable is that when
sj = 0, the corresponding inequality constraint is active (g; = 0), and
when s; # 0, the corresponding constraint is inactive.

The Lagrangian including both equality and inequality constraints
is then

L(x,A,0,8)=f(x)+ ATh(x) + 07 (g(x) +5 ©s) , (5.21)

where o represents the Lagrange multipliers associated with the in-
equality constraints. Here, we use O to represent the element-wise
multiplication of s.1

Similar to the equality constrained case, we seek a stationary point for
the Lagrangian, but now we have additional unknowns: the inequality
Lagrange multipliers and the slack variables. Taking partial derivatives
of the Lagrangian with respect to each set of unknowns and setting
those derivatives to zero yields the first-order optimality conditions:

1p

_ IL _ of o 9
Vx.L—O = &_Jci_a_jci+;Ala_)Ci+ZO]8_9(fi_O

j=1
i=1,...,nc. (522)

This criterion is the same as before but with additional Lagrange
multipliers and constraints. Taking the derivatives with respect to the

IThis is a special case of the Hadamard
product of two matrices.
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equality Lagrange multipliers, we have

dL

VaL = — =h= I=1,... 2
2 L=0 o, = 0, Y (5.23)
which enforces the equality constraints as before. Taking derivatives
with respect to the inequality Lagrange multipliers, we get

oL 2

VG.E:O Y ——g]-'rS:O j:1,...,1’1g, (524:)
aO’]‘

]
which enforces the inequality constraints. Finally, differentiating the
Lagrangian with respect to the slack variables, we obtain

a—L=2ajs]~=o, j=1,...,ng, (5.25)
aS]‘

Vo.L=0 =
which is called the complementary slackness condition. This condition
helps us to distinguish the active constraints from the inactive ones.
For each inequality constraint, either the Lagrange multiplier is zero
(which means that the constraint is inactive), or the slack variable
is zero (which means that the constraint is active). Unfortunately,
the complementary slackness condition introduces a combinatorial
problem. The complexity of this problem grows exponentially with
the number of inequality constraints because the number of possible
combinations of active versus inactive constraints is 2.

In addition to the conditions for a stationary point of the Lagrangian
(Egs. 5.22 to 5.25), recall that we require the Lagrange multipliers for
the active constraints to be nonnegative. Putting all these conditions to-
gether in matrix form, the first-order constrained optimality conditions
are as follows:

Vf+JiA+]30=0

h=0

g+50s=0 (5.26)
00s=0
020

These are called the Karush—Kuhn—Tucker (KKT) conditions. The equality
and inequality constraints are sometimes lumped together using a single
Jacobian matrix (and single Lagrange multiplier vector). This can be
convenient because the expression for the Lagrangian follows the same
form for both cases.

As in the equality constrained case, these first-order conditions are
necessary but not sufficient. The second-order sufficient conditions
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require that the Hessian of the Lagrangian must be positive definite in
all feasible directions, that is,

pTHzp >0 for all p such that:
Jup =0 (5.27)

Jep <0 for the active constraints.

In other words, we only require positive definiteness in the intersection
of the nullspace of the equality constraint Jacobian with the feasibility
cone of the active inequality constraints.

Similar to the equality constrained case, the KKT conditions (Eq. 5.26)
only apply when a point is regular, that is, when it satisfies linear inde-
pendence constraint qualification. However, the linear independence
applies only to the gradients of the inequality constraints that are active
and the equality constraint gradients.

Suppose we have the two constraints shown in the left pane of
Fig. 5.19. For the given objective function contours, point x* is a
minimum. At x*, the gradients of the two constraints are linearly
independent, and x* is thus a regular point. Therefore, we can apply
the KKT conditions at this point.

X" is regular x* is not regular

The middle and right panes of Fig. 5.19 illustrate cases where x*
is also a constrained minimum. However, x* is not a regular point in
either case because the gradients of the two constraints are not linearly
independent. This means that the gradient of the objective cannot be
expressed as a unique linear combination of the constraints. Therefore,
we cannot use the KKT conditions, even though x* is a minimum.
The problem would be ill-conditioned, and the numerical methods
described in this chapter would run into numerical difficulties. Similar
to the equality constrained case, this situation is uncommon in practice.

x* is not regular

Fig. 5.19 The KKT conditions apply
only to regular points. A point x*
is regular when the gradients of the
constraints are linearly independent.
The middle and right panes illustrate
cases where x” is a constrained mini-
mum but not a regular point.



5 CoNSTRAINED GRADIENT-BASED OPTIMIZATION 170

DEAESY Problem with one inequality constraint

Consider a variation of the problem in Ex. 5.2 where the equality is replaced
by an inequality, as follows:

minimize f(x1,x2) = x1 +2x7
x1,%2

1
subjectto  g(x1,x2) = Zx% + x% -1<0.

The Lagrangian for this problem is
1o, 2 2
L(x1,x2,0,8)=x1+2x2+0 Zx1+x2—1+s .

The objective function and feasible region are shown in Fig. 5.20.

Fig. 5.20 Inequality constrained prob-
lem with linear objective and feasible
space within an ellipse.

Differentiating the Lagrangian with respect to all the variables, we get the
first-order optimality conditions

L 1
8_)(1_1+§GX1_0
a—£=2+20)Q=0
aJQ

0L _ 1 5 2 . _
%—4x1+x2 1=0
2L

7= 245 =0.

s 0s=0

There are two possibilities in the last (complementary slackness) condition:
s = 0 (meaning the constraint is active) and ¢ = 0 (meaning the constraint is
not active). However, we can see that setting 0 = 0 in either of the two first
equations does not yield a solution. Assuming thats = 0 and ¢ # 0, we can
solve the equations to obtain:

X1 —\/E X1 \/E
xq = x| = [-V2/2|, xp=|x2|=[V2/2
o V2 o -2
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These are the same critical points as in the equality constrained case of Ex. 5.2,
as shown in Fig. 5.20. However, now the sign of the Lagrange multiplier is
significant.

According to the KKT conditions, the Lagrange multiplier has to be nonneg-
ative. Point x 4 satisfies this condition. As a result, there is no feasible descent
direction at x 4, as shown in Fig. 5.21 (left). The Hessian of the Lagrangian at
this point is the same as in Ex. 5.2, which we have already shown to be positive
definite. Therefore, x 4 is a minimum.

Vf Infeasible
directions

Fig. 5.21 At the minimum (left), the
Lagrange multiplier is positive, and
there is no feasible descent direction.
At the critical point xp (right), the
Feasible Lagrange multiplier is negative, and
descent all descent directions are feasible, so
Infeasible directions this point is not a minimum.

Vg directions

s

Descent
directions

Unlike the equality constrained problem, we do not need to check the Hes-
sian at point xp because the Lagrange multiplier is negative. As a consequence,
there are feasible descent directions, as shown in Fig. 5.21 (right). Therefore,
xpg is not a minimum.

IS EYlI RSN Simple problem with two inequality constraints

Consider a variation of Ex. 5.4 where we add one more inequality constraint,

as follows:
minimize f(x1, x2) = x1 +2x7
X1,X2

1
subjectto  g1(x1,x2) = Zx% + x% -1<0

82(x2) = —x2 <0.
The feasible region is the top half of the ellipse, as shown in Fig. 5.22.
The Lagrangian for this problem is

1
L(x,0,8) = x1+2x0 + 01 ZIx%+x§—1+s%) + 09 (—x2+s§) )

Differentiating the Lagrangian with respect to all the variables, we get the
first-order optimality conditions,

L 1
a—xl—1+50‘1X]—0
B—L=2+201X2—02=0
axZ

oL 1.,

2 2
— =-x7+x5—-1+s7=0
do; 471 2 1
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9L
9y
oL
ds1
9L
957

:—x2+s% =0
=20151 =0
=20’252=0.
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We now have two complementary slackness conditions, which yield the four
potential combinations listed in Table 5.1.

Assumption Meaning X1 X2 01 o2 51 S2 Point
s1=0 g1 is active -2 0 1 2 0 0 x*
sp =0 g2 is active 2 0 -1 2 0 0 xc
01=0 g1 isinactive _ 3 3 _ 3
g =0 g2 is inactive
51=0 g1 is active N _1
.. . 2 X 42 0 0 1 X
02 =0 g7 is inactive V2 2 V2 2 B
01=0 g1 is inactive
sp =0 g2 is active
X2
x1
Infeasible vf Feasible v
Ny f*jl. ) clicscgnt Infeasible
directions directions
~ 81
e directions
Ve o/ x |/ xc
\ 7
) Infeasible
Infeasible o
V& 2 ot Vg

directions

directions

Table 5.1 Two inequality constraints
yield four potential combinations.

Fig. 5.22 Only one point satisfies the
first-order KKT conditions.

Fig. 5.23 At the minimum (left), the
intersection of the feasible directions
and descent directions is null, so
there is no feasible descent direction.
At this point, there is a cone of de-
scent directions that is also feasible,
so it is not a minimum.
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Assuming that both constraints are active yields two possible solutions (x*
and x¢) corresponding to two different Lagrange multipliers. According to the
KKT conditions, the Lagrange multipliers for all active inequality constraints
have to be positive, so only the solution with o1 = 1 (x*) is a candidate for a
minimum. This point corresponds to x* in Fig. 5.22. As shown in Fig. 5.23 (left),
there are no feasible descent directions starting from x*. The Hessian of the
Lagrangian at x* is identical to the previous example and is positive definite
when o7 is positive. Therefore, x* is a minimum.

The other solution for which both constraints are active is point x¢ in
Fig. 5.22. As shown in Fig. 5.23 (right), there is a cone of feasible descent
directions, and therefore x( is not a minimum.

Assuming that neither constraint is active yields 1 = 0 for the first optimality
condition, so this situation is not possible. Assuming that g7 is active yields
the solution corresponding to the maximum that we already found in Ex. 5.4,
xp. Finally, assuming that only g is active yields no candidate point.

Although these examples can be solved analytically, they are the
exception rather than the rule. The KKT conditions quickly become
challenging to solve analytically (try solving Ex. 5.1), and as the number
of constraints increases, trying all combinations of active and inactive
constraints becomes intractable. Furthermore, engineering problems
usually involve functions defined by models with implicit equations,
which are impossible to solve analytically. The reason we include
these analytic examples is to gain a better understanding of the KKT
conditions. For the rest of the chapter, we focus on numerical methods,
which are necessary for the vast majority of practical problems.

5.3.3 Meaning of the Lagrange Multipliers

The Lagrange multipliers quantify how much the corresponding con-
straints drive the design. More specifically, a Lagrange multiplier
quantifies the sensitivity of the optimal objective function value f(x")
to a variation in the value of the corresponding constraint. Here we
explain why that is the case. We discuss only inequality constraints,
but the same analysis applies to equality constraints.

When a constraint is inactive, the corresponding Lagrange multiplier
is zero. This indicates that changing the value of an inactive constraint
does not affect the optimum, as expected. This is only valid to the
first order because the KKT conditions are based on the linearization
of the objective and constraint functions. Because small changes are
assumed in the linearization, we do not consider the case where an
inactive constraint becomes active after perturbation.
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Now let us examine the active constraints. Suppose that we want to
quantify the effect of a change in an active (or equality) constraint g; on
the optimal objective function value.! The differential of g; is given by
the following dot product:

dgi = % dx
For all the other constraints j that remain unperturbed, which means
that

(5.28)

98 L
gdx—o forall j#i.

This equation states that any movement dx must be in the nullspace
of the remaining constraints to remain feasible with respect to those
constraints.** An example with two constraints is illustrated in Fig. 5.24,
where g1 is perturbed and g, remains fixed. The objective and constraint
functions are linearized because we are considering first-order changes
represented by the differentials.
From the KKT conditions (Eq. 5.22), we know that at the optimum,
o a8
dx dx
Using this condition, we can write the differential of the objective,
df = (df/dx)dx, as

(5.29)

(5.30)

P
df = —aTﬁ dx. (5.31)

According to Egs. 5.28 and 5.29, the product with dx is only nonzero
for the perturbed constraint i and therefore,
e
df = —O'ia;f; dx = —0j dgi.

This leads to the derivative of the optimal f with respect to a change in
the value of constraint i:

(5.32)

df
=

0; = (5.33)

Thus, the Lagrange multipliers can predict how much improvement
can be expected if a given constraint is relaxed. For inequality con-
straints, because the Lagrange multipliers are positive at an optimum,
this equation correctly predicts a decrease in the objective function
value when the constraint value is increased.

The derivative defined in Eq. 5.33 has practical value because it tells
us how much a given constraint drives the design. In this interpretation
of the Lagrange multipliers, we need to consider the scaling of the
problem and the units. Still, for similar quantities, they quantify the
relative importance of the constraints.

IAs an example, we could change the
value of the allowable stress constraint
in the structural optimization problem of
Ex.3.9.

**This condition is similar to Eq. 5.7, but
here we apply it to all equality and active
constraints except for constraint i.

981

ox
N~ \
X+ d;\

/’)533

‘ ox

Fig. 5.24 Lagrange multipliers can be
interpreted as the change in the op-
timal objective due a perturbation in
the corresponding constraint. In this
case, we show the effect of perturbing

81.
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5.3.4 Post-Optimality Sensitivities

It is sometimes helpful to find sensitivities of the optimal objective func-
tion value with respect to a parameter held fixed during optimization.
Suppose that we have found the optimum for a constrained problem.
Say we have a scalar parameter p held fixed in the optimization, but
now want to quantify the effect of a perturbation in that parameter on
the optimal objective value. Perturbing p changes the objective and
the constraint functions, so the optimum point moves, as illustrated in
Fig. 5.25. For our current purposes, we use g to represent either active
inequality or equality constraints. We assume that the set of active
constraints does not change with a perturbation in p like we did when
perturbing the constraint in Section 5.3.3.

The objective function is affected by p through a change in f itself and
a change induced by the movement of the constraints. This dependence
can be written in the total differential form as:

af df dg

(5.34)
The derivative df /dg corresponds to the derivative of the optimal value
of the objective with respect to a perturbation in the constraint, which
according to Eq. 5.33, is the negative of the Lagrange multipliers. This
means that the post-optimality derivative is

df_af Tag

—====0"==, 5.35
do "9 7 9p (39
where the partial derivatives with respect to p can be computed without
re-optimizing.

5.4 Penalty Methods

The concept behind penalty methods is intuitive: to transform a con-
strained problem into an unconstrained one by adding a penalty to
the objective function when constraints are violated or close to being
violated. As mentioned in the introduction to this chapter, penalty
methods are no longer used directly in gradient-based optimization
algorithms because they have difficulty converging to the true solu-
tion. However, these methods are still valuable because (1) they are
simple and thus ease the transition into understanding constrained
optimization; (2) they are useful in some constrained gradient-free
methods (Chapter 7); (3) they can be used as merit functions in line
search algorithms, as discussed in Section 5.5.3; (4) penalty concepts

red

X

Fig. 5.25 Post-optimality sensitivities
quantify the change in the optimal
objective due to a perturbation of a
parameter that was originally fixed
in the optimization. The optimal ob-
jective value changes due to changes
in the optimum point (which moves
to x},) and objective function (which
becomes fp.)
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are used in interior points methods, as discussed in Section 5.6. The
penalized function can be written as

Fx) = f(x) + un(x), (5.36)

where 71(x) is a penalty function, and the scalar y is a penalty parameter.
This is similar in form to the Lagrangian, but one difference is that u is
fixed instead of being a variable.

We can use the unconstrained optimization techniques to minimize
f (x). However, instead of just solving a single optimization problem,
penalty methods usually solve a sequence of problems with different
values of i to get closer to the actual constrained minimum. We will
see shortly why we need to solve a sequence of problems rather than
just one problem.

Various forms for m(x) can be used, leading to different penalty
methods. There are two main types of penalty functions: exterior
penalties, which impose a penalty only when constraints are violated,
and interior penalty functions, which impose a penalty that increases as
a constraint is approached.

Figure 5.26 shows both interior and exterior penalties for a two-
dimensional function. The exterior penalty leads to slightly infeasible
solutions, whereas an interior penalty leads to a feasible solution but
underpredicts the objective.

5.4.1 Exterior Penalty Methods

Of the many possible exterior penalty methods, we focus on two of
the most popular ones: quadratic penalties and the augmented La-
grangian method. Quadratic penalties are continuously differentiable
and straightforward to implement, but they suffer from numerical
ill-conditioning. The augmented Lagrangian method is more sophisti-
cated; it is based on the quadratic penalty but adds terms that improve
the numerical properties. Many other penalties are possible, such as
1-norms, which are often used when continuous differentiability is
unnecessary.

Quadratic Penalty Method

For equality constrained problems, the quadratic penalty method takes
the form

Flsw = f)+ g Z hi(x)?, (5.37)

where the semicolon denotes that y is a fixed parameter. The motivation
for a quadratic penalty is that it is simple and results in a function that
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is continuously differentiable. The factor of one half is unnecessary but
is included by convention because it eliminates the extra factor of two
when taking derivatives. The penalty is nonzero unless the constraints
are satisfied (h; = 0), as desired.

fw

*
Xlrue

The value of the penalty parameter u must be chosen carefully.
Mathematically, we recover the exact solution to the constrained prob-
lem only as p tends to infinity (see Fig. 5.27). However, starting with a
large value for u is not practical. This is because the larger the value of

Fig. 5.26 Interior penalties tend to in-
finity as the constraint is approached
from the feasible side of the constraint
(left), whereas exterior penalty func-
tions activate when the points are not
feasible (right). The minimum for
both approaches is different from the
true constrained minimum.

Fig. 5.27 Quadratic penalty for an
equality constrained problem. The
minimum of the penalized function
(black dots) approaches the true con-
strained minimum (blue circle) as the
penalty parameter u increases.
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u, the larger the Hessian condition number, which corresponds to the
curvature varying greatly with direction (see Ex. 4.10). This behavior
makes the problem difficult to solve numerically.

To solve the problem more effectively, we begin with a small value of
u and solve the unconstrained problem. We then increase y and solve
the new unconstrained problem, using the previous solution as the
starting point. We repeat this process until the optimality conditions (or
some other approximate convergence criteria) are satisfied, as outlined
in Alg. 5.1. By gradually increasing 1 and reusing the solution from
the previous problem, we avoid some of the ill-conditioning issues.
Thus, the original constrained problem is transformed into a sequence
of unconstrained optimization problems.

\P(elaial s JCW Exterior penalty method

Inputs:

X(: Starting point

uo > 0: Initial penalty parameter

p> 1: Penalty increase factor (p ~ 1.2 is conservative, p ~ 10 is aggressive)
Outputs:

x*: Optimal point

f(x*): Corresponding function value

k=0
while not converged do

Xy — min}ic?izef(xk;yk)
Uk+1 = PUk Increase penalty
Xk+1 = xz Update starting point for next optimization
k=k+1

end while

There are three potential issues with the approach outlined in
Alg. 5.1. Suppose the starting value for u is too low. In that case, the
penalty might not be enough to overcome a function that is unbounded
from below, and the penalized function has no minimum.

The second issue is that we cannot practically approach u — oo.
Hence, the solution to the problem is always slightly infeasible. By
comparing the optimality condition of the constrained problem,

ViL=Vf+]IA=0, (5.38)
and the optimality conditional of the penalized function,

Vif =Vf+uTh=0, (5.39)
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we see that for each constraint j,

(5.40)

Because hi; = 0 at the optimum, y must be large to satisfy the constraints.

The third issue has to do with the curvature of the penalized function,
which is directly proportional to u. The extra curvature is added in a
direction perpendicular to the constraints, making the Hessian of the
penalized function increasingly ill-conditioned as y increases. Thus,
the need to increase u to improve accuracy directly leads to a function
space that is increasingly challenging to solve.

SEMIEEIEE Quadratic penalty for equality constrained problem

Consider the equality constrained problem from Ex. 5.2. The penalized
function for that case is

U

2
f(x;y) =x1+2x+ = (le + x% - 1) . (5.41)

2 (471

Figure 5.28 shows this function for different values of the penalty parameter
. The penalty is active for all points that are infeasible, but the minimum of
the penalized function does not coincide with the constrained minimum of
the original problem. The penalty parameter needs to be increased for the
minimum of the penalized function to approach the correct solution, but this
results in a poorly conditioned function.

To show the impact of increasing u, we solve a sequence of problems starting
with a small value of i and reusing the optimal point for one solution as the
starting point for the next. Figure 5.29 shows that large penalty values are
required for high accuracy. In this example, even using a penalty parameter of
p = 1,000 (which results in extremely skewed contours), the objective value
achieves only three digits of accuracy.

uw=10.0

Fig. 5.28 The quadratic penalized
function minimum approaches the
constrained minimum as the penalty
parameter increases.

If =1
10[' I
107! +

1072 L

1073 . , ,
1071 10° 10! 102 10%

Fig. 5.29 Error in optimal solution for
increasing penalty parameter.
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The approach discussed so far handles only equality constraints,
but we can extend it to handle inequality constraints. Instead of adding
a penalty to both sides of the constraints, we add the penalty when the
inequality constraint is violated (i.e., when g;(x) > 0). This behavior
can be achieved by defining a new penalty function as

fow =+ 5 le max (0, g;(x))° . (5.42)

The only difference relative to the equality constraint penalty shown
in Fig. 5.27 is that the penalty is removed on the feasible side of the
inequality constraint, as shown in Fig. 5.30.

fx; )

o
* true

The inequality quadratic penalty can be used together with the

quadratic penalty for equality constraints if we need to handle both
types of constraints:

flx; p) = f(x)+ % Z hy(x)? + 2—g Z max (0, g,-(x))2 . (5.43)
=1 iz

The two penalty parameters can be incremented in lockstep or inde-
pendently.

S EI WA Quadratic penalty for inequality constrained problem

Consider the inequality constrained problem from Ex. 5.4. The penalized
function for that case is
Py u 1 2
flo;u)=x1+2x0 + 5 max (O, Zx% + x% - 1) .
This function is shown in Fig. 5.31 for different values of the penalty parameter
p. The contours of the feasible region inside the ellipse coincide with the

Fig. 5.30 Quadratic penalty for an in-
equality constrained problem. The
minimum of the penalized function
approaches the constrained mini-
mum from the infeasible side.
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original function contours. However, outside the feasible region, the contours
change to create a function whose minimum approaches the true constrained
minimum as the penalty parameter increases.

1[sIErEl Scaling is also important for constrained problems

The considerations on scaling discussed in Tip 4.4 are just as crucial for
constrained problems. Similar to scaling the objective function, a good scaling
rule of thumb is to normalize each constraint function such they are of order
1. For constraints, a natural scale is typically already defined by the limits we
provide. For example, instead of

g](x) - gmax]' <0, (5.44)
we can reeXpreSS a SCaled version as

g

gmax]'

1

<0. (5.45)

Augmented Lagrangian

As explained previously, the quadratic penalty method requires a
large value of u for constraint satisfaction, but the large u degrades
the numerical conditioning. The augmented Lagrangian method
helps alleviate this dilemma by adding the quadratic penalty to the
Lagrangian instead of just adding it to the function. The augmented
Lagrangian function for equality constraints is

Fu A, w) = flx) + Z; Al (x) + % ; j(x)? (5.46)

]

Fig. 5.31 The quadratic penalized
function minimum approaches the
constrained minimum from the infea-
sible side.
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To estimate the Lagrange multipliers, we can compare the optimality
conditions for the augmented Lagrangian,

Vof(xA, w) = VE(x) + Z (Aj + uhj(x)) Vi =0, (5.47)
j=1

to those of the actual Lagrangian,

Vo L(x',A%) = V(') + Z AVh(x') =0, (5.48)
j=1

Comparing these two conditions suggests the approximation

Therefore, we update the vector of Lagrange multipliers based on the
current estimate of the Lagrange multipliers and constraint values
using

Aks1 = Ap + urh(xg) . (5.50)

The complete algorithm is shown in Alg. 5.2.

This approach is an improvement on the plain quadratic penalty
because updating the Lagrange multiplier estimates at each iteration
allows for more accurate solutions without increasing u as much. The
augmented Lagrangian approximation for each constraint obtained
from Eq. 5.49 is

hj = i()\’]‘. -Aj). (5.51)
The corresponding approximation in the quadratic penalty method is
hj = ﬁ . (5.52)

u

The quadratic penalty relies solely on increasing 1 in the denominator to
drive the constraints to zero. However, the augmented Lagrangian also
controls the numerator through the Lagrange multiplier estimate. If the
estimate is reasonably close to the true Lagrange multiplier, then the
numerator becomes small for modest values of u. Thus, the augmented
Lagrangian can provide a good solution for x* while avoiding the
ill-conditioning issues of the quadratic penalty.
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\ElelgialngeWAl Augmented Lagrangian penalty method

Inputs:
X Starting point

Ag = 0: Initial Lagrange multiplier

Ho > 0: Initial penalty parameter

p> 1: Penalty increase factor
Outputs:

x*: Optimal point

f(x™): Corresponding function value

k=0
while not converged do

X — mingnizef(xk;/\k,[.tk)
Aks1 = Ag + prch(xg) Update Lagrange multipliers
Hk+1 = PHK Increase penalty parameter
X1 = xz Update starting point for next optimization
k=k+1

end while

So far we have only discussed equality constraints where the defini-
tion for the augmented Lagrangian is universal. Example 5.8 included
an inequality constraint by assuming it was active and treating it like
an equality, but this is not an approach that can be used in general.
Several formulations exist for handling inequality constraints using the
augmented Lagrangian approach.®~! One well-known approach is
given by:"?

A _ 1 .. 2
feu) = f00)+AT3(x) + Sp 3G, - (5.53)
where
hj(x)  for equality constraints
gi(x)=1g(x) ifg=—A;/u (5.54)
—-Aj/u  otherwise

S EIEERE Augmented Lagrangian for inequality constrained problem

Consider the inequality constrained problem from Ex. 5.4. Assuming the
inequality constraint is active, the augmented Lagrangian (Eq. 5.46) is

2
A 1 1
flxw) = x +2x2+/\(1x%+x§—1) + % (Zx%+x§—1) .
Applying Alg. 5.2, starting with p = 0.5 and using p = 1.1, we get the iterations

shown in Fig. 5.32.

89. Gill et al., Some theoretical properties

of an augmented Lagrangian merit function,
1986.

90. Di Pillo and Grippo, A new augmented
Lagrangian function for inequality con-
straints in nonlinear programming problems,
1982.

91. Birgin et al., Numerical comparison
of augmented Lagrangian algorithms for
nonconvex problems, 2005.

92. Rockafellar, The multiplier method
of Hestenes and Powell applied to convex
programming, 1973.

&7


https://https://apps.dtic.mil/sti/citations/ADA168503
https://https://apps.dtic.mil/sti/citations/ADA168503
https://dx.doi.org/10.1007/BF00940544
https://dx.doi.org/10.1007/BF00940544
https://dx.doi.org/10.1007/BF00940544
https://dx.doi.org/10.1007/s10589-005-1066-7
https://dx.doi.org/10.1007/s10589-005-1066-7
https://dx.doi.org/10.1007/s10589-005-1066-7
https://dx.doi.org/10.1007/BF00934777
https://dx.doi.org/10.1007/BF00934777
https://dx.doi.org/10.1007/BF00934777

5 CoNSTRAINED GRADIENT-BASED OPTIMIZATION 184

k=0, w=0.50, A=0.000 k=2, pu=061, A=1.146

Compared with the quadratic penalty in Ex. 5.7, the penalized function
is much better conditioned, thanks to the term associated with the Lagrange
multiplier. The minimum of the penalized function eventually becomes the
minimum of the constrained problem without a large penalty parameter.

As done in Ex. 5.6, we solve a sequence of problems starting with a small
value of i and reusing the optimal point for one solution as the starting point
for the next. In this case, we update the Lagrange multiplier estimate between
optimizations as well. Figure 5.33 shows that only modest penalty parameters
are needed to achieve tight convergence to the true solution, a significant
improvement over the regular quadratic penalty.

5.4.2 Interior Penalty Methods

Interior penalty methods work the same way as exterior penalty
methods—they transform the constrained problem into a series of
unconstrained problems. The main difference with interior penalty
methods is that they always seek to maintain feasibility. Instead of
adding a penalty only when constraints are violated, they add a penalty
as the constraint is approached from the feasible region. This type of
penalty is particularly desirable if the objective function is ill-defined
outside the feasible region. These methods are called interior because
the iteration points remain on the interior of the feasible region. They
are also referred to as barrier methods because the penalty function acts
as a barrier preventing iterates from leaving the feasible region.

One possible interior penalty function to enforce g(x) < 0 is the

inverse barrier,
g

1
=y ———, 5.55
) ; gj(x) 659

where 71(x) — o0 as g;j(x) — 0~ (where the superscript “~" indicates a
left-sided derivative). A more popular interior penalty function is the

k=9, p=118, A=1413

Fig. 5.32 Augmented Lagrangian ap-
plied to inequality constrained prob-

I =7

107! ¢

107* T

107111 1

10 13 4
107! 100

Fig. 5.33 Error in optimal solution
as compared with true solution as
a function of an increasing penalty
parameter.

mi(x)

6 +

T Logarithmic barrier

Fig. 5.34 Two different interior
penalty functions: inverse barrier and
logarithmic barrier.
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logarithmic barrier,
n
8

n(x) = ) ~In(-g;(x)), (5.56)
j=1
which also approaches infinity as the constraint tends to zero from the
feasible side. The penalty function is then

~

Feop) = fx) = ) In(=g;(x). (5.57)
j=1

These two penalty functions as illustrated in Fig. 5.34.

Neither of these penalty functions applies when g > 0 because they
are designed to be evaluated only within the feasible space. Algorithms
based on these penalties must be prevented from evaluating infeasible
points.

Like exterior penalty methods, interior penalty methods must also
solve a sequence of unconstrained problems but with u — 0 (see
Alg. 5.3). As the penalty parameter decreases, the region across which
the penalty acts decreases, as shown in Fig. 5.35.

fx; )

The methodology is the same as is described in Alg. 5.1 but with
a decreasing penalty parameter. One major weakness of the method
is that the penalty function is not defined for infeasible points, so a
feasible starting point must be provided. For some problems, providing
a feasible starting point may be difficult or practically impossible.

The optimization must be safeguarded to prevent the algorithm
from becoming infeasible when starting from a feasible point. This
can be achieved by checking the constraints values during the line

search and backtracking if any of them is greater than or equal to zero.

Multiple backtracking iterations might be required.

Fig. 5.35 Logarithmic barrier penalty
for an inequality constrained prob-
lem. The minimum of the penalized
function (black circles) approaches
the true constrained minimum (blue
circle) as the penalty parameter u de-
creases.
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\Ffelgialna ¥R Interior penalty method

Inputs:

X Starting point

Ho > 0: Initial penalty parameter

p < 1: Penalty decrease factor
Outputs:

x*: Optimal point

f(x*): Corresponding function value

k=0

while not converged do
K

Hk+1 = PHEK Decrease penalty parameter

< minimize f(xk; ti)
Xk

X4l = xz Update starting point for next optimization
k=k+1
end while

SEIIEERN Logarithmic penalty for inequality constrained problem

Consider the equality constrained problem from Ex. 5.4. The penalized
function for that case using the logarithmic penalty (Eq. 5.57) is

fx; ) = x1 +2xp — uln —1x2—x2+1 .
u H 151 2

Figure 5.36 shows this function for different values of the penalty parameter p.
The penalized function is defined only in the feasible space, so we do not plot
its contours outside the ellipse.

Like exterior penalty methods, the Hessian for interior penalty
methods becomes increasingly ill-conditioned as the penalty parameter

Fig. 5.36 Logarithmic penalty for one
inequality constraint. The minimum
of the penalized function approaches
the constrained minimum from the
feasible side.
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tends to zero.”® There are augmented and modified barrier approaches
that can avoid the ill-conditioning issue (and other methods that remain
ill-conditioned but can still be solved reliably, albeit inefficiently).”
However, these methods have been superseded by the modern interior-
point methods discussed in Section 5.6, so we do not elaborate on
further improvements to classical penalty methods.

5.5 Sequential Quadratic Programming

SQP is the first of the modern constrained optimization methods we
discuss. SQP is not a single algorithm; instead, it is a conceptual method
from which various specific algorithms are derived. We present the
basic method but mention only a few of the many details needed for
robust practical implementations. We begin with equality constrained
SQP and then add inequality constraints.

5.5.1 Equality Constrained SQP

To derive the SQP method, we start with the KKT conditions for this
problem and treat them as equation residuals that need to be solved.
Recall that the Lagrangian (Eq. 5.12) is

L(x,A) = f(x)+h(x)TA. (5.58)

Differentiating this function with respect to the design variables and
Lagrange multipliers and setting the derivatives to zero, we get the
KKT conditions,

=0. (5.59)

ViL(x,A)

| VeL(x, A)
- h(x)

_ [Vf(x) +5A

Recall that to solve a system of equations (1) = 0 using Newton’s
method, we solve a sequence of linear systems,

Jr (ug) pu = =1 (uk), (5.60)

where J, is the Jacobian of derivatives dr/du. The step in the variables
iS py = Ug+1 — Uk, where the variables are

u= [x} . (5.61)

Differentiating the vector of residuals (Eq. 5.59) with respect to the two
concatenated vectors in u yields the following block linear system:

Hy I;] [px]_[—vxz]
RS N1 el I (5.62)

93. Murray, Analytical expressions for the
eigenvalues and eigenvectors of the Hessian
matrices of barrier and penalty functions,
1971.

94. Forsgren et al., Interior methods for
nonlinear optimization, 2002.
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This is a linear system of 7, + 1, equations where the Jacobian matrix is
square. The shape of the matrix and its blocks are as shown in Fig. 5.37.
We solve a sequence of these problems to converge to the optimal design
variables and the corresponding optimal Lagrange multipliers. At each
iteration, we update the design variables and Lagrange multipliers as
follows:

Xk+1 = Xk + QkPx (5.63)
Aks1 = Ak +pa - (5.64)

The inclusion of aj suggests that we do not automatically accept the
Newton step (which corresponds to a = 1) but instead perform a line
search as previously described in Section 4.3. The function used in the
line search needs some modification, as discussed later in this section.

SQP can be derived in an alternative way that leads to different in-
sights. This alternate approach requires an understanding of quadratic
programming (QP), which is discussed in more detail in Section 11.3
but briefly described here. A QP problem is an optimization problem
with a quadratic objective and linear constraints. In a general form, we
can express any equality constrained QP as

1
minimize =xTQx+gTx
x 2 Qx+q (5.65)
subjectto Ax+b=0.

A two-dimensional example with one constraint is illustrated in Fig. 5.38.
The constraint is a matrix equation that represents multiple linear equal-
ity constraints—one for every row in A. We can solve this optimization
problem analytically from the optimality conditions. First, we form the
Lagrangian:

L(x,A) = %xTQx +qTx + AT(Ax + D). (5.66)

We now take the partial derivatives and set them equal to zero:

ViL=Qx+g+ATA=0

(5.67)
VaL=Ax+b=0.

We can express those same equations in a block matrix form:
Q AT| (x| _|-4q
[ A ollal =1l (5.68)

This is like the procedure we used in solving the KKT conditions, except
that these are linear equations, so we can solve them directly without

ny ny

My Hyp ]T

np In 0

Fig. 5.37 Structure and block shapes
for the matrix in the SQP system
(Eq. 5.62)

Fig. 5.38 Quadratic problem in two
dimensions.
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any iteration. As in the unconstrained case, finding the minimum of a
quadratic objective results in a system of linear equations.

Aslong as Q is positive definite, then the linear system always has
a solution, and it is the global minimum of the QP.* The ease with
which a QP can be solved provides a strong motivation for SQP. For a
general constrained problem, we can make a local QP approximation
of the nonlinear model, solve the QP, and repeat this process until
convergence. This method involves iteratively solving a sequence of
quadratic programming problems, hence the name sequential quadratic
programming.

To form the QP, we use a local quadratic approximation of the
Lagrangian (removing the constant term because it does not change the
solution) and a linear approximation of the constraints for some step
p near our current point. In other words, we locally approximate the
problem as the following QP:

1
minimize EpTHLp +V,LTp

P (5.69)
subjectto Jyp+h=0.
We substitute the gradient of the Lagrangian into the objective:
%pTHLp+Vpr +ATp. (5.70)
Then, we substitute the constraint J,p = —h into the objective:
1
EpTHLp +VfTp—ATh. (5.71)

Now, we can remove the last term in the objective because it does
not depend on the variable (p), resulting in the following equivalent
problem:
1
minimize —pTHyp+ V[T
I SPTHLp +VfTp 5:72)
subjectto [yp+h =0.

Using the QP solution method outlined previously results in the
following system of linear equations:

Al
P i il (5.73)

Replacing Axi+1 = Ag + pa and multiply through:

Hy JT px} [FM]_[—W}
I SHW + ho =1l (5.74)

*In other words, this is a convex problem.
Convex optimization is discussed in Chap-
ter 11.
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Subtracting the second term on both sides yields

HL ] ;1- ] [P x:| _
Jn  O]lpal
which is the same linear system we found from applying Newton’s
method to the KKT conditions (Eq. 5.62).
This derivation relies on the somewhat arbitrary choices of choosing
a QP as the subproblem and using an approximation of the Lagrangian
with constraints (rather than an approximation of the objective with
constraints or an approximation of the Lagrangian with no constraints).
Nevertheless, it is helpful to conceptualize the method as solving a

sequence of QPs. This concept will motivate the solution process once
we add inequality constraints.

_Vx-g
e (5.75)

5.5.2 Inequality Constraints

Introducing inequality constraints adds complications. For inequality
constraints, we cannot solve the KKT conditions directly as we could
for equality constraints. This is because the KKT conditions include the
complementary slackness conditions 0;¢; = 0, which we cannot solve
directly. Even though the number of equations in the KKT conditions
is equal to the number of unknowns, the complementary conditions do
not provide complete information (they just state that each constraint
is either active or inactive). Suppose we knew which of the inequality
constraints were active (¢; = 0) and which were inactive (o; = 0) at
the optimum. Then, we could use the same approach outlined in the
previous section, treating the active constraints as equality constraints
and ignoring the inactive constraints. Unfortunately, we do not know

which constraints are active at the optimum beforehand in general.

Finding which constraints are active in an iterative way is challenging
because we would have to try all possible combinations of active
constraints. This is intractable if there are many constraints.

A common approach to handling inequality constraints is to use an
active-set method. The active set is the set of constraints that are active at
the optimum (the only ones we ultimately need to enforce). Although
the actual active set is unknown until the solution is found, we can
estimate this set at each iteration. This subset of potentially active
constraints is called the working set. The working set is then updated at
each iteration.

Similar to the SQP developed in the previous section for equality
constraints, we can create an algorithm based on solving a sequence of
QPs that linearize the constraints.? We extend the equality constrained

*The Lagrangian objective can also be con-
sidered to be an approximation of the ob-
jective along the feasible surface h(x) =
0.9

95. Gill and Wong, Sequential quadratic
programming methods, 2012.

Linearizing the constraints can some-
times lead to an infeasible QP subprob-
lem; additional techniques are needed to
handle such cases.”’?

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

96. Gill et al., SNOPT: An SQP algorithm
for large-scale constrained optimization,
2005.
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QP (Eq. 5.69) to include the inequality constraints as follows:

o 1
minimize ESTHLS +V, LTs
S

subjectto [ps+h =0 (5.76)

Jes+¢=<0.

The determination of the working set could happen in the inner loop,
that is, as part of the inequality constrained QP subproblem (Eq. 5.76).
Alternatively, we could choose a working set in the outer loop and
then solve the QP subproblem with only equality constraints (Eq. 5.69),
where the working-set constraints would be posed as equalities. The
former approach is more common and is discussed here. In that case,
we need consider only the active-set problem in the context of a QP.
Many variations on active-set methods exist; we outline just one such
approach based on a binding-direction method.

The general QP problem we need to solve is as follows:

minimize %xTQx +qTx
X
subjectto Ax+b =0 (5.77)
Cx+d<0.

We assume that Q is positive definite so that this problem is convex.
Here, Q corresponds to the Lagrangian Hessian. Using an appropriate
quasi-Newton approximation (which we will discuss in Section 5.5.4)
ensures a positive definite Lagrangian Hessian approximation.

Consider iteration k in an SQP algorithm that handles inequality
constraints. At the end of the previous iteration, we have a design point
xx and a working set Wi. The working set in this approach is a set
of row indices corresponding to the subset of inequality constraints
that are active at x.5 Then, we consider the corresponding inequality
constraints to be equalities, and we write:

Cwxrp+dy =0, (5.78)

where C,, and dy, correspond to the rows of the inequality constraints
specified in the working set.

The constraints in the working set, combined with the equality
constraints, must be linearly independent. Thus, we cannot include
more working-set constraints (plus equality constraints) than design
variables. Although the active set is unique, there can be multiple valid
choices for the working set.

SThis is not a universal definition. For
example, the constraints in the working
set need not be active at xj in some ap-
proaches.
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Assume, for the moment, that the working set does not change at

nearby points (i.e., we ignore the constraints outside the working set).
We seek a step p to update the design variables as follows: xx+1 = xx +p.

We find p by solving the following simplified QP that considers only
the working set:

minimize %(xk +p)TQ(xk +p) + 97 (xk +p)
p

subjectto A(xx+p)+b=0
Cuw(xk+p)+dy=0.

(5.79)

We solve this QP by varying p, so after multiplying out the terms
in the objective, we can ignore the terms that do not depend on p. We
can also simplify the constraints because we know the constraints were

satisfied at the previous iteration (i.e., Axx + b = 0 and Cyxy + dyp = 0).

The simplified problem is as follows:

minimize %pTQP +(g+QTxx)p
p

subjectto Ap =0
Cwp =0.

(5.80)

We now have an equality constrained QP that we can solve using the
methods from the previous section. Using Eq. 5.68, the KKT solution
to this problem is as follows:

Q AT Cillr -9 — QTxx
A 0 0]|A]= 0 . (5.81)
Co 0 0]lo 0

Figure 5.39 shows the structure of the matrix in this linear system.

Let us consider the case where the solution of this linear system is
nonzero. Solving the KKT conditions in Eq. 5.80 ensures that all the
constraints in the working set are still satisfied at xj + p. Still, there is no
guarantee that the step does not violate some of the constraints outside
of our working set. Suppose that C, and d,, define the constraints
outside of the working set. If

Culxx+p)+d, <0 (5.82)

for all rows, all the constraints are still satisfied. In that case, we accept
the step p and update the design variables as follows:

Xkl =Xp +p. (5.83)

My Q AT Cy
np A 0 0
ng Cw 0 0

Fig. 5.39 Structure of the QP subprob-
lem within the inequality constrained
QP solution process.
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The working set remains unchanged as we proceed to the next iteration.
Otherwise, if some of the constraints are violated, we cannot take
the full step p and reduce it the step length by « as follows:

Xk+1 = Xp +ap. (5.84)

We cannot take the full step (@ = 1), but we would like to take as large
a step as possible while still keeping all the constraints feasible.

Let us consider how to determine the appropriate step size, a.
Substituting the step update (Eq. 5.84) into the equality constraints, we
obtain the following:

A(xg+ap)+b=0. (5.85)

We know that Axy + b = 0 from solving the problem at the previous
iteration. Also, we just solved p under the condition that Ap = 0.
Therefore, the equality constraints (Eq. 5.85) remain satisfied for any
choice of a. By the same logic, the constraints in our working set remain
satisfied for any choice of a as well.

Now let us consider the constraints that are not in the working set.
We denote c; as row i of the matrix C,, (associated with the inequality
constraints outside of the working set). If these constraints are to remain
satisfied, we require

cf(xp+ap)+d; <0. (5.86)
After rearranging, this condition becomes
aclp < —(c]xp +dy). (5.87)

We do not divide through by ¢ p yet because the direction of the
inequality would change depending on its sign. We consider the two
possibilities separately. Because the QP constraints were satisfied at
the previous iteration, we know that ciTxk +d; <0forall i. Thus, the
right-hand side is always positive. If ¢ p is negative, then the inequality
will be satisfied for any choice of a. Alternatively, if ¢] p is positive, we
can rearrange Eq. 5.87 to obtain the following:

_(ciTxk +d;)

(5.88)
cp

a; <
This equation determines how large « can be without causing one of
the constraints outside of the working set to become active. Because
multiple constraints may become active, we have to evaluate « for each
one and choose the smallest « among all constraints.
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A constraint for which a < 11is said to be blocking. In other words, if
we had included that constraint in our working set before solving the
QP, it would have changed the solution. We add one of the blocking
constraints to the working set, and proceed to the next iteration.T

Now consider the case where the solution to Eq. 5.81 is p = 0. If
all inequality constraint Lagrange multipliers are positive (o; > 0), the
KKT conditions are satisfied and we have solved the original inequality
constrained QP. If one or more o; values are negative, additional
iterations are needed. We find the o; value that is most negative,
remove constraint i from the working set, and proceed to the next
iteration.

As noted previously, all the constraints in the reduced QP (the
equality constraints plus all working-set constraints) must be linearly
independent and thus [A Cy]T has full row rank. Otherwise, there
would be no solution to Eq. 5.81. Therefore, the starting working set
might not include all active constraints at xo and must instead contain
only a subset, such that linear independence is maintained. Similarly,
when adding a blocking constraint to the working set, we must again
check for linear independence. At a minimum, we need to ensure
that the length of the working set does not exceed n,. The complete
algorithm for solving an inequality constrained QP is shown in Alg. 5.4.

Some equality constraints can be posed as inequality con-
straints

Equality constraints are less common in engineering design problems than
inequality constraints. Sometimes we pose a problem as an equality constraint
unnecessarily. For example, the simulation of an aircraft in steady-level flight
may require the lift to equal the weight. Formally, this is an equality constraint,
but it can also be posed as an inequality constraint (lift greater or equal to
weight). There is no advantage to having more lift than the required because
it increases drag, so the constraint is always active at the optimum. When
such a constraint is not active at the solution, it can be a helpful indicator that
something is wrong with the formulation, the optimizer, or the assumptions.
Although an equality constraint is more natural from the algorithm perspective,
the flexibility of the inequality constraint might allow the optimizer to explore
the design space more effectively.

Consider another example: a propeller design problem might require a
specified thrust. Although an equality constraint would likely work, it is more
constraining than necessary. If the optimal design were somehow able to
produce excess thrust, we would accept that design. Thus, we should not
formulate the constraint in an unnecessarily restrictive way.

In practice, adding only one constraint
to the working set at a time (or remov-
ing only one constraint in other steps de-
scribed later) typically leads to faster con-
vergence.
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\Pfelaia I IR M Active-set solution method for an inequality constrained QP

Inputs:
Q,4,A,b,C, D: Matrices and vectors defining the QP (Eq. 5.77); Q must be positive defi-
nite
&: Tolerance used for termination and for determining whether constraint is active
Outputs:
x*: Optimal point

k=0
Xk = X0
Wi =i for all i where (c;Txy +d;) > —¢ and length(Wy) < ny  One possible
initial working set
while true do
set Cy = Cj»and dyy = d; forall i € Wy Select rows for working set
Solve the KKT system (Eq. 5.81)
if ||pH < ¢ then

if 0 > 0 then Satisfied KKT conditions
X = xg
return
else
i = argmino
Wis1 = Wi\ {i} Remove i from working set
Xk+1 = Xk
end if
else
a=1 Initialize with optimum step
B={} Blocking index
fori ¢ Wi do Check constraints outside of working set
if C;rp > (0 then Potential blocking constraint
ap = —_(Ciz;;+di) ciisarow of C,
if ap < a then
a=ayp
B=i Save or overwrite blocking index
end if
end if
end for
Wis1 = W U {B} Add B to working set (if linearly independent)
Xfy1 = X +ap
end if
k=k+1

end while
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DEESRIN Inequality constrained QP

Let us solve the following problem using the active-set QP algorithm:

minimize 3x? + x2 + 2x1xp + X1 + 6x2
x1,%2 12

subjectto 2x1 +3xp > 4
x1>0
x220.

Rewriting in the standard form (Eq. 5.77) yields the following:

-2 -3 4
O R A e PR
0 -1 0

We arbitrarily chose x = [3,2] as a starting point. Because none of the
constraints are active, the initial working set is empty, W = {}. Ateach iteration,
we solve the QP formed by the equality constraints and any constraints in the
active set (treated as equality constraints). The sequence of iterations is detailed
as follows and is plotted in Fig. 5.40:

k=1
k=2
k=3
k=4

The QP subproblem yields p = [-1.75,-6.25] and ¢ = [0,0,0]. Next,
we check whether any constraints are blocking at the new point x + p.
Because all three constraints are outside of the working set, we check
all three. Constraint 1 is potentially blocking (ciTp > 0) and leads to
ap = 0.35955. Constraint 2 is also potentially blocking and leads to
ayp = 1.71429. Finally, constraint 3 is also potentially blocking and leads
to ap = 0.32. We choose the constraint with the smallest @, which is
constraint 3, and add it to our working set. At the end of the iteration,
x =[2.44,0.0] and W = {3}.

The new QP subproblem yields p = [-2.60667,0.0] and ¢ = [0, 0, 5.6667].
Constraints 1 and 2 are outside the working set. Constraint 1 is potentially
blocking and gives aj; = 0.1688; constraint 2 is also potentially blocking
and yields aj, = 0.9361. Because constraint 1 yields the smaller step, we
add it to the working set. At the end of the iteration, x = [2.0,0.0] and
W ={1,3}.

The QP subproblem now yields p = [0,0] and ¢ = [6.5,0, —9.5]. Because
p = 0, we check for convergence. One of the Lagrange multipliers
is negative, so this cannot be a solution. We remove the constraint
associated with the most negative Lagrange multiplier from the working
set (constraint 3). At the end of the iteration, x is unchanged at x =
[2.0,0.0], and W = {1}.

The QP yields p = [-1.5,1.0] and ¢ = [3, 0, 0]. Constraint 2 is potentially
blocking and yields aj, = 1.333 (which means it is not blocking because
ap > 1). Constraint 3 is also not blocking (c;rp < 0). None of the ay
values was blocking, so we can take the full step (@ = 1). The new x
point is x = [0.5, 1.0], and the working set is unchanged at W = {1}.

Fig. 5.40 Iteration history for the
active-set QP example.
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k=5 The QP yields p = [0,0],0 = [3,0,0]. Because p = 0, we check for
convergence. All Lagrange multipliers are nonnegative, so the problem
is solved. The solution to the original inequality constrained QP is then
x* =[0.5,1.0].

Because SQP solves a sequence of QPs, an effective approach is to
use the optimal x and active set from the previous QP as the starting
point and working set for the next QP. The algorithm outlined in this
section requires both a feasible starting point and a working set of
linearly independent constraints. Although the previous starting point
and working set usually satisfy these conditions, this is not guaranteed,
and adjustments may be necessary.

Algorithms to determine a feasible point are widely used (often by
solving a linear programming problem). There are also algorithms to
remove or add to the constraint matrix as needed to ensure full rank.”

1)1l Consider reformulating your constraints

There are often multiple mathematically equivalent ways to pose the
problem constraints. Reformulating can sometimes yield equivalent problems
that are significantly easier to solve. In some cases, it can help to add redundant
constraints to avoid areas of the design space that are not useful. Similarly, we
should consider whether the model that computes the objective and constraint
functions should be solved separately or posed as constraints at the optimizer
level (as we did in Eq. 3.33).

5.5.3 Merit Functions and Filters

Similar to what we did in unconstrained optimization, we do not directly
accept the step p returned from solving the subproblem (Eq. 5.62 or
Eq. 5.76). Instead, we use p as the first step length in a line search.

In the line search for unconstrained problems (Section 4.3), deter-
mining if a point was good enough to terminate the search was based
solely on comparing the objective function value (and the slope when
enforcing the strong Wolfe conditions). For constrained optimization,
we need to make some modifications to these methods and criteria.

In constrained optimization, objective function decrease and fea-
sibility often compete with each other. During a line search, a new
point may decrease the objective but increase the infeasibility, or it may
decrease the infeasibility but increase the objective. We need to take

96. Gill et al., SNOPT: An SQP algorithm
for large-scale constrained optimization,
2005.
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these two metrics into account to determine the line search termination
criterion.

The Lagrangian is a function that accounts for the two metrics.
However, at a given iteration, we only have an estimate of the Lagrange
multipliers, which can be inaccurate.

One way to combine the objective value with the constraints in a
line search is to use merit functions, which are similar to the penalty
functions introduced in Section 5.4. Common merit functions include
functions that use the norm of constraint violations:

few = f@)+pllg, (5.89)

where p is 1 or 2 and g are the constraint violations, defined as

_ hi(x) for equality constraints
A ):{ : aueny (5.90)

max(0, gj(x)) for inequality constraints .

The augmented Lagrangian from Section 5.4.1 can also be repurposed
for a constrained line search (see Eqs. 5.53 and 5.54).

Like penalty functions, one downside of merit functions is that it is
challenging to choose a suitable value for the penalty parameter p. This
parameter needs to be large to ensure feasibility. However, if it is too
large, a full Newton step might not be permitted. This might slow the
convergence unnecessarily. Using the augmented Lagrangian can help,
as discussed in Section 5.4.1. However, there are specific techniques
used in SQP line searches and various safeguarding techniques needed
for robustness.

Filter methods are an alternative to using penalty-based methods in a
line search.” Filter methods interfere less with the full Newton step
and are effective for both SQP and interior-point methods (which are
introduced in Section 5.6).”%”” The approach is based on concepts from
multiobjective optimization, which is the subject of Chapter 9. In the
filter method, there are two objectives: decrease the objective function
and decrease infeasibility. A point is said to dominate another if its
objective is lower and the sum of its constraint violations is lower. The
filter consists of all the points that have been found to be non-dominated
in the line searches so far. The line search terminates when it finds a
point that is not dominated by any point in the current filter. That new
point is then added to the filter, and any points that it dominates are
removed from the filter.|

This is only the basic concept. Robust implementation of a fil-
ter method requires imposing sufficient decrease conditions, not un-
like those in the unconstrained case, and several other modifications.
Fletcher et al.”” provide more details on filter methods.

97. Fletcher and Leyffer, Nonlinear pro-
gramming without a penalty function, 2002.

98. Benson et al., Interior-point methods for
nonconvex nonlinear programming: Filter
methods and merit functions, 2002.

99. Fletcher et al., A brief history of filter
methods, 2006.

ISee Section 9.2 for more details on the
concept of dominance.
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SEIUEEREN Using a filter

A filter consists of pairs (f(x), [|gll1), where ||Z||1 is the sum of the constraint
violations (Eq. 5.90). Suppose that the current filter contains the following
three points: {(2,5), (3,2),(7,1)}. None of the points in the filter dominates any
other. These points are plotted as the blue dots in Fig. 5.41, where the shaded
regions correspond to all the points that are dominated by the points in the
filter. During a line search, a new candidate point is evaluated. There are three
possible outcomes. Consider the following three points that illustrate these
three outcomes (corresponding to the labeled points in Fig. 5.41):

1. (1,4): This point is not dominated by any point in the filter. The step
is accepted, the line search ends, and this point is added to the filter.
Because this new point dominates one of the points in the filter, (2, 5),
that dominated point is removed from the filter. The current set in the
filter is now {(1,4), (3,2),(7,1)}.

2. (1, 6): This point is not dominated by any point in the filter. The step is
accepted, the line search ends, and this new point is added to the filter.
Unlike the previous case, none of the points in the filter are dominated.
Therefore, no points are removed from the filter set, which becomes
{(1,6),(2,5),(3,2), (7, 1}.

3. (4,3): This point is dominated by a point in the filter, (3,2). The step
is rejected, and the line search continues by selecting a new candidate
point. The filter is unchanged.

5.5.4 Quasi-Newton SQP

In the discussion of the SQP method so far, we have assumed that we
have the Hessian of the Lagrangian H s. Similar to the unconstrained
optimization case, the Hessian might not be available or be too expensive
to compute. Therefore, it is desirable to use a quasi-Newton approach
that approximates the Hessian, as we did in Section 4.4.4.

The difference now is that we need an approximation of the La-
grangian Hessian instead of the objective function Hessian. We denote
this approximation at iteration k as I3 Li-

Similar to the unconstrained case, we can approximate H, using
the gradients of the Lagrangian and a quasi-Newton update, such as
the Broyden-—Fletcher-—Goldfarb-—Shanno (BFGS) update. Unlike in
unconstrained optimization, we do not want the inverse of the Hessian
directly. Therefore, we use the version of the BFGS formula that
computes the Hessian (Eq. 4.87):

Hy,sks]Hp, . yky{

g, =g, - 2%
k+1 k SIIHLkSk ]/;Sk 7

(5.91)

13111
8+

[ ] S}

Fig. 5.41 Filter method example show-
ing three points in the filter (blue
dots); the shaded regions correspond
to all the points that are dominated by
the filter. The red dots illustrate three
different possible outcomes when
new points are considered.
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where:

Sk = Xk+1 — Xk
Yk = Ve L(Xpr1, Aks1) = Ve L(xk, Agr1) -

The step in the design variable space, sk, is the step that resulted from
the latest line search. The Lagrange multiplier is fixed to the latest value
when approximating the curvature of the Lagrangian because we only
need the curvature in the space of the design variables.

Recall that for the QP problem (Eq. 5.76) to have a solution, H r,
must be positive definite. To ensure a positive definite approximation,
we can use a damped BFGS update.””** This method replaces y with a
new vector r, defined as

(5.92)

1 = Okyk + (1 — O)H g, sk, (5.93)
where the scalar 6y is defined as
1 if sTyx>0.2s]Hy, s
Ok =\ o08sTHL s (5.94)

T sTur if slyr <0.2s]Hpsk,
which can range from 0 to 1. We then use the same BFGS update
formula (Eq. 5.91), except that we replace each yi with ry.

To better understand this update, let us consider the two extremes
for 6. If 6x = 0, then Eq. 5.93 in combination with Eq. 5.91 yields
Hy,,, = Hy,; thatis, the Hessian approximation is unmodified. At the
other extreme, 0y = 1 yields the full BFGS update formula (r is set
to yx). Thus, the parameter 0 provides a linear weighting between
keeping the current Hessian approximation and using the full BFGS
update.

The definition of 8y (Eq. 5.94) ensures that Ay, stays close enough
to A, and remains positive definite. The damping is activated when
the predicted curvature in the new latest step is below one-fifth of the
curvature predicted by the latest approximate Hessian. This could
happen when the function is flattening or when the curvature becomes
negative.

5.5.5 Algorithm Overview

We now put together the various pieces in a high-level description
of SQP with quasi-Newton approximations in Alg. 551 For the
convergence criterion, we can use an infinity norm of the KKT system
residual vector. For better control over the convergence, we can consider
two separate tolerances: one for the norm of the optimality and another

25. Powell, Algorithms for nonlinear con-
straints that use Lagrangian functions, 1978.

**The damped BFGS update is not al-
ways the best approach. There are ap-
proaches built around other approxima-
tion methods, such as symmetric rank 1
(SR1).!" Limited-memory updates simi-
lar to L-BFGS (see Section 4.4.5) can be
used when storing a dense Hessian for
large problems is prohibitive. !

100. Fletcher, Practical Methods of Opti-
mization, 1987.

101. Liu and Nocedal, On the limited
memory BFGS method for large scale opti-
mization, 1989.

A few popular SQP implementations
include SNOPT,”® Knitro,'"”> MATLAB’s
fmincon, and SLSQP.'® The first three
are commercial options, whereas SLSQP is
open source. There are interfaces in dif-
ferent programming languages for these
optimizers, including pyOptSparse (for
SNOPT and SLSQP).!

1. Wu et al., pyOptSparse: A Python frame-
work for large-scale constrained nonlinear
optimization Qfs,m/‘s‘w systems, 2020.

102. Byrd et al., Knitro: An Integrated
Package for Nonlinear Optimization, 2006.
103. Kraft, A software package for sequential
quadratic programming, 1988.
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for the norm of the feasibility. For problems that only have equality
constraints, we can solve the corresponding QP (Eq. 5.62) instead.

\Felgia e ISR SQP with quasi-Newton approximation

Inputs:

X(: Starting point

Topt: Optimality tolerance

Tfeas: Feasibility tolerance
Outputs:

x*: Optimal point

f(x™): Corresponding function value

A =0,00=0 Initial Lagrange multipliers
Qinit = 1 For line search
Evaluate functions (f, g, i) and derivatives (Vf, J¢, J;)
ViL=Vf+]iA+]i0
k=0
while [[Vy L]lco > Topt OF [|11]lco > Tfeas dO

if k = 0 or reset = true then

HLO =1 Initialize to identity matrix or scaled version (Eq. 4.95)
else

Update Hy, Compute damped BFGS (Egs. 5.91 to 5.94)
end if

Solve QP subproblem (Eq. 5.76) for px, px
1 .~
minimize zp;Hpr + Vi LTpy

by varying px
subjectto Jppx +h =0

Jepx+8 <0
Aks1 = Ak +pa
a = linesearch (px, ainit) Use merit function or filter (Section 5.5.3)
Xk+1 = Xk + apg Update step
W1 = Wi Active set becomes initial working set for next QP

Evaluate functions (f, g, h) and derivatives (Vf, J¢, J1;)
ViL=Vf+]iA+]lo
k=k+1

end while

e SRR SQP applied to equality constrained problem

We now solve Ex. 5.2 using the SQP method (Alg. 5.5). We start at
xp = [2,1] with an initial Lagrange multiplier A = 0 and an initial estimate
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of the Lagrangian Hessian as H; = I for simplicity. The line search uses an
augmented Lagrangian merit function with a fixed penalty parameter (i = 1)
and a quadratic bracketed search as described in Section 4.3.2. The choice
between a merit function and line search has only a small effect in this simple
problem. The gradient of the equality constraint is

o=l 2w]=[1 2],
and differentiating the Lagrangian with respect to x yields
1+ 3Ax| _[1
2+420x |~ [2]

The KKT system to be solved (Eq. 5.62) in the first iteration is

Vx-ﬁ =

10 1)[sx] [-1
0 1 2f[sn|=|-2
1 2 0f|sa] |1

The solution of this system is s = [-0.2, 0.4, —0.8]. Using p = [-0.2, —0.4], the
full step a = 1 satisfies the strong Wolfe conditions, so for the new iteration we
have x1 =[1.8,0.6], A1 = =0.8.

To update the approximate Hessian H s using the damped BFGS update
(Eq. 5.93), we need to compare the values of sJyo = —0.272 and 5] Wyso =
0.2. Because s;yk < O.Zs;ﬁlksk, we need to compute the scalar 0 = 0.339
using Eq. 5.94. This results in a partial BEGS update to maintain positive
definiteness. After a few iterations, 6 = 1 for the remainder of the optimization,
corresponding to a full BFGS update. The initial estimate for the Lagrangian
Hessian is poor (just a scaled identity matrix), so some damping is necessary.
However, the estimate is greatly improved after a few iterations. Using the
quasi-Newton update in Eq. 5.91, we get the approximate Hessian for the next
iteration as

- [1076 -0275
L7 0275 0256 |

We repeat this process for subsequent iterations, as shown in Figure 5.42.
The gray contours show the QP subproblem (Eq. 5.72) solved at each itera-
tion: the quadratic objective appears as elliptical contours and the linearized

Fig. 5.42 SQP algorithm iterations.
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constraint as a straight line. The starting point is infeasible, and the iterations
remain infeasible until the last few iterations.

This behavior is common for SQP because although it satisfies the linear
approximation of the constraints at each step, it does not necessarily satisfy the
constraints of the actual problem, which is nonlinear. As the constraint approx-
imation becomes more accurate near the solution, the nonlinear constraint is
then satisfied. Figure 5.43 shows the convergence of the Lagrangian gradient
norm, with the characteristic quadratic convergence at the end.

SEMIEEREN SQP applied to inequality constrained problem

We now solve the inequality constrained version of the previous example
(Ex. 5.4) with the same initial conditions and general approach. The only
difference is that rather than solving the linear system of equations Eq. 5.62, we
have to solve an active-set QP problem at each iteration, as outlined in Alg. 5.4.
The iteration history and convergence of the norm of the Lagrangian gradient
are plotted in Figs. 5.44 and 5.45, respectively.

101 -

1072

VLI

1078 + + + |
0 2 4 6 8

IV LIl
10' .

1072

1075 +

10-8

o
o1+
-
IS

k

Fig. 5.43 Convergence history of the
norm of the Lagrangian gradient.

Fig. 5.44 Iteration history of SQP ap-
plied to an inequality constrained
problem, with the Lagrangian and
the linearized constraint overlaid
(with a darker infeasible region).

Fig. 5.45 Convergence history of the
norm of the Lagrangian gradient.
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111919 How to handle maximum and minimum constraints

Constraints that take the maximum or minimum of a set of quantities
are often desired. For example, the stress in a structure may be evaluated at
many points, and we want to make sure the maximum stress does not exceed a
specified yield stress, such that

max(0) < Oyield -

However, the maximum function is not continuously differentiable (because
the maximum can switch elements between iterations), which may cause
difficulties when using gradient-based optimization. The constraint aggregation
methods from Section 5.7 can enforce such conditions with a smooth function.
Nevertheless, it is challenging for an optimizer to find a point that satisfies the
KKT conditions because the information is reduced to one constraint.

Instead of taking the maximum, you should consider constraining the stress
at all ns points as follows

0j < Oyields ji=1...,ns.

Now all constraints are continuously differentiable. The optimizer has n,
constraints instead of 1, but that generally provides more information and
makes it easier for the optimizer to satisfy the KKT conditions with more than
one Lagrange multiplier. Even though we have added more constraints, an
active set method makes this efficient because it considers only the critical
constraints.

5.6 Interior-Point Methods

Interior-point methods use concepts from both SQP and interior penalty
methods.” These methods form an objective similar to the interior
penalty but with the key difference that instead of penalizing the
constraints directly, they add slack variables to the set of optimization
variables and penalize the slack variables. The resulting formulation is
as follows:

g
minimize f(x)— Z; Ins;
= (5.95)
subjectto  h(x) =0
gx)+s=0.
This formulation turns the inequality constraints into equality con-
straints and thus avoids the combinatorial problem.

Similar to SQP, we apply Newton’s method to solve for the KKT
conditions. However, instead of solving the KKT conditions of the

*The name interior point stems from early
methods based on interior penalty meth-
ods that assumed that the initial point was
feasible. However, modern interior-point
methods can start with infeasible points.
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original problem (Eq. 5.59), we solve the KKT conditions of the interior-
point formulation (Eq. 5.95).

These slack variables in Eq. 5.95 do not need to be squared, as was
done in deriving the KKT conditions, because the logarithm is only
defined for positive s values and acts as a barrier preventing negative
values of s (although we need to prevent the line search from producing
negative s values, as discussed later). Because s is always positive,
that means that g(x*) < 0 at the solution, which satisfies the inequality
constraints.

Like penalty method formulations, the interior-point formulation
(Eq. 5.95) is only equivalent to the original constrained problem in the
limit, as yp — 0. Thus, as in the penalty methods, we need to solve a
sequence of solutions to this problem where yuj, approaches zero.

First, we form the Lagrangian for this problem as

L(x,A,0,s)= f(x)— ppeTIns + h(x)TA + (g(x) +5)To, (5.96)

where In s is an n¢-vector whose components are the logarithms of each
component of s, and e = [1, ..., 1] is an ng-vector of 1s introduced to
express the sum in vector form. By taking derivatives with respect to x,
A, 0, and s, we derive the KKT conditions for this problem as

V) + Jn(x)TA + Jo(x)To =0
h=0
gHs=0 (5.97)
—ybs_le +0=0,

where § is a diagonal matrix whose diagonal entries are given by the
slack variable vector, and therefore S;,} = 1/sk. The result is a set of
1y + ny + 2ng equations and the same number of variables.

To get a system of equations that is more favorable for Newton’s
method, we multiply the last equation by S to obtain

V() + Jn(0)TA + Jg(x)T0 = 0

h=0
gHs=0 (5.98)
—upe +So=0.

We now have a set of residual equations to which we can apply
Newton’s method, just like we did for SQP. Taking the Jacobian of the
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residuals in Eq. 5.98, we obtain the linear system

He(x) Jn()T Jg()T 0] [sx VL(x, A, 0)

]h(x) 0 0 0] [sr _ h(X)

Jglx) 0 0 I|lso| g(x)+s | (5.99)
0 0 S 2l ss So — Lpe

where ¥ is a diagonal matrix whose entries are given by o, and I is
the identity matrix. For numerical efficiency, we make the matrix
symmetric by multiplying the last equation by S7! to get the symmetric
linear system, as follows:

He(x) Ju(x)T Jg(x)T 0 Sy V. L(x,A,0)

Jn(x) 0 0 0 sa| h(x)

Jg(x) 0 0 I ||soel s |- (5.100)
0 U I $7'Z]|ss o—upSTte

The advantage of this equivalent system is that we can use a linear
solver specialized for symmetric matrices, which is more efficient than
a solver for general linear systems. If we had applied Newton’s method iy ny,ong g
to the original KKT system (Eq. 5.97) and then made it symmetric, we
would have obtained a term with S72, which would make the system 1. Hy Tl o
more challenging than with the S~! term in Eq. 5.100. Figure 5.46 shows
the structure and block sizes of the matrix.

i I 0o} o
5.6.1 Maodifications to the Basic Algorithm i o I o ;

n g
We can reuse many of the concepts covered under SQP, including quasi-
Newton estimates of the Lagrangian Hessian and line searches with 0 0 5=

merit functions or filters. The merit function would usually be modified

to a form more consistent with the formulation used in Eq. 5.95. For Fig. 5.46 Structure and shape of the
. . . interior-point system matrix from

example, we could write a merit function as follows: Eq. 5.100.

P = £ = > Insic+ 3 (AP + g +5I7) L 6100
i=1

where i, is the barrier parameter from Eq. 5.95, and p,, is the penalty
parameter. Additionally, we must enforce an amax in the line search so
that the implicit constraint on s > 0 remains enforced. The maximum
allowed step size can be computed prior to the line search because we
know the value of s and p, and require that

s+aps >20. (5.102)
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In practice, we enforce a fractional tolerance so that we do not get too
close to zero. For example, we could enforce the following:

5 + QmaxPs = TS, (5.103)

where 7 is a small value (e.g., 7 = 0.005). The maximum step size is
the smallest positive value that satisfies this equation for all entries in
s. A possible algorithm for determining the maximum step size for
feasibility is shown in Alg. 5.6.

\FelaiG I IENSR Maximum step size for feasibility

Inputs:

S: Current slack values

Ps: Proposed step

T: Fractional tolerance (e.g., 0.005)
Outputs:

(max: Maximum feasible step length

Amax = 1
fori =1tong do
Si
Psi
if « > 0 then
max = Min(@max, @)
end if
end for

The line search typically uses a simple backtracking approach
because we must enforce a maximum step length. After the line search,
we can update x and s as follows:

Xk+1 = Xk + akpx, where ai € (0, @max] (5.104)
Sk+1 = Sk + QkPs - (5.105)

The Lagrange multipliers ¢ must also remain positive, so the pro-
cedure in Alg. 5.6 is repeated for ¢ to find the maximum step length
for the Lagrange multipliers ;. Enforcing a maximum step size for
Lagrange multiplier updates was not necessary for the SQP method
because the QP subproblem handled the enforcement of nonnegative
Lagrange multipliers. We then update both sets of Lagrange multipliers
using this step size:

Ak + aspa (5.106)
Ok+1 = Ok + APy . (5.107)

/\k+1
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Finally, we need to update the barrier parameter p,. The simplest
approach is to decrease it by a multiplicative factor:

Hbger = PHbg (5.108)

where p is typically around 0.2. Better methods are adaptive based on
how well the optimizer is progressing. There are other implementation
details for improving robustness that can be found in the literature.'**1%

The steps for a basic interior-point method are detailed in Alg. 5.7."
This version focuses on a line search approach, but there are variations
of interior-point methods that use the trust-region approach.

P\Ptelfialna WAl Interior-point method with a quasi-Newton approximation

Inputs:
X(: Starting point
Topt: Optimality tolerance
Tfeas: Feasibility tolerance
Outputs:
x*: Optimal point
f(x™): optimal function value

A=0;,00=0 Initial Lagrange multipliers
sop=1 Initial slack variables
IrILO =1 Initialize Hessian of Lagrangian approximation to identity matrix
k=0
while |V L|loo > Topt OF [|/i]loo > Tfeas do

Evaluate J, Jg, V< L

Solve the KKT system (Eq. 5.100) for p

Heo T8 T3 0 1 [px VxL(x, A, 0)
Ju(x) 0 0 0 ||pa]|__ h(x)
Jo(x) 0 0 I Po gx)+s

0 0 I S'zfl|ps o—uSlte

@max = alphamax(s, ps) Use Alg. 5.6
ay = backtrack(py, Ps, @max) Line search (Alg. 4.2) with merit function (Eq. 5.101)
Xk+1 = Xk + QfPx
Sk+1 = Sk + QkPs

ag = alphamax(o, py)
Aks1 = Ak + ags)
Ok+1 = G.’f + agSo

Update design variables

Update slack variables

Update equality Lagrange multipliers
Update inequality Lagrange multipliers

Update Hy, Compute quasi-Newton approximation using Eq. 5.91
Up = PHp Reduce barrier parameter
k=k+1

end while

104. Wichter and Biegler, On the imple-
mentation of an interior-point filter line-
search algorithm for large-scale nonlinear
programming, 2005.

105. Byrd et al., An interior point algorithm

for large-scale nonlinear programming, 1999.

*IPOPT is an open-source nonlinear
interior-point method.'"® The commercial
packages Knitro'’> and fmincon men-
tioned earlier also include interior-point
methods.

106. Wachter and Biegler, On the imple-
mentation of a primal-dual interior point
filter line search algorithm for large-scale
nonlinear programming, 2006.


https://dx.doi.org/10.1007/s10107-004-0559-y
https://dx.doi.org/10.1007/s10107-004-0559-y
https://dx.doi.org/10.1007/s10107-004-0559-y
https://dx.doi.org/10.1007/s10107-004-0559-y
https://dx.doi.org/10.1137/s1052623497325107
https://dx.doi.org/10.1137/s1052623497325107
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5.6.2 SQP Comparisons and Examples

Both interior-point methods and SQP are considered state-of-the-art
approaches for solving nonlinear constrained optimization problems.
Each of these two methods has its strengths and weaknesses. The KKT
system structure is identical at each iteration for interior-point methods,
so we can exploit this structure for improved computational efficiency.
SQP is not as amenable to this because changes in the working set cause
the system’s structure to change between iterations. The downside of
the interior-point structure is that turning all constraints into equalities
means that all constraints must be included at every iteration, even if
they are inactive. In contrast, active-set SQP only needs to consider a
subset of the constraints, reducing the subproblem size.

Active-set SQP methods are generally more effective for medium-
scale problems, whereas interior-point methods are more effective
for large-scale problems. Interior-point methods are usually more
sensitive to the initial starting point and the scaling of the problem.
Therefore, SQP methods are usually more suitable for solving sequences
of warm-started problems.””!?” These are just general guidelines; both
approaches should be considered and tested for a given problem of
interest.

SElIBERES Numerical solution of graphical solution example

Recall the constrained problem with a quadratic objective and quadratic
constraints introduced in Ex. 5.1. Instead of finding an approximate solution
graphically or trying to solve this analytically, we can now solve this numerically
using SQP or the interior-point method. The resulting optimization paths are
shown in Fig. 5.47. These results are only illustrative; paths and iterations can
vary significantly with the starting point and algorithmic parameters.

X X1

Sequential quadratic programming Interior-point method

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

107. Gill et al., On the performance of SQP
methods for nonlinear optimization, 2015.

Fig. 5.47 Numerical solution of prob-
lem solved graphically in Ex. 5.1.


https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-3-319-23699-5_5
https://dx.doi.org/10.1007/978-3-319-23699-5_5
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Interior-point method applied to inequality constrained
problem
Here we solve Ex. 5.4 using the interior-point method (Alg. 5.7) starting
from xg = [2,1]. The initial Lagrange multiplier is ¢ = 0, and the initial slack
variable is s = 1. Starting with a penalty parameter of y = 20 results in the
iterations shown in Fig. 5.48.
For the first iteration, differentiating the Lagrangian with respect to x yields

1+ %axl] _ H

Vall,x2) =1y 50| = |2

and the gradient of the constraint is

1
]

The interior-point system of equations (Eq. 5.100) at the starting point is

1 0 1 0][sx -1
0 1 2 0f[sn|_[-2
1 2 0 1||se| [-2
0 0 1 0]]ss 20

The solution is s = [-21, —42, 20, 103]. Performing a line search in the direction
p = [-21,-42] yields x; = [1.34375,-0.3125]. The Lagrange multiplier and
slack variable are updated to o1 = 20 and s1 = 104, respectively.

To update the approximate Hessian H £ we use the damped BFGS update
(Eq. 5.93) to ensure that H £, is positive definite. By comparing sg yo =73.21
and S(-)rﬁLOSO = 2.15, we can see that s;yk > 0.25;I:ILkSk, and therefore, we do
a full BFGS update with 0y = 1 and ¢ = yg. Using the quasi-Newton update
(Eq. 5.91), we get the approximate Hessian:

L1 7 (4306 37.847

~ [1.388 4.306 ]
We reduce the barrier parameter p1 by a factor of 2 at each iteration. This process
is repeated for subsequent iterations.

The starting point is infeasible, but the algorithm finds a feasible point after
the first iteration. From then on, it approaches the optimum from within the
feasible region, as shown in Fig. 5.48.

SEII NI Constrained spring system

Consider the spring system from Ex. 4.17, which is an unconstrained
optimization problem. We can constrain the spring system by attaching two
cables as shown in Fig. 5.49, where {;; =9m, {;, =6m, y. =2m, x¢; =7 m,
and x¢, =3 m.

2 T 19 iterations
;

x1

Fig. 5.48 Interior-point algorithm it-
erations.
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. R £ Fig. 5.49 Spring system constrained
bey .7~ by two cables.

Because the cables do not resist compression forces, they correspond to
inequality constraints, yielding the following problem:

2

2
1 1
inimi - 2 2 _ — — x1)2 2 _ _
mlgll%lze 2k1 (,/(€1+x1) +x5 31) +2k2 (‘[(l’z X1) + x5 l’z) mgxy

subject to \/(x1 + xcl)2 + (v + yc)2 <l

\/(x1 —xe) (2 +ye) < b, -

The optimization paths for SQP and the interior-point method are shown in
Fig. 5.50.

Fig. 5.50 Optimization of constrained
spring system.

Sequential quadratic programming Interior-point method

5.7 Constraint Aggregation

Aswill be discussed in Chapter 6, some derivative computation methods
are efficient for problems with many inputs and few outputs, and others
are advantageous for problems with few inputs and many outputs.
Thus, if we have many design variables and many constraints, there is
no efficient way to compute the required constraint Jacobian.

One workaround is to aggregate the constraints and solve the op-
timization problem with a new set of constraints. Each aggregation
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would have the form

g(x)=g(g(x)) <0, (5.109)

where g is a scalar, and ¢ is the vector of constraints we want to
aggregate. One of the properties we want for the aggregation function
is that if any of the original constraints are violated, then g > 0.

One way to aggregate constraints would be to define the aggregated
constraint function as the maximum of all constraints,

g(x) = max(g(x)). (5.110)

If max(g(x)) < 0, then we know that all of components of g(x) < 0.
However, the maximum function is not differentiable, so it is not
desirable for gradient-based optimization. In the rest of this section,
we introduce several viable functions for constraint aggregation that
are differentiable.

The Kreisselmeier—Steinhauser (KS) aggregation was one of the
first aggregation functions proposed for optimization and is defined as

follows: 198
ng

3xs(p, ) = % In Z exp(pgj) | » (5.111)
j=1
where p is an aggregation factor that determines how close this function
is to the maximum function (Eq. 5.110). As p — o0, gxs(p, g) — max(g).
However, as p increases, the curvature of g increases, which can cause
ill-conditioning in the optimization.

The exponential function disproportionately weighs the higher
positive values in the constraint vector, but it does so in a smooth way.
Because the exponential function can easily result in overflow, it is
preferable to use the alternate (but equivalent) form of the KS function,

g

- 1
gxs(p, Q) = m]ax g+ E In Z exp (p (gf = mjax g]-)) 5 (5.112)
j=1

The value of p should be tuned for each problem, but p = 100 works
well for many problems.

SEIIEERIA Constrained spring system with aggregated constraints

Consider the constrained spring system from Ex. 5.16. Aggregating the two
constraints using the KS function, we can formulate a single constraint as

_ 1
Jks(x1,x2) = Eln (exp (pg2(x1,x2)) + exp (pga(x1, x2))) ,

108. Kreisselmeier and Steinhauser,
Systematic control design by optimizing a
vector performance index, 1979.


https://dx.doi.org/10.1016/s1474-6670(17)65584-8
https://dx.doi.org/10.1016/s1474-6670(17)65584-8
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where

g1(x1,x2) = \/(xl + x61)2 +(x2+ ]/C)z =l

2 2
£2(x1,x2) = \/(xl — o)+ (2 Ye) ey -
Figure 5.51 shows the contour of kg = 0 for increasing values of the aggregation
parameter p.

N
N

prs =2, fig=-19.448 pxs =10, fig=-21.653 pxs =100, fig = ~22.090

For the lowest value of p, the feasible region is reduced, resulting in a  Fig. 5.51 KS function aggregation of
conservative optimum. For the highest value of p, the optimum obtained tWObionStr%‘iEts- The Op’gmum of the
with constraint aggregation is graphically indistinguishable, and the objective problem with aggregated constraints,

- i Xkgr approaches the true optimum
function value approaches the true optimal value of —22.1358. as the aggregation parameter pys in-

creases.

The p-norm aggregation function is another option for aggregation

and is defined as follows:'?”” 109. Duysinx and Bendsoe, Topology
optimization of continuum structures with

local stress constraints, 1998.

g
_ 8j
(p) = max|g;l — (5.113)
SPNIP) = MAx1gs ]z_; max; g

The absolute value in this equation can be an issue if ¢ can take both
positive and negative values because the function is not differentiable
in regions where g transitions from positive to negative.
A class of aggregation functions known as induced functions was
designed to provide more accurate estimates of max(g) for a given
value of p than the KS and induced norm functions.'!” There are two ~ 110. Kennedy and Hicken, Inproved
main types of induced functions: one uses exponentials, and the other constraint-aggregation mehods, 2015.
uses powers. The induced exponential function is given by

351 87 exp(pg))

— (5.114)
2151 eXP(ng)

SiE(p) =


https://dx.doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
https://dx.doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
https://dx.doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
https://dx.doi.org/10.1016/j.cma.2015.02.017
https://dx.doi.org/10.1016/j.cma.2015.02.017
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The induced power function is given by
n +1
2 jj1 8¢
-
2 ]‘il 8t

The induced power function is only applicableif ¢; > Oforj =1,...,n,.

gie(p) = (5.115)

5.8 Summary

Most engineering design problems are constrained. When formulating
a problem, practitioners should be critical of their choice of objective
function and constraints. Metrics that should be constraints are often
wrongly formulated as objectives. A constraint should not limit the
design unnecessarily and should reflect the underlying physical reason
for that constraint as much as possible.

The first-order optimality conditions for constrained problems—the
KKT conditions—require the gradient of the objective to be a linear
combination of the gradients of the constraints. This ensures that there
is no feasible descent direction. Each constraint is associated with
a Lagrange multiplier that quantifies how significant that constraint
is at the optimum. For inequality constraints, a Lagrange multiplier
that is zero means that the corresponding constraint is inactive. For
inequality constraints, slack variables quantify how close a constraint
is to becoming active; a slack variable that is zero means that the
corresponding constraint is active. Lagrange multipliers and slack
variables are unknowns that need to be solved together with the
design variables. The complementary slackness condition introduces a
combinatorial problem that is challenging to solve.

Penalty methods solve constrained problems by adding a metric
to the objective function quantifying how much the constraints are
violated. These methods are helpful as a conceptual model and are
used in gradient-free optimization algorithms (Chapter 7). However,
penalty methods only find approximate solutions and are subject to
numerical issues when used with gradient-based optimization.

Methods based on the KKT conditions are preferable. The most
widely used among such methods are SQP and interior-point methods.
These methods apply Newton’s method to the KKT conditions. One
primary difference between these two methods is in the treatment of
inequality constraints. SQP methods distinguish between active and
inactive constraints, treating potentially active constraints as equality
constraints and ignoring the potentially inactive ones. Interior-point
methods add slack variables to force all constraints to behave like
equality constraints.
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Problems

5.1 Answer true or false and correct the false statements.

a.

—

Penalty methods are among the most effective methods for
constrained optimization.

. For an equality constraint in #-dimensional space, all feasible

directions about a point are perpendicular to the constraint
gradient at that point and define a hyperplane with dimen-
sionn — 1.

. The feasible directions about a point on an inequality con-

straint define an open half-space whose dividing hyperplane
is perpendicular to the gradient of the constraint at that
point.

. A point is optimal if there is only one feasible direction that

is also a descent direction.

. For an inequality constrained problem, if we replace the

inequalities that are active at the optimum with equality
constraints and ignore the inactive constraints, we get the
same optimum.

. For a point to be optimal, the Lagrange multipliers for both

the equality constraint and the active inequality constraints
must be positive.

. The complementary slackness conditions are easy to solve

for because either the Lagrange multiplier is zero or the slack
variable is zero.

. At the optimum of a constrained problem, the Hessian of

the Lagrangian function must be positive semidefinite.

. The Lagrange multipliers represent the change in the objec-

tive function we would get for a perturbation in the constraint
value.

. SQP seeks to find the solution of the KKT system.

. Interior-point methods must start with a point in the interior

of the feasible region.

. Constraint aggregation combines multiple constraints into a

single constraint that is equivalent.

5.2 Let us modify Ex. 5.2 so that the equality constraint is the negative
of the original one—that is,

1
h(xy,x2) = —Zx% —xg +1=0.
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5.3

54

55

5.6

5.7

Classify the critical points and compare them with the original
solution. What does that tell you about the significance of the
Lagrange multiplier sign?

Similar to the previous exercise, consider Ex. 5.4 and modify it
so that the inequality constraint is the negative of the original
one—that is,

1
h(xy,x2) = _Zx% —x§+1 <0.

Classify the critical points and compare them with the original
solution.

Consider the following optimization problem:

minimize x% + 3x§ +4

by varying x1, x2 (5.116)
subjectto x> 1 '

x% + 4x§ <4.
Find the optimum analytically.

Find the rectangle of maximum area that can be inscribed in an

ellipse. Give your answer in terms of the ratio of the two areas.

Check that your answer is intuitively correct for the special case
of a rectangle inscribed in a circle.

In Section 2.1, we mentioned that Euclid showed that among

rectangles of a given perimeter, the square has the largest area.

Formulate the problem and solve it analytically. What are the
units in this problem, and what is the physical interpretation of
the Lagrange multiplier? Exploration: Show that if you minimize
the perimeter with an area constrained to the optimal value you
found previously, you get the same solution.

Column in compression. Consider a thin-walled tubular column
subjected to a compression force, as shown in Fig. 5.52. We want
to minimize the mass of the column while ensuring that the
structure does not yield or buckle under a compression force of
magnitude F. The design variables are the radius of the tube (R)
and the wall thickness (t). This design optimization problem can

S

|
I~

R

Fig. 5.52 Slender tubular column in
compression.
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5.8
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be stated as follows:

minimize 2pfnRt mass
by varying R,t radius, wall thickness
F
subject to RE Oyield < 0 yield stress
3ER3t
F- 7147 <0 buckling load

In the formula for the mass in this objective, p is the material
density, and we assume that t << R. The first constraint is the
compressive stress, which is simply the force divided by the cross-
sectional area. The second constraint uses Euler’s critical buckling
load formula, where E is the material Young’s modulus, and the
second moment of area is replaced with the one corresponding
to a circular cross section (I = TR3t).

Find the optimum R and t as a function of the other parameters.
Pick reasonable values for the parameters, and verify your solution
graphically. Plot the gradients of the objective and constraints at
the optimum, and verify the Lagrange multipliers graphically.

Beam with H section. Consider a cantilevered beam with an H-
shaped cross section composed of a web and flanges subject to a
transverse load, as shown in Fig. 5.53. The objective is to minimize
the structural weight by varying the web thickness t,, and the
flange thickness t;, subject to stress constraints. The other cross-
sectional parameters are fixed; the web height h is 250 mm, and
the flange width b is 125 mm. The axial stress in the flange and
the shear stress in the web should not exceed the corresponding
yield values (oyielq = 200 MPa, and Tyielg = 116 MPa, respectively).
The optimization problem can be stated as follows:

minimize 2bt, + hty mass
by varying tp, tw flange and web thicknesses
. Pth .
sub]ect to a7 Oyield < 0 axial stress
1.5P
T Tyield < 0 shear stress
w
The second moment of area for the H section is
I= hat + bt3+ h2bt
T2 e T2t

Find the optimal values of t, and t, by solving the KKT conditions
analytically. Plot the objective contours and constraints to verify
your result graphically.

< fy h =250 mm

P =100 k!\l

e
|

{=1m

Fig. 5.53 Cantilever beam with H sec-
tion.
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5.9 Penalty method implementation. Program one or more penalty
methods from Section 5.4.

a.

Solve the constrained problem from Ex. 5.6 as a first test of
your implementation. Use an existing software package for
the optimization subproblem or the unconstrained optimizer
you implemented in Prob. 4.9. How far can you push the
penalty parameter until the optimizer fails? How close can
you get to the exact optimum? Try different starting points
and verify that the algorithm always converges to the same
optimum.

. Solve Prob. 5.3.
. Solve Prob. 5.11.

. Exploration: Solve any other problem from this section or a

problem of your choosing.

5.10 Constrained optimizer implementation. Program an SQP or interior-
point algorithm. You may repurpose the BFGS algorithm that you
implemented in Prob. 4.9. For SQP, start by implementing only
equality constraints, reformulating test problems with inequality
constraints as problems with only equality constraints.

5.11

a.

Reproduce the results from Ex. 5.12 (SQP) or Ex. 5.15 (interior
point).

. Solve Prob. 5.3.
. Solve Prob. 5.11.

. Compare the computational cost, precision, and robustness

of your optimizer with those of an existing software package.

Aircraft fuel tank. A jet aircraft needs to carry a streamlined
external fuel tank with a required volume. The tank shape is
approximated as an ellipsoid (Fig. 5.54). We want to minimize the
drag of the fuel tank by varying its length and diameter—that is:

minimize D(¢,d)
by varying ¢,d
subjectto  Vieq—V({,d) <0.

The drag is given by

D = %pszDS,

Fig. 5.54 Ellipsoid fuel tank.
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512

5.13

where the air density is p = 0.55 kg/m?, and the aircraft speed is
v =300 m/s. The drag coefficient of an ellipsoid can be estimated

3/2 3
d d

We assume a friction coefficient of Cy = 0.0035. The drag is
proportional to the surface area of the tank, which, for an ellipsoid,
is

*

as

Cp = Cy

_to t .
S = 2d (1+de arcsme) ,

where e = /1 — d2/¢2. The volume of the fuel tank is
_ T
V= 6d l,

and the required volume is Vieq = 2.5 m3.

Find the optimum tank length and diameter numerically using
your own optimizer or a software package. Verify your solution
graphically by plotting the objective function contours and the
constraint.

Solve a variation of Ex. 5.16 where we replace the system of cables
with a cable and a rod that resists both tension and compression.
The cable is positioned above the spring, as shown in Fig. 5.55,
where x; = 2 m, and y, = 3 m, with a maximum length of
f. = 7.0 m. The rod is positioned at x, = 2 m and y, = 4 m,
with a length of £, = 4.5 m. How does this change the problem

formulation? Does the optimum change?

Three-bar truss. Consider the truss shown in Fig. 5.56. The truss is
subjected to a load P, and we want to minimize the mass of the
structure subject to stress and buckling constraints.” The axial

Fig. 5.55 Spring system constrained
by two cables.

*This is a well-known optimization prob-
lem formulated by Schmit’> when he first
proposed integrating numerical optimiza-
tion with finite-element structural analy-
sis.

32. Schmit, Structural design by systematic
synthesis, 1960.
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stresses in each bar are

1 (Pcos@ Psin® )
+

01 =—=
V2 \ Ao A, + V24,
V2P sin 6

0 =—————
A, + V2A,,

5 1 ( Psin 6 Pcos@)
3 =" - ’
V2 \A, +V24,, Ao
where A, is the cross-sectional area of the outer bars 1 and 3,

and A,, is the cross-sectional area of the middle bar 2. The full {=05m
—————p
optimization problem for the three-bar truss is as follows:

minimize p (F(Z\/EAO + Am)) mass
by varying A,, An cross-sectional areas
subject to  Amin — A, <0 area lower bound 0 =55deg
Amin —Am <0 P = 500 kN
Oyield — 01 < 0 stress constraints

Fig. 5.56 Three-bar truss elements.
Oyield — 02 <0

o_yield —03 < 0

n?EBA,
Ay, <0 buckling constraints
T2EBAm
— 02 — 2—€2 <0
n?EBA,
—03———— <
03 2€2 <0

In the buckling constraints, § relates the second moment of area to
the area (I = BA?) and is dependent on the cross-sectional shape
of the bars. Assuming a square cross section, f = 1/12. The bars
are made out of an aluminum alloy with the following properties:
p =2710 kg/m3, E = 69 GPa, dyjelg = 110 MPa.

Find the optimal bar cross-sectional areas using your own opti-
mizer or a software package. Which constraints are active? Verify
your result graphically. Exploration: Try different combinations
of unit magnitudes (e.g., Pa versus MPa for the stresses) for the
functions of interest and the design variables to observe the effect
of scaling.

5.14 Solve the same three-bar truss optimization problem in Prob. 5.13
by aggregating all the constraints into a single constraint. Try
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different aggregation parameters and see how close you can get
to the solution you obtained for Prob. 5.13.

5.15 Ten-bar truss.Consider the 10-bar truss structure described in
Appendix D.2.2. The full design optimization problem is as

follows:
10
minimize p Z Ail; mass
i=1
by varying A;, i=1,...,10 cross-sectional areas
subjectto  A; > Amin minimum area

loi| <oy, i=1,...,10 stress constraints
Yi

Find the optimal mass and corresponding cross-sectional areas
using your own optimizer or a software package. Show a conver-
gence plot. Report the number of function evaluations and the
number of major iterations. Exploration: Restart from different
starting points. Do you get more than one local minimum? What
can you conclude about the multimodality of the design space?

5.16 Solve the same 10-bar truss optimization problem of Prob. 5.15
by aggregating all the constraints into a single constraint. Try
different aggregation parameters and see how close you can get
to the solution you obtained for Prob. 5.15.

5.17 Consider the aircraft wing design problem described in Ap-
pendix D.1.6. Now we will add a constraint on the bending stress
at the root of the wing, as described in Ex. 1.3.

We derive the bending stress using the one-dimensional beam
bending theory. Assuming that the lift distribution is uniform,
the load per unit length is L/b. We can consider the wing as a
cantilever of length b/2. The bending moment at the wing root is

(L/b)(b/2)? _ Lb

M= > g

Now we assume that the wing structure has the H-shaped cross
section from Prob. 5.8 with a constant thickness of ¢, = f, = 4 mm.
We relate the cross-section height fgec and width bge. to the chord
as hgec = 0.1c and bgec = 0.4c. With these assumptions, we can
compute the second moment of area I in terms of c.

The maximum bending stress is then

_ Mbhgec
Omax = T
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Considering the safety factor of 1.5 and the ultimate load factor
of 2.5, the stress constraint is

Ovyield
Y < 0’

2-5Umax - W =

where oyielq = 200 MPa.

Solve this problem and compare the solution with the uncon-
strained optimum. Plot the objective contours and constraint to
verify your result graphically.



Computing Derivatives

The gradient-based optimization methods introduced in Chapters 4
and 5 require the derivatives of the objective and constraints with
respect to the design variables, as illustrated in Fig. 6.1. Derivatives
also play a central role in other numerical algorithms. For example, the
Newton-based methods introduced in Section 3.8 require the derivatives
of the residuals.

The accuracy and computational cost of the derivatives are critical for
the success of these methods. Gradient-based methods are only efficient
when the derivative computation is also efficient. The computation of
derivatives can be the bottleneck in the overall optimization procedure,
especially when the model solver needs to be called repeatedly. This
chapter introduces the various methods for computing derivatives and
discusses the relative advantages of each method.

By the end of this chapter you should be able to:

1. List the methods for computing derivatives.

2. Explain the pros and cons of these methods.

3. Implement the methods for some computational models.
4.

Understand how the methods are connected through the
unified derivatives equation.

6.1 Derivatives, Gradients, and Jacobians

The derivatives we focus on are first-order derivatives of one or more
functions of interest (f) with respect to a vector of variables (x). In
the engineering optimization literature, the term sensitivity analysis is
often used to refer to the computation of derivatives, and derivatives

are sometimes referred to as sensitivity derivatives or design sensitivities.

Although these terms are not incorrect, we prefer to use the more
specific and concise term derivative.

223

Optimizer
f’ §
A

3 Derivative
\YH Computation
Fig. 6.1 Efficient derivative computa-

tion is crucial for the overall efficiency
of gradient-based optimization.
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For the sake of generality, we do not specify which functions we want
to differentiate in this chapter (which could be an objective, constraints,
residuals, or any other function). Instead, we refer to the functions
being differentiated as the functions of interest and represent them as a
vector-valued function, f =[f1, f2,..., fu f]. Neither do we specify the
variables with respect to which we differentiate (which could be design
variables, state variables, or any other independent variable).

The derivatives of all the functions of interest with respect to all the
variables form a Jacobian matrix,

9h . 9A
= T b 6.1)
f:g: : = : o : ’ .
Vfug T Ofns . Ofns
0x1 0xy,
(npxny)

which is an (75 X ;) rectangular matrix where each row corresponds to
the gradient of each function with respect to all the variables. Row i of
the Jacobian is the gradient of function f;. Each column in the Jacobian
is called the tangent with respect to a given variable x;. The Jacobian
can be related to the V operator as follows:

ofh . oA
dx Ix,
Iy = VT ; [& : S 62)
f= = : a—xl...axn = : .. : . .
dxq 0xp,

SEMEERN Jacobian of a vector-valued function

Consider the following function with two variables and two functions of

interest:
1(x1, x2) x1%x +sin xq
fa(x1, x2) X1X2 + x5
We can differentiate this symbolically to obtain exact reference values:
df  [x2+cosxq X1
ax X2 X1+ 2x|°

We evaluate this at x = (11/4, 2), which yields

df _[2.707 0.785
dx ~ |2.000 4.785|°
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6.2 Overview of Methods for Computing Derivatives

We can classify the methods for computing derivatives according to the
representation used for the numerical model. There are three possible
representations, as shown in Fig. 6.2. In one extreme, we know nothing
about the model and consider it a black box where we can only control
the inputs and observe the outputs (Fig. 6.2, left). In this chapter, we
often refer to x as the input variables and f as the output variables. When
this is the case, we can only compute derivatives using finite differences
(Section 6.4).

In the other extreme, we have access to the source code used to
compute the functions of interest and perform the differentiation line by
line (Fig. 6.2, right). This is the essence of the algorithmic differentiation
approach (Section 6.6). The complex-step method (Section 6.5) is related
to algorithmic differentiation, as explained in Section 6.6.5.

In the intermediate case, we consider the model residuals and
states (Fig. 6.2, middle), which are the quantities required to derive
and implement implicit analytic methods (Section 6.7). When the
model can be represented with multiple components, we can use a
coupled derivative approach (Section 13.3) where any of these derivative
computation methods can be used for each component.

x 1

i
f f(x',u)F»f

Black box: Residuals and states:
Finite differencing Implicit analytic differentiation

1R Identify and mitigate the sources of numerical noise

As mentioned in Tip 3.2, it is vital to determine the level of numerical noise
in your model. This is especially important when computing derivatives of the
model because taking the derivative can amplify the noise. There are several
common sources of model numerical noise, some of which we can mitigate.

Iterative solvers can introduce numerical noise when the convergence
tolerance is too high or when they have an inherent limit in their precision
(see Section 3.5.3). When we do not have enough precision, we can reduce the
convergence tolerance or increase the iteration limit.

Another possible source of error is file input and output. Many legacy

X —» U1 =X
vy = v2(v1)
v3 = v3(v1, V2)

f = Un(vlz oo )

Lines of code:
Algorithmic differentiation

Fig. 6.2 Derivative computation meth-
ods can consider three different levels
of information: function values (left),
model states (middle), and lines of
code (right).
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codes are driven by reading and writing input and output files. However, the
numbers in the files usually have fewer digits than the code’s working precision.
The ideal solution is to modify the code to be called directly and pass the data
through memory. Another solution is to increase the precision in the files.

6.3 Symbolic Differentiation

Symbolic differentiation is well known and widely used in calculus, but
it is of limited use in the numerical optimization of most engineering
models. Except for the most straightforward cases (e.g., Ex. 6.1), many
engineering models involve a large number of operations, utilize loops
and various conditional logic, are implicitly defined, or involve itera-
tive solvers (see Chapter 3). Although the mathematical expressions
within these iterative procedures is explicit, it is challenging, or even
impossible, to use symbolic differentiation to obtain closed-form math-
ematical expressions for the derivatives of the procedure. Even when
it is possible, these expressions are almost always computationally
inefficient.

S EII A Symbolic differentiation leading to expression swell

Kepler’s equation describes the orbit of a body under gravity, as briefly
discussed in Section 2.2. The following implicit equation can be obtained from
Kepler’s equation:*

f=sin(x+f).
Thus, f is an implicit function of x. As a simple numerical procedure, we use
fixed-point iteration to determine the value of f for a given input x. That means
we start with a guess for f on the right-hand side of that expression to estimate
a new value for f, and repeat. In this case, convergence typically happens in
about 10 iterations. Arbitrarily, we choose x as the initial guess for f, resulting
in the following computational procedure:

Input: x
f=x
fori =1to10do
f =sin(x + f)
end for
return f

Now that we have a computational procedure, we would like to compute the
derivative df /dx. We can use a symbolic math toolbox to find the following
closed-form expression for this derivative:

*Here, f is the difference between the ec-
centric and mean anomalies, x is the mean
anomaly, and the eccentricity is set to 1.
For more details, see Probs. 3.6 and 6.6.
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dfdx =

cos(x + sin(x + sin(x + sin(x + sin(x + sin(x + sin(x + sin(x + sin(x +
sin(2%x))))))))))*(cos(x + sin(x + sin(x + sin(x + sin(x + sin(x +
sin(x + sin(x + sin(2*x)))))))))*(cos(x + sin(x + sin(x + sin(x +
sin(x + sin(x + sin(x + sin(2*x))))))))*(cos(x + sin(x + sin(x + sin
(x + sin(x + sin(x + sin(2*x)))))))*(cos(x + sin(x + sin(x + sin(x +
sin(x + sin(2*x))))))*(cos(x + sin(x + sin(x + sin(x + sin(2*x)))))
*(cos(x + sin(x + sin(x + sin(2*x))))*(cos(x + sin(x + sin(2*x)))*(
cos(x + sin(2*x))*(2*cos(2*x) + 1) + 1) + 1) + 1) + 1) + 1) + 1) +
1)+ 1)

This expression is long and is full of redundant calculations. This problem
becomes exponentially worse as the number of iterations in the loop is increased,
so this approach is intractable for computational models of even moderate
complexity—this is known as expression swell. Therefore, we dedicate the rest
of this chapter to methods for computing derivatives numerically.

Symbolic differentiation is still valuable for obtaining derivatives
of simple explicit components within a larger model. Furthermore,
algorithm differentiation (discussed in a later section) relies on symbolic
differentiation to differentiate each line of code in the model.

6.4 Finite Differences

Because of their simplicity, finite-difference methods are a popular
approach to computing derivatives. They are versatile, requiring
nothing more than function values. Finite differences are the only
viable option when we are dealing with black-box functions because
they do not require any knowledge about how the function is evaluated.
Most gradient-based optimization algorithms perform finite differences
by default when the user does not provide the required gradients.
However, finite differences are neither accurate nor efficient.

6.4.1 Finite-Difference Formulas

Finite-difference approximations are derived by combining Taylor
series expansions. It is possible to obtain finite-difference formulas
that estimate an arbitrary order derivative with any order of truncation
error by using the right combinations of these expansions. The simplest
finite-difference formula can be derived directly from a Taylor series
expansion in the jth direction,

f h**f K’ Pf

f(x-{'he]‘):f(X)‘F”la—xj-FEsz-FaW+..., (63)



6 CoMPUTING DERIVATIVES 228

where ¢; is the unit vector in the jth direction. Solving this for the first
derivative, we obtain the finite-difference formula,

A _ flx+he) = f(x)
ax]- B h

+o(h), (6.4)

where  is a small scalar called the finite-difference step size. This
approximation is called the forward difference and is directly related to
the definition of a derivative because

I _y fle+hé) = f(x) — flx+he)) - f(x)
ox; 1o I ~ 7 '

(6.5)

The truncation error is O(h), and therefore this is a first-order approx-
imation. The difference between this approximation and the exact
derivative is illustrated in Fig. 6.3.

The backward-difference approximation can be obtained by replac-
ing h with —h to yield

Bf f(x) flx—hé;)
&x] h

+O(h), (6.6)

which is also a first-order approximation.

Assuming each function evaluation yields the full vector f, the
previous formulas compute the jth column of the Jacobian in Eq. 6.1.
To compute the full Jacobian, we need to loop through each direction
¢j, add a step, recompute f, and compute a finite difference. Hence, the
cost of computing the complete Jacobian is proportional to the number
of input variables of interest, 7.

For a second-order estimate of the first derivative, we can use the
expansion of f(x — hé;) to obtain

L AL
f(x—he])—f(x) Eﬁ—aﬁlaﬁ‘ (67)
Then, if we subtract this from the expansion in Eq. 6.3 and solve the
resulting equation for the derivative of f, we get the central-difference
formula,
of f(x+he,) f(x - hé))
The stencil of points for this formula is shown in Fig. 6.4, where we can
see that this estimate is closer to the actual derivative than the forward
difference.

Even more accurate estimates can be derived by combining differ-

ent Taylor series expansions to obtain higher-order truncation error

+O(h?). (6.8)

f(x) I'm‘\x:ard FD
estimate

f(x+h)
True derivative

X x+h

Fig. 6.3 Exact derivative compared
with a forward finite-difference ap-
proximation (Eq. 6.4).

Central FD
estimate

f(x+h)

True derivative

x—h X x+h

Fig. 6.4 Exact derivative compared
with a central finite-difference ap-
proximation (Eq. 6.8).
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terms. This technique is widely used in finite-difference methods
for solving differential equations, where higher-order estimates are
desirable.However, finite-precision arithmetic eventually limits the

achievable accuracy for our purposes (as discussed in the next section).

With double-precision arithmetic, there are not enough significant
digits to realize a significant advantage beyond central difference.

We can also estimate second derivatives (or higher) by combining
Taylor series expansions. For example, adding the expansions for
f(x+h)and f(x —h) cancels out the first derivative and third derivative
terms, yielding the second-order approximation to the second-order
derivative,

Pf  flx+2h8) ~2f(x) + f(x — 2h¢)

757 e +0 (1?) . (6.9)

The finite-difference method can also be used to compute directional
derivatives, which are the scalar projection of the gradient into a given
direction. To do this, instead of stepping in orthogonal directions to get
the gradient, we need to step in the direction of interest, p, as shown in
Fig. 6.5. Using the forward difference, for example,

f(x +hp) - f(x)
h

V,f = +O(h). (6.10)

One application of directional derivatives is to compute the slope in
line searches (Section 4.3).

6.4.2 The Step-Size Dilemma

When estimating derivatives using finite-difference formulas, we are
faced with the step-size dilemma. Because each estimate has a truncation
error of O(h) (or O(h?) when second order), we would like to choose
as small of a step size as possible to reduce this error. However, as the

Fig. 6.5 Computing a directional
derivative using a forward finite dif-
ference.
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step size reduces, subtractive cancellation (a roundoff error introduced in
Section 3.5.1) becomes dominant. Given the opposing trends of these
errors, there is an optimal step size for which the sum of the two errors
is at a minimum.

Theoretically, the optimal step size for the forward finite difference
is approximately /€5, where ¢ is the precision of f. The error bound
is also about 4/¢5. For the central difference, the optimal step size scales

approximately with e}/ 3 with an error bound of ¢2/°. These step and
error bound estimates are just approximate and assume well-scaled
problems.

€Nl BNFEN Accuracy of finite differences

To demonstrate the step-size dilemma, consider the following function:

ex

Vsin® x + cos3 x
The exact derivative at x = 1.5 is computed to 16 digits based on symbolic
differentiation as a reference value.

In Fig. 6.6, we show the derivatives given by the forward difference, where
we can see that as we decrease the step size, the derivative approaches the exact
value, but then it worsens and becomes zero for a small enough step size.

We plot the relative error of the forward- and central-difference formulas for
a decreasing step size in Fig. 6.7. As the step decreases, the forward-difference
estimate initially converges at a linear rate because its truncation error is O(h),
whereas the central difference converges quadratically. However, as the step
reduces below a particular value (about 1078 for the forward difference and 1075
for the central difference), subtractive cancellation errors become increasingly

flx) =

significant. These values match the theoretical predictions for the optimal step
and error bounds when we set ¢y = 10716, When } is so small that no difference
exists in the output (for steps smaller than 10716), the finite-difference estimates
yield zero (and € = 1), which corresponds to 100 percent error.

Table 6.1 lists the data for the forward difference, where we can see the
number of digits in the difference A f decreasing with decreasing step size until

the difference is zero (for h = 10~17).

When using finite differencing, always perform a step-size
study
In practice, most gradient-based optimizers use finite differences by default
to compute the gradients. Given the potential for inaccuracies, finite differences
are often the culprit in cases where gradient-based optimizers fail to converge.
Although some of these optimizers try to estimate a good step size, there is
no substitute for a step-size study by the user. The step-size study must be

h
10715
1071
1078

5]

7 10~ 16

x

Fig. 6.6 The forward-difference
derivative initially improves as the
step decreases but eventually gives
a zero derivative for a small enough
step size.

Forward
difference

10 +

Central
difference
1074 +

1078 +

10712

107" 10717 107%

h

1077

Fig. 6.7 As the step size h decreases,
the total error in the finite-difference
estimates initially decreases because
of a reduced truncation error. How-
ever, subtractive cancellation takes
over when the step is small enough
and eventually yields an entirely
wrong derivative.



6 CoMPUTING DERIVATIVES

231

h fx+h) Af df/dx
1071 4.9562638252880662  0.4584837713419043  4.58483771
1072 4.5387928890592475 0.0410128351130856  4.10128351
1074 4.4981854440562818  0.0004053901101200  4.05390110
1070 4.4977841073787870  0.0000040534326251  4.05343263
1078 4.4977800944804409  0.0000000405342790  4.05342799
10710 4.4977800543515052  0.0000000004053433  4.05344203
10712 4.4977800539502155  0.0000000000040536  4.05453449
10714 4.4977800539462027  0.0000000000000409  4.17443857
10716 4.4977800539461619  0.0000000000000000  0.00000000
10718 4.4977800539461619  0.0000000000000000  0.00000000
Exact 4.4977800539461619 405342789

performed for all variables and does not necessarily apply to the whole design

space. Therefore, repeating this study for other values of x might be required.

Because we do not usually know the exact derivative, we cannot plot the
error as we did in Fig. 6.7. However, we can always tabulate the derivative
estimates as we did in Table 6.1. In the last column, we can see from the pattern
of digits that match the previous step size that i = 1078 is the best step size in
this case.

Finite-difference approximations are sometimes used with larger
steps than would be desirable from an accuracy standpoint to help
smooth out numerical noise or discontinuities in the model. This
approach sometimes works, but it is better to address these problems
within the model whenever possible. Figure 6.8 shows an example of
this effect. For this noisy function, the larger step ignores the noise and
gives the correct trend, whereas the smaller step results in an estimate
with the wrong sign.

6.4.3 Practical Implementation

Algorithm 6.1 details a procedure for computing a Jacobian using
forward finite differences. It is usually helpful to scale the step size
based on the value of x;, unless x; is too small. Therefore, we combine
the relative and absolute quantities to obtain the following step size:

This is similar to the expression for the convergence criterion in Eq. 4.24.

Although the absolute step size usually differs for each x is the relative
step size h is often the same and is user-specified.

Table 6.1 Subtractive cancellation
leads to a loss of precision and, ul-
timately, inaccurate finite-difference
estimates.

0.5369

0.5369 +

0.5369 |
-2.1078

2-1-107° 2.0 2+41-107°

x

Fig. 6.8 Finite-differencing noisy func-
tions can either smooth the derivative
estimates or result in estimates with
the wrong trends.
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\Felaialne NN Forward finite-difference gradient computation of a vector-
valued function f(x)

Inputs:
X: Point about which to compute the gradient
f: Vector of functions of interest

Outputs:

J: Jacobian of f with respect to x

fo=f) Evaluate reference values
h=10"° Relative step size (value should be tuned)
forj=1tony do
Ax = k(1 + |xj]) Step size should be scaled but not smaller than &
Xj=xj+ Ax Modify in place for efficiency, but copying vector is also an option
+=f(x Evaluate function at perturbed point
p p
f+—fo o . . ,
]*,j = T Finite difference yields one column of Jacobian at a time
xj=xj—Ax Do not forget to reset!
end for

6.5 Complex Step

The complex-step derivative approximation, strangely enough, com-
putes derivatives of real functions using complex variables. Unlike
finite differences, the complex-step method requires access to the source
code and cannot be applied to black-box components. The complex-step
method is accurate but no more efficient than finite differences because
the computational cost still scales linearly with the number of variables.

6.5.1 Theory

The complex-step method can also be derived using a Taylor series
expansion. Rather than using a real step &, as we did to derive the
finite-difference formulas, we use a pure imaginary step, ih.* If f isa
real function in real variables and is also analytic (differentiable in the
complex domain), we can expand it in a Taylor series about a real point
x as follows:

W3PS

—_—t....
Z68x]-3

2
fx+ iy = fo)+inl 2L _

&X]‘ 2 &x]-z (612)

Taking the imaginary parts of both sides of this equation, we have
W3 P*f

o BTt

Im(f(x+lhej))=h3xj g 8x]~3+“"

(6.13)

*This method originated with the work
of Lyness and Moler,''> who developed
formulas that use complex arithmetic for
computing the derivatives of real func-
tions of arbitrary order with arbitrary or-
der truncation error, much like the Tay-
lor series combination approach in finite
differences. Later, Squire and Trapp*’ ob-
served that the simplest of these formulas
was convenient for computing first deriva-
tives.

49. Squire and Trapp, Using complex vari-

ables to estimate derivatives of real functions,

1998.

112. Lyness and Moler, Numerical differen-
tiation of analytic functions, 1967.


https://dx.doi.org/10.1137/S003614459631241X
https://dx.doi.org/10.1137/S003614459631241X
https://dx.doi.org/10.1137/0704019
https://dx.doi.org/10.1137/0704019
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Dividing this by & and solving for df/dx; yields the complex-step
derivative approximation,t

of Im(f(x+ihé))) )
8_x]- =— ¢ o(h?), (6.14)
which is a second-order approximation. To use this approximation, we
must provide a complex number with a perturbation in the imaginary
part, compute the original function using complex arithmetic, and take
the imaginary part of the output to obtain the derivative.

In practical terms, this means that we must convert the function
evaluation to take complex numbers as inputs and compute complex
outputs. Because we have assumed that f(x) is a real function of a
real variable in the derivation of Eq. 6.14, the procedure described
here does not work for models that already involve complex arithmetic.
In Section 6.5.2, we explain how to convert programs to handle the
required complex arithmetic for the complex-step method to work in
general. The complex-step method has been extended to compute exact
second derivatives as well. %114

Unlike finite differences, this formula has no subtraction operation
and thus no subtractive cancellation error. The only source of numerical
error is the truncation error. However, the truncation error can be
eliminated if / is decreased to a small enough value (say, 1072%). Then,
the precision of the complex-step derivative approximation (Eq. 6.14)
matches the precision of f. This is a tremendous advantage over the
finite-difference approximations (Egs. 6.4 and 6.8).

Like the finite-difference approach, each evaluation yields a column
of the Jacobian (df /dx;), and the cost of computing all the derivatives is
proportional to the number of design variables. The cost of the complex-
step method is comparable to that of a central difference because we
compute a real and an imaginary part for every number in our code.

If we take the real part of the Taylor series expansion (Eq. 6.12), we
obtain the value of the function on the real axis,

f(x) =Re (f(x +ihé;)) + O(h?). (6.15)

Similar to the derivative approximation, we can make the truncation
error disappear by using a small enough k. This means that no separate
evaluation of f(x) is required to get the original real value of the
function; we can simply take the real part of the complex evaluation.
What is a “small enough #”? When working with finite-precision
arithmetic, the error can be eliminated entirely by choosing an / so small
that all 2 terms become zero because of underflow (i.e., h? is smaller

*This approximation can also be derived
from one of the Cauchy-Riemann equa-
tions, which are fundamental in complex
analysis and express complex differentia-
bility.”"

50. Martins et al., The complex-step deriva-
tive approximation, 2003.

113. Lantoine et al., Using multicomplex
variables for automatic computation of high-
order derivatives, 2012.

114. Fike and Alonso, Automatic differenti-
ation through the use of hyper-dual numbers

for second derivatives, 2012.


https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1145/2168773.2168774
https://dx.doi.org/10.1145/2168773.2168774
https://dx.doi.org/10.1145/2168773.2168774
https://dx.doi.org/10.1007/978-3-642-30023-3_15
https://dx.doi.org/10.1007/978-3-642-30023-3_15
https://dx.doi.org/10.1007/978-3-642-30023-3_15
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than the smallest representable number, which is approximately 1073

when using double precision; see Section 3.5.1). Eliminating these
squared terms does not affect the accuracy of the derivative carried in
the imaginary part because the squared terms only appear in the error
terms of the complex-step approximation.

At the same time, i must be large enough that the imaginary part (% -
df /dx) does not underflow. Suppose that p is the smallest representable
number. Then, the two requirements result in the following bounds:

-1
<h<4u. (6.16)

of
#‘g

200 works well for double-precision functions.

A step size of 10~

IS EM R Complex-step accuracy compared with finite differences

To show how the complex-step method works, consider the function in
Ex. 6.3. In addition to the finite-difference relative errors from Fig. 6.7, we plot
the complex-step error in Fig. 6.9.

Central
difference

Forward difference

1078 +

|07H L

Relative error, ¢

10-14 1

107! 10 1078 10712 10716 10720 107200 107321

Step size, h

The complex-step estimate converges quadratically with decreasing step
size, as predicted by the truncation error term. The relative error reduces
to machine precision at around # = 1078 and stays at that level. The error
eventually increases when / is so small that the imaginary parts get affected by
underflow (around /1 = 10739 in this case).

The real parts and the derivatives of the complex evaluations are listed
in Table 6.2. For a small enough step, the real part is identical to the original
real function evaluation, and the complex-step method yields derivatives that
match to machine precision.

Comparing the best accuracy of each of these approaches, we can see that

Fig. 6.9 Unlike finite differences, the
complex-step method is not subject to
subtractive cancellation. Therefore,
the error is the same as that of the
function evaluation (machine zero in
this case).
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h Re (f) Im (f) /h

1071 4.4508662116993065  4.0003330384671729
1072 4.4973069409015318  4.0528918144659292
1074 4.4977800066307951  4.0534278402854467
107 4.4977800539414297  4.0534278938932582
1078 4.4977800539461619  4.0534278938986201
10710 4.4977800539461619  4.0534278938986201
10712 4.4977800539461619  4.0534278938986201
10714 4.4977800539461619  4.0534278938986210
10716 4.4977800539461619  4.0534278938986201
10718 4.4977800539461619  4.0534278938986210
107200 4.4977800539461619  4.0534278938986201
Exact  4.4977800539461619  4.0534278938986201
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by using finite differences, we only achieve a fraction of the accuracy that is
obtained by using the complex-step approximation.

6.5.2 Complex-Step Implementation

We can use the complex-step method even when the evaluation of f in-
volves the solution of numerical models through computer programs.”’
The outer loop for computing the derivatives of multiple functions
with respect to all variables (Alg. 6.2) is similar to the one for finite
differences. A reference function evaluation is not required, but now
the function must handle complex numbers correctly.

P\Glgiialaa MWl Computing the gradients of a vector-valued function f(x) us-
ing the complex-step method

Inputs:
X: Point about which to compute the gradient
£ Function of interest

Outputs:
J: Jacobian of f about point x

h = 107200 Typical “small enough” step size
forj=1tony do

Xj=xj+ ih Add complex step to variable j

fr=f(x) Evaluate function with complex perturbation

xj = hn;lﬁ Extract derivatives from imaginary part

Xj=Xxj— ih Reset perturbed variable

end for

Table 6.2 For a small enough step, the
real part of the complex evaluation is
identical to the real evaluation, and
the derivative matches to machine
precision.

50. Martins et al., The complex-step deriva-
tive approximation, 2003.


https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1145/838250.838251
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The complex-step method can be applied to any model, but modi-
fications might be required. We need the source code for the model
to make sure that the program can handle complex numbers and the
associated arithmetic, that it handles logical operators consistently, and
that certain functions yield the correct derivatives.

First, the program may need to be modified to use complex numbers.
In programming languages like Fortran or C, this involves changing
real-valued type declarations (e.g., double) to complex type declarations
(e.g., double complex). In some languages, such as MATLAB, Python,
and Julia, this is unnecessary because functions are overloaded to
automatically accept either type.

Second, some changes may be required to preserve the correct
logical flow through the program. Relational logic operators (e.g.,
“greater than”, “less than”, “if”, and “else”) are usually not defined
for complex numbers. These operators are often used in programs,
together with conditional statements, to redirect the execution thread.
The original algorithm and its “complexified” version should follow
the same execution thread. Therefore, defining these operators to
compare only the real parts of the arguments is the correct approach.
Functions that choose one argument, such as the maximum or the
minimum values, are based on relational operators. Following the
previous argument, we should determine the maximum and minimum
values based on the real parts alone.

Third, some functions need to be redefined for complex arguments.
The most common function that needs to be redefined is the absolute
value function. For a complex number, z = x + iy, the absolute value is

defined as
|z = 22+ 2, (6.17)

as shown in Fig. 6.10. This definition is not complex analytic, which is
required in the derivation of the complex-step derivative approximation.

As shown in Fig. 6.11, the correct derivatives for the real absolute
value function are +1 and -1, depending on whether x is greater than
or less than zero. The following complex definition of the absolute
value yields the correct derivatives:

-x—iy, if x<0
_ (6.18)
+x +iy, if x>0.

abs(x +iy) = {

Setting the imaginary part to y = h and dividing by h corresponds
to the slope of the absolute value function. There is an exception at
x = 0, where the function is not analytic, but a derivative does not

(x +1iy)

Im [z]

Re 2] x

Fig. 6.10 The usual definition of a
complex absolute value returns a real
number (the length of the vector),
which is not compatible with the
complex-step method.

Fig. 6.11 The absolute value func-
tion needs to be redefined such that
the imaginary part yields the correct
derivatives.
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exist in any case. We use the “greater or equal” in the logic so that the
approximation yields the correct right-sided derivative at that point.

1[5l Test complexified code by running it with & = 0

Once you have made your code complex, the first test you should perform
is to run your code with no imaginary perturbation and verify that no variable
ends up with a nonzero imaginary part. If any number in the code acquires a
nonzero imaginary part, something is wrong, and you must trace the source of
the error. This is a necessary but not sufficient test.

Depending on the programming language, we may need to redefine
some trigonometric functions. This is because some default imple-
mentations, although correct, do not maintain accurate derivatives for
small complex-step sizes. We must replace these with mathematically
equivalent implementations that avoid numerical issues.

Fortunately, we can automate most of these changes by using scripts
to process the codes, and in most programming languages, we can
easily redefine functions using operator overloading.*

1[o)678 Check the convergence of the imaginary part

When the solver that computes f is iterative, it might be necessary to change
the convergence criterion so that it checks for the convergence of the imaginary
part, in addition to the existing check on the real part. The imaginary part,
which contains the derivative information, often lags relative to the real part
in terms of convergence, as shown in Fig. 6.12. Therefore, if the solver only
checks for the real part, it might yield a derivative with a precision lower
than the function value. In this example, f is the drag coefficient given by a
computational fluid dynamics solver and ¢ is the relative error for each part.

6.6 Algorithmic Differentiation

Algorithmic differentiation (AD)—also known as computational differenti-
ation or automatic differentiation—is a well-known approach based on the
systematic application of the chain rule to computer programs.''>!1°
The derivatives computed with AD can match the precision of the
function evaluation. The cost of computing derivatives with AD can
be proportional to either the number of variables or the number of
functions, depending on the type of AD, making it flexible.

Another attractive feature of AD is that its implementation is largely
automatic, thanks to various AD tools. To explain AD, we start by

#For more details on the problematic func-
tions and how to implement the complex-
step method in various programming lan-
guages, see Martins et al.”’ A summary,
implementation guide, and scripts are
available at: http:/ /bit.ly/complexstep

50. Martins et al., The complex-step deriva-
tive approximation, 2003.

10! %

104

Im (f)

1079

Re (f)

0 50 100 150 200 250

Iterations

Fig. 6.12 The imaginary parts of the
variables often lag relative to the real
parts in iterative solvers.

115. Griewank, Evaluating Derivatives,
2000.

116. Naumann, The Art of Differentiating
Computer Programs—An Introduction to
Algorithmic Differentiation, 2011.


http://bit.ly/complexstep
https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1137/1.9780898717761
https://https://books.google.ca/books/about/The_Art_of_Differentiating_Computer_Prog.html?id=OgQuUR4nLu0C
https://https://books.google.ca/books/about/The_Art_of_Differentiating_Computer_Prog.html?id=OgQuUR4nLu0C
https://https://books.google.ca/books/about/The_Art_of_Differentiating_Computer_Prog.html?id=OgQuUR4nLu0C
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outlining the basic theory with simple examples. Then we explore how
the method is implemented in practice with further examples.

6.6.1 Variables and Functions as Lines of Code

The basic concept of AD is as follows. Even long, complicated codes
consist of a sequence of basic operations (e.g., addition, multiplication,
cosine, exponentiation). Each operation can be differentiated symboli-
cally with respect to the variables in the expression. AD performs this
symbolic differentiation and adds the code that computes the deriva-
tives for each variable in the code. The derivatives of each variable
accumulate in what amounts to a numerical version of the chain rule.

The fundamental building blocks of a code are unary and binary
operations. These operations can be combined to obtain more elab-
orate explicit functions, which are typically expressed in one line of
computer code. We represent the variables in the computer code as
the sequence v = [v1,...,7;,...,0,], where n is the total number of
variables assigned in the code. One or more of these variables at the
start of this sequence are given and correspond to x, and one or more
of the variables toward the end of the sequence are the outputs of
interest, f, as illustrated in Fig. 6.13. In general, a variable assignment
corresponding to a line of code can involve any other variable, including
itself, through an explicit function,

v; =vi(v1,02,...,0i,...,04). (6.19)

Except for the most straightforward codes, many of the variables in the
code are overwritten as a result of iterative loops.

To understand AD, it is helpful to imagine a version of the code
where all the loops are unrolled. Instead of overwriting variables, we
create new versions of those variables, as illustrated in Fig. 6.14. Then,
we can represent the computations in the code in a sequence with no
loops such that each variable in this larger set only depends on previous
variables, and then

v; =0i(v1,02,...,0i-1). (6.20)

Given such a sequence of operations and the derivatives for each
operation, we can apply the chain rule to obtain the derivatives for
the entire sequence. Unrolling the loops is just a mental model for
understanding how the chain rule operates, and it is not explicitly done
in practice.

The chain rule can be applied in two ways. In the forward mode, we
choose one input variable and work forward toward the outputs until

U1
| | 02
xq

f < | Un-1

e

Fig. 6.13 AD considers all the vari-
ables in the code, where the inputs x
are among the first variables, and the
outputs f are among the last.

Code with loop
X3
Unrolled loop

&-8-t-8-&

Fig. 6.14 Unrolling of loops is a use-
ful mental model to understand the
derivative propagation in the AD of
general code.
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we get the desired total derivative. In the reverse mode, we choose one
output variable and work backward toward the inputs until we get the
desired total derivative.

6.6.2 Forward-Mode AD

The chain rule for the forward mode can be written as

doi _ i 9v; doe , (6.21)
do; P dvg do;

where each partial derivative is obtained by symbolically differentiating
the explicit expression for v;. The total derivatives are the derivatives
with respect to the chosen input v}, which can be computed using this
chain rule.

Using the forward mode, we evaluate a sequence of these expres-
sions by fixing j in Eq. 6.21 (effectively choosing one input v;) and
incrementing i to get the derivative of each variable v;. We only need
to sum up to i — 1 because of the form of Eq. 6.20, where each v; only
depends on variables that precede it.

For a more convenient notation, we define a new variable that
represents the total derivative of variable i with respect to a fixed input
j as 0; = dv;/dv; and rewrite the chain rule as

i—1
-5
k=j

The chosen input j corresponds to the seed, which we set to 0; = 1 (using
the definition for 9;, we see that means setting dv;/dv; = 1). This chain
rule then propagates the total derivatives forward, as shown in Fig. 6.15,
affecting all the variables that depend on the seeded variable.

Once we are done applying the chain rule (Eq. 6.22) for the chosen
input variable v;, we end up with the total derivatives dv;/dv; for all
i > j. The sum in the chain rule (Eq. 6.22) only needs to consider the
nonzero partial derivative terms. If a variable k does not explicitly
appear in the expression for v;, then dv;/dvy = 0, and there is no need
to consider the corresponding term in the sum. In practice, this means
that only a small number of terms is considered for each sum.

Suppose we have four variables v1, v2, v3, and v4, and x = vy, f = vy,
and we want df /dx. We assume that each variable depends explicitly
on all the previous ones. Using the chain rule (Eq. 6.22), we set j = 1
(because we want the derivative with respect to x = v1) and increment

Pig . (6.22)
Ok

NS}

*_ Seeded input, 9;

Fig. 6.15 The forward mode propa-
gates derivatives to all the variables
that depend on the seeded input vari-
able.
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in i to get the sequence of derivatives:

01 =1
Uy = @z}l
801
03 = %@1 + %f)z (6.23)
301 302
dvy dvy Juy . df
S0 90 a0 T

In each step, we just need to compute the partial derivatives of the
current operation v; and then multiply using the total derivatives @
that have already been computed. We move forward by evaluating the
partial derivatives of v in the same sequence to evaluate the original
function. This is convenient because all of the unknowns are partial
derivatives, meaning that we only need to compute derivatives based
on the operation at hand (or line of code).

In this abstract example with four variables that depend on each
other sequentially, the Jacobian of the variables with respect to them-
selves is as follows:

1 0 0 0
doo g g
dvl
Jo = |dvs dus (6.24)
= 1 0
dUl dvz
dos dog  dog
Ldoy  dov, dos

By setting the seed 91 = 1 and using the forward chain rule (Eq. 6.22), we
have computed the first column of [, from top to bottom. This column
corresponds to the tangent with respect to v1. Using forward-mode
AD, obtaining derivatives for other outputs is free (e.g., dvz/dv; = 03
in Eq. 6.23).

However, if we want the derivatives with respect to additional
inputs, we would need to set a different seed and evaluate an entire
set of similar calculations. For example, if we wanted dvs/dv,, we
would set the seed as 9, = 1 and evaluate the equations for 93 and 74,
where we would now have dvy/dv, = 94. This would correspond to
computing the second column in [, (Eq. 6.24).

Thus, the cost of the forward mode scales linearly with the number
of inputs we are interested in and is independent of the number of
outputs.
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SENEN Forward-mode AD

Consider the function with two inputs and two outputs from Ex. 6.1. We
could evaluate the explicit expressions in this function using only two lines of
code. However, to make the AD process more apparent, we write the code such
that each line has a single unary or binary operation, which is how a computer
ends up evaluating the expression:

v1 =01(v1) = x1

vz = 02(v2) = x2

v3 = v3(v1,v2) = V102

vg = v4(v1) = sinvq

v5 =05(v3,04) =V3+vy = fi
v6 = v6(02) = V3

v7 =v7(v3,06) =v3+ 06 = f2.

Using the forward mode, set the seed 91 = 1, and 05 = 0 to obtain the derivatives
with respect to x1. When using the chain rule (Eq. 6.22), only one or two partial
derivatives are nonzero in each sum because the operations are either unary
or binary in this case. For example, the addition operation that computes
v5 does not depend explicitly on vy, so dvs/dvy = 0. To further elaborate,
when evaluating the operation v5 = v3 + v4, we do not need to know how v3
was computed; we just need to know the value of the two numbers we are
adding. Similarly, when evaluating the derivative dvs/dv,, we do not need
to know how or whether v3 and v4 depended on v;; we just need to know
how this one operation depends on v;. So even though symbolic derivatives
are involved in individual operations, the overall process is distinct from
symbolic differentiation. We do not combine all the operations and end up
with a symbolic derivative. We develop a computational procedure to compute
the derivative that ends up with a number for a given input—similar to the
computational procedure that computes the functional outputs and does not
produce a symbolic functional output.

Say we want to compute df,/dx1, which in our example corresponds to
doy/dvy. The evaluation point is the same as in Ex. 6.1: x = (1/4,2). Using the
chain rule (Eq. 6.22) and considering only the nonzero partial derivative terms,
we get the following sequence:

01=1
=0
d
2332 ﬁi)1+%f}2202~f)1+01~0:2
801 (92)2
d
U4 = ﬂ‘i)l =cosvy -1 =0.707. ..
avl
d d d
b= D550 9955 1 a1ty =707, = UL
803 304 &x1
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. 06 . .
3 —6022202~Z)2=0

:302
6.25
by = 005+ 50 1. 534155 =22 22 ©
7_8033 81)66_ 3 6= _3x1'

This sequence is illustrated in matrix form in Fig. 6.16. The procedure is
equivalent to performing forward substitution in this linear system.

We now have a procedure (not a symbolic expression) for computing d fo /dx1
for any (x1, x2). The dependencies of these operations are shown in Fig. 6.17 as
a computational graph.

Although we set out to compute df,/dx1, we also obtained dfj /dx; as a
by-product. We can obtain the derivatives for all outputs with respect to one
input for the same cost as computing the outputs. If we wanted the derivative
with respect to the other input, df; /dx;, a new sequence of calculations would
be necessary.

X1 U1 = X1 U4 = Sinvq
01 =1 04 = 01 COS V]

»| U3 = 0102
173 =010 + 0102

% vy =X V6 = V3
02 =0 U6 = 207

U5 = 0V3 + U4
U5 = 03 + 04

A

Y

U7 =03 + Vg
97 = 03 + Vg

So far, we have assumed that we are computing derivatives with
respect to each component of x. However, just like for finite differences,
we can also compute directional derivatives using forward-mode AD.
We do so by setting the appropriate seed in the ©’s that correspond to
the inputs in a vectorized manner. Suppose we have x = [v1,...,0,,].
To compute the derivative with respect to x;, we would set the seed
as the unit vector o = ¢; and follow a similar process for the other
elements. To compute a directional derivative in direction p, we would
set the seed as ¥ = p/||p||.

15N Use a directional derivative for quick verification

We can use a directional derivative in arbitrary directions to verify the
gradient computation. The directional derivative is the scalar projection of
the gradient in the chosen direction, that is, VfTp. We can use the directional
derivative to verify the gradient computed by some other method, which is
especially useful when the evaluation of f is expensive and we have many
gradient elements. We can verify a gradient by projecting it into some direction

21 1 [
Z’)z D 7}2
3 [ ] 3
il4 = D 1')4
s [ ] s
‘(')6 D 7.76

07 07

Fig. 6.16 Dependency used in the
forward chain rule propagation in
Eq. 6.25. The forward mode is equiv-
alent to solving a lower triangular sys-
tem by forward substitution, where
the system is sparse.

Fig. 6.17 Computational graph for
the numerical example evaluations,
showing the forward propagation of
the derivative with respect to x1.
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(say,p =[1,...,1]) and then comparing it to the directional derivative in that
direction. If the result matches the reference, then all the gradient elements are
most likely correct (it is good practice to try a couple more directions just to be
sure). However, if the result does not match, this directional derivative does
not reveal which gradient elements are incorrect.

6.6.3 Reverse-Mode AD

The reverse mode is also based on the chain rule but uses the alternative
form:

Z Jvg dv; (6.26)

do;
d_Uj B K=j+1 av i dv k

where the summation happens in reverse (starts at i and decrements to
j +1). This is less intuitive than the forward chain rule, but it is equally
valid. Here, we fix the index i corresponding to the output of interest
and decrement j until we get the desired derivative.

Similar to the forward-mode total derivative notation (Eq. 6.22), we
define a more convenient notation for the variables that carry the total
derivatives with a fixed i as ¥; = dv;/dv;, which are sometimes called
adjoint variables. Then we can rewrite the chain rule as

8vk _
Z 70, " (6.27)

k=j+1

This chain rule propagates the total derivatives backward after setting
the reverse seed ¢; = 1, as shown in Fig. 6.18. This affects all the
variables on which the seeded variable depends.

The reverse-mode variables ¥ represent the derivatives of one output,
i, with respect to all the input variables (instead of the derivatives of all
the outputs with respect to one input, j, in the forward mode). Once
we are done applying the reverse chain rule (Eq. 6.27) for the chosen
output variable v;, we end up with the total derivatives dv;/dv; for all
j<i.

Applying the reverse mode to the same four-variable example as
before, we get the following sequence of derivative computations (we
set i = 4 and decrement j):

5y =1

_ Odus_

U3 = —0U4
(97)3

x f

Seeded output, 7;

Fig. 6.18 The reverse mode propa-
gates derivatives to all the variables
on which the seeded output variable
depends.
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- dus_ Jduyg_
Uy = U3+ —04
302 302 (6 28)
5 o Ov2s  dus.  dua. _df '
= (901 2 (901 3 (901 4= dx -’

The partial derivatives of v must be computed for vy first, then v3, and
so on. Therefore, we have to traverse the code in reverse. In practice,
not every variable depends on every other variable, so a computational
graph is created during code evaluation. Then, when computing the
adjoint variables, we traverse the computational graph in reverse. As
before, the derivatives we need to compute in each line are only partial
derivatives.
Recall the Jacobian of the variables,

[ 1 0 0 0]

doa g

dZ)1

]v = dZ)3 dZJg (629)

-— — 1 0

dv1 d?)2

dvy dovy dog 1

ldvy  dov, dos

By setting 74 = 1 and using the reverse chain rule (Eq. 6.27), we have
computed the last row of [, from right to left. This row corresponds
to the gradient of f = v4. Using the reverse mode of AD, obtaining
derivatives with respect to additional inputs is free (e.g., dvs/dv, = 7
in Eq. 6.28).

However, if we wanted the derivatives of additional outputs, we
would need to evaluate a different sequence of derivatives. For example,
if we wanted dvs/dvq, we would set 73 = 1 and evaluate the expressions
for ¥, and 77 in Eq. 6.28, where dvs/dv; = ;. Thus, the cost of
the reverse mode scales linearly with the number of outputs and is
independent of the number of inputs.

One complication with the reverse mode is that the resulting se-
quence of derivatives requires the values of the variables, starting with
the last ones and progressing in reverse. For example, the partial deriva-
tive in the second operation of Eq. 6.28 might involve v3. Therefore, the
code needs to run in a forward pass first, and all the variables must be
stored for use in the reverse pass, which increases memory usage.

SENlI NN Reverse-mode AD

Suppose we want to compute df,/dx; for the function from Ex. 6.5. First,
we need to run the original code (a forward pass) and store the values of all
the variables because they are necessary in the reverse chain rule (Eq. 6.26)
to compute the numerical values of the partial derivatives. Furthermore, the
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reverse chain rule requires the information on all the dependencies to determine
which partial derivatives are nonzero. The forward pass and dependencies are
represented by the computational graph shown in Fig. 6.19.

‘ X1 P‘ V1 = X1 Fv4=sinv1av5=v3+v4%>‘ fi=vs %‘ f ‘

V3 = 0102
Fig. 6.19 Computational graph for the

‘ X2 P‘ V= Xp %. ve=v§ ﬁv7=y3+yé%‘ fr=0y ‘ £ ‘ function.

Using the chain rule (Eq. 6.26) and setting the seed for the desired variable
7 =1, we get

o7 =1
907
O = —=7D =07=1
49 (9'06 %74 %74
’(}5 = == 0
d
54 = 5205 =85 =0
4 (6.30)
0 d
03 = 5107 + 3205 = by + 05 = 1
3 3
0 dv3 d
Uy = 826 Vg + 8_03 = 20p0¢ +v103 = 4.785 = 073]:2
2 2
0 d d
01 = a—z;ll_q + 8—2?03 = (cosv1)04 + V203 =2 = aj:i .

After running the forward evaluation and storing the elements of v, we can run
the reverse pass shown in Fig. 6.20. This reverse pass is illustrated in matrix
form in Fig. 6.21. The procedure is equivalent to performing back substitution
in this linear system.

(9f2 afz _ '(71 = '(74 COS U1
— — =7 _
axl 8x1 + 003

P N
<—{ 7_2427_)5 “—{ '(_15'—‘0
N )

03 = U7 + U5
Fig. 6.20 Computational graph for the
2 3 - - reverse mode, showing the backward
‘ a_fz H 9h _ % H Uy = 2U2‘05_ o s=5 ‘# =l H £ ‘ propagation of the derivative of f,.
% Ix, + 0103

Although we set out to evaluate d f,/dx1, we also computed df,/dx; as a
by-product. For each output, the derivatives of all inputs come at the cost of
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evaluating only one more line of code. Conversely, if we want the derivatives
of f1, a whole new set of computations is needed.
In forward mode, the computation of a given derivative, 9;, requires the

partial derivatives of the line of code that computes v; with respect to its inputs.

In the reverse case, however, to compute a given derivative, Z_J]‘, we require the
partial derivatives with respect to v; of the functions that the current variable
v; affects. Knowledge of the function a variable affects is not encoded in that
variable computation, and that is why the computational graph is required.

Unlike with forward-mode AD and finite differences, it is impossible
to compute a directional derivative by setting the appropriate seeds.
Although the seeds in the forward mode are associated with the inputs,
the seeds for the reverse mode are associated with the outputs. Suppose
we have multiple functions of interest, f = [v,,—p, freees vy,]. To find the
derivatives of fi in a vectorized operation, we would seto = [1,0, ..., 0].
A seed with multiple nonzero elements computes the derivatives of a
weighted function with respect to all the variables, where the weight for
each function is determined by the corresponding @ value.

6.6.4 Forward Mode or Reverse Mode?

Our goal is to compute ¢, the (ny X n,) matrix of derivatives of all
the functions of interest f with respect to all the input variables x.
However, AD computes many other derivatives corresponding to
intermediate variables. The complete Jacobian for all the intermediate
variables, v; = vi(v1,v2,...,0i,..., V), assuming that the loops have
been unrolled, has the structure shown in Figs. 6.22 and 6.23.

The input variables x are among the first entries in v, whereas the
functions of interest f are among the last entries of v. For simplicity, let
us assume that the entries corresponding to x and f are contiguous, as
previously shown in Fig. 6.13. Then, the derivatives we want (J¢) are a
block located on the lower left in the much larger matrix (J,), as shown
in Figs. 6.22 and 6.23. Although we are only interested in this block,
AD requires the computation of additional intermediate derivatives.

The main difference between the forward and the reverse approaches
is that the forward mode computes the Jacobian column by column,
whereas the reverse mode does it row by row. Thus, the cost of the
forward mode is proportional to n,, whereas the cost of the reverse
mode is proportional to 7. If we have more outputs (e.g., objective and
constraints) than inputs (design variables), the forward mode is more
efficient, as illustrated in Fig. 6.22. On the other hand, if we have many
more inputs than outputs, then the reverse mode is more efficient, as

1 U1
7, ] 7,
U3 D 03
2-14 = D 1_)4
s ] 7s
e ] 6

07 1 4

Fig. 6.21 Dependency used in the
reverse chain rule propagation in
Eq. 6.30. The reverse mode is equiv-
alent to solving an upper triangu-
lar system by backward substitution,
where the system is sparse.

1 Forward Jo

Reverse
1
n Jf - 1
- 1
- 1

Ty nf

Fig. 6.22 When 1y < ny, the forward
mode is advantageous.

1 Forward To
1
Ny
1
1
Reverse
ny J¢ 1
f - 1

Fig. 6.23 When ny > n fr the reverse
mode is advantageous.
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illustrated in Fig. 6.23. If the number of inputs is similar to the number
of outputs, neither mode has a significant advantage.

In both modes, each forward or reverse pass costs less than 2-3 times
the cost of running the original code in practice. However, because
the reverse mode requires storing a large amount of data, memory
costs also need to be considered. In principle, the required memory is
proportional to the number of variables, but there are techniques that
can reduce the memory usage significantly.

6.6.5 AD Implementation

There are two main ways to implement AD: by source code transformation
or by operator overloading. The function we used to demonstrate the
issues with symbolic differentiation (Ex. 6.2) can be differentiated much
more easily with AD. In the examples that follow, we use this function
to demonstrate how the forward and reverse mode work using both
source code transformation and operator overloading.

Source Code Transformation

AD tools that use source code transformation process the whole source
code automatically with a parser and add lines of code that compute
the derivatives. The added code is highlighted in Exs. 6.7 and 6.8.

IS EIIENEVA Source code transformation for forward mode

Running an AD source transformation tool on the code from Ex. 6.2 produces
the code that follows.

Input: x, x Setseed % = 1to getdf/dx
f=x
f =X Automatically added by AD tool
fori =1to 10 do
f =sin(x + f)
f =(x+ f) -cos(x + f) Automatically added by AD tool
end for
return f, f df /dx is given by f

The AD tool added a new line after each variable assignment that computes the
corresponding derivative. We can then set the seed, X = 1 and run the code. As
the loops proceed, f accumulates the derivative as f is successively updated.

*One of the main techniques for reducing
the memory usage of reverse AD is check-
pointing; see Chapter 12 in Griewank.' '

115. Griewank, Evaluating Derivatives,
2000.


https://dx.doi.org/10.1137/1.9780898717761
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SEIENRN Source code transformation for reverse mode

The reverse-mode AD version of the code from Ex. 6.2 follows.

Input: x, [ Set f = 1to getdf/dx
f=x
fori=1to10do
push(f) Save current value of f on top of stack
f =sin(x + f)
end for
fori =10to 1 do Reverse loop added by AD tool
f =pop() Get value of f from top of stack
f=cos(x+f)-f
end for
i=f
return f, ¥ df/dx is given by ¥

The first loop is identical to the original code except for one line. Because the
derivatives that accumulate in the reverse loop depend on the intermediate
values of the variables, we need to store all the variables in the forward loop.
We store and retrieve the variables using a stack, hence the call to “push”.

The second loop, which runs in reverse, is where the derivatives are
computed. We set the reverse seed, f = 1, and then the adjoint variables
accumulate the derivatives back to the start.

Operator Overloading

The operator overloading approach creates a new augmented data
type that stores both the variable value and its derivative. Every
floating-point number v is replaced by a new type with two parts (v, 0),
commonly referred to as a dual number. All standard operations (e.g.,
addition, multiplication, sine) are overloaded such that they compute
v according to the original function value and ¢ according to the
derivative of that function. For example, the multiplication operation,
x1 - x2, would be defined for the dual-number data type as

(X1, JE]) . (XZ, 5(2) = (xle, X]i‘z + 9(’1x2), (631)

where we compute the original function value in the first term, and the
second term carries the derivative of the multiplication.

Although we wrote the two parts explicitly in Eq. 6.31, the source
code would only show a normal multiplication, such as v3 = v1 - v;.
However, each of these variables would be of the new type and carry the
corresponding ¥ quantities. By overloading all the required operations,

tA stack, also known as last in, first out
(LIFO), is a data structure that stores a one-
dimensional array. We can only add an
element to the top of the stack (push) and
take the element from the top of the stack

(pop).



6 CoMPUTING DERIVATIVES 249

the computations happen “behind the scenes”, and the source code
does not have to be changed, except to declare all the variables to be of
the new type and to set the seed. Example 6.9 lists the original code
from Ex. 6.2 with notes on the actual computations that are performed
as a result of overloading.

S EIENRE Operator overloading for forward mode

Using the derived data types and operator overloading approach in forward
mode does not change the code listed in Ex. 6.2. The AD tool provides
overloaded versions of the functions in use, which in this case are assignment,
addition, and sine. These functions are overloaded as follows:

=0 = (vz, 92)=(v1, 91)
v1+vy = (v1, 01)+(v2, 02) = (v1 + 02, 01 +02)
sin(v) = sin(v, 0) = (sin(v), cos(v)?) .
In this case, the source code is unchanged, but additional computations occur

through the overloaded functions. We reproduce the code that follows with
notes on the hidden operations that take place.

Input: x x is of a new data type with two components (x, X)
f =X (f,f) = (x, x) through the overloading of the “=" operation
fori =1to 10 do

f =sin(x + f) Code is unchanged, but overloading
computes the derivative
end for

return f The new data type includes f which is df /dx

We set the seed, ¥ = 1, and for each function assignment, we add the cor-
responding derivative line. As the loops are repeated, f accumulates the
derivative as f is successively updated.

The implementation of the reverse mode using operating overload-
ing is less straightforward and is not detailed here. It requires a new
data type that stores the information from the computational graph and
the variable values when running the forward pass. This information
can be stored using the taping technique. After the forward evaluation
of using the new type, the “tape” holds the sequence of operations,
which is then evaluated in reverse to propagate the reverse-mode seed.’

Connection of AD with the Complex-Step Method

The complex-step method from Section 6.5 can be interpreted as forward-
mode AD using operator overloading, where the data type is the

iThe overloading of “+” computes
(v, 0) = (x +f, 95'+f) and then the

overloading of “sin” computes ( f f ) =

(sin(v), cos(v)?0).

SSee Sec. 5.4 in Griewank''> for more
details on reverse mode using operating
overloading.

115. Griewank, Evaluating Derivatives,
2000.
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complex number (x, y) = x + iy, and the imaginary part y carries the
derivative. To see this connection more clearly, let us write the complex
multiplication operation as

f =@ +iy)(x2+iy2) = (xix2 — yaya) +i (yaxa + x132) . (6.32)

This equation is similar to the overloaded multiplication (Eq. 6.31). The
only difference is that the real part includes the term —y11,, which
corresponds to the second-order error term in Eq. 6.15. In this case, the
complex part gives the exact derivative, but a second-order error might
appear for other operations. As argued before, these errors vanish in
finite-precision arithmetic if the complex step is small enough.

Tip 6.6 FABRCI]

There are AD tools available for most programming languages, including
Fortran,!17118 C/C++,119 Python,]zo'u] , Julia,'?? and MATLAB.!?> These tools
have been extensively developed and provide the user with great functionality,
including the calculation of higher-order derivatives, multivariable derivatives,
and reverse-mode options. Although some AD tools can be applied recursively

to yield higher-order derivatives, this approach is not typically efficient and is
124

sometimes unstable.

Source Code Transformation versus Operator Overloading

The source code transformation and the operator overloading ap-
proaches each have their relative advantages and disadvantages. The
overloading approach is much more elegant because the original code
stays practically the same and can be maintained directly. On the other
hand, the source transformation approach enlarges the original code
and results in less readable code, making it hard to work with. Still, it
is easier to see what operations take place when debugging. Instead of
maintaining source code transformed by AD, it is advisable to work
with the original source and devise a workflow where the parser is
rerun before compiling a new version.

One advantage of the source code transformation approach is that
it tends to yield faster code and allows more straightforward compile-
time optimizations. The overloading approach requires a language that
supports user-defined data types and operator overloading, whereas
source transformation does not. Developing a source transformation
AD tool is usually more challenging than developing the overloading
approach because it requires an elaborate parser that understands the
source syntax.

117. Utke et al., OpenAD/F: A modular
open-source tool for automatic differentiation
of Fortran codes, 2008.

118. Hascoet and Pascual, The Tapenade
automatic differentiation tool: Principles,
model, and specification, 2013.

119. Griewank et al., Algorithm 755:
ADOL-C: A package for the automatic dif-
ferentiation of algorithms written in C/C++,
1996.

120. Wiltschko et al., Tangent: automatic
differentiation using source code transforma-
tion in Python, 2017.

121. Bradbury et al., JAX: Composable

Transformations of Python+NumPy Pro-
grams, 2018.

122. Revels et al., Forward-mode automatic
differentiation in Julia, 2016.

123. Neidinger, Introduction to automatic
differentiation and MATLAB object-oriented
programming, 2010.

124. Betancourt, A geometric theory of
higher-order automatic differentiation, 2018.
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6.6.6 AD Shortcuts for Matrix Operations

The efficiency of AD can be dramatically increased with manually imple-
mented shortcuts. When the code involves matrix operations, manual
implementation of a higher-level differentiation of those operations
is more efficient than the line-by-line AD implementation. Giles'”
documents the forward and reverse differentiation of many matrix
elementary operations.

For example, suppose that we have a matrix multiplication C = AB.
Then, the forward mode yields

C =AB+ AB. (6.33)

The idea is to use A and B from the AD code preceding the operation
and then manually implement this formula (bypassing any AD of the
code that performs that operation) to obtain C, as shown in Fig. 6.24.
Then we can use C to seed the remainder of the AD code.

The reverse mode of the multiplication yields

A=CBT, B=ATC. (6.34)

Similarly, we take C from the reverse AD code and implement the
formula manually to compute A and B, which we can use in the
remaining AD code in the reverse procedure.

Forward mode

. [ ]:A:[ Manual C [ .
X —> . . f
—| implementation
Py B Y

y
Forward AD A,B Forward AD
Original code
[ ]:A:[ Matrix C
x —» : H '—* f
operation
B
Reverse AD \— A,B Reverse AD
Reverse mode v B v

- A Manual ¢ =
x . ) l—— f
5 implementation

One particularly useful (and astounding!) resultis the differentiation
of the matrix inverse product. If we have a linear solver such that
C = A7!B, we can bypass the solver in the AD process by using the
following results:

C=aAl (B - Ac) (6.35)

125. Giles, An extended collection of matrix
derivative results for forward and reverse
mode algorithmic differentiation, 2008.

Fig. 6.24 Matrix operations, including
the solution of linear systems, can
be differentiated manually to bypass
more costly AD code.


https://https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
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for the forward mode and

B=ATC, A=-BCT (6.36)

for the reverse mode.

In addition to deriving the formulas just shown, Giles'> derives
formulas for the matrix derivatives of the inverse, determinant, normes,
quadratic, polynomial, exponential, eigenvalues and eigenvectors, and
singular value decomposition. Taking shortcuts as described here
applies more broadly to any case where a part of the process can be
differentiated manually to produce a more efficient derivative compu-
tation.

6.7 Implicit Analytic Methods—Direct and Adjoint

Direct and adjoint methods—which we refer to jointly as implicit analytic
methods—linearize the model governing equations to obtain a system
of linear equations whose solution yields the desired derivatives. Like
the complex-step method and AD, implicit analytic methods compute
derivatives with a precision matching that of the function evaluation.
The direct method is analogous to forward-mode AD, whereas the
adjoint method is analogous to reverse-mode AD.

Analytic methods can be thought of as lying in between the finite-
difference method and AD in terms of the number of variables involved.
With finite differences, we only need to be aware of inputs and outputs,
whereas AD involves every single variable assignment in the code.
Analytic methods work at the model level and thus require knowledge
of the governing equations and the corresponding state variables.

There are two main approaches to deriving implicit analytic methods:
continuous and discrete. The continuous approach linearizes the
original continuous governing equations, such as a partial differential
equation (PDE), and then discretizes this linearization. The discrete
approach linearizes the governing equations only after they have been
discretized as a set of residual equations, (1) = 0.

Each approach has its advantages and disadvantages. The discrete
approach is preferred and is easier to generalize, so we explain this
approach exclusively. One of the primary reasons the discrete approach
is preferred is that the resulting derivatives are consistent with the func-
tion values because they use the same discretization. The continuous
approach is only consistent in the limit of a fine discretization. The
resulting inconsistencies can mislead the optimization.*

125. Giles, An extended collection of matrix
derivative results for forward and reverse
mode algorithmic differentiation, 2008.

*Peter and Dwight'?® compare the contin-
uous and discrete adjoint approaches in
more detail.

126. Peter and Dwight, Numerical sensitiv-
ity analysis for aerodynamic optimization: A
survey Ayf'appmn()m, 2010.
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6.7.1 Residuals and Functions

As mentioned in Chapter 3, a discretized numerical model can be
written as a system of residuals,

r(u;x) =0, (6.37)

where the semicolon denotes that the design variables x are fixed when
these equations are solved for the state variables u. Through these
equations, u is an implicit function of x. This relationship is represented
by the box containing the solver and residual equations in Fig. 6.25.

The functions of interest, f(x, u), are typically explicit functions of
the state variables and the design variables. However, because u is an
implicit function of x, f is ultimately an implicit function of x as well.
To compute f for a given x, we must first find u such that r(u; x) = 0.
This is usually the most computationally costly step and requires a
solver (see Section 3.6). The residual equations could be nonlinear and
involve many state variables. In PDE-based models it is common to
have millions of states. Once we have solved for the state variables u,
we can compute the functions of interest f. The computation of f for a
given u and x is usually much cheaper because it does not require a
solver. For example, in PDE-based models, computing such functions
typically involves an integration of the states over a surface, or some
other transformation of the states.

To compute df /dx using finite differences, we would have to use
the solver to find u for each perturbation of x. That means that we
would have to run the solver n, times, which would not scale well when
the solution is costly. AD also requires the propagation of derivatives
through the solution process. As we will see, implicit analytic methods
avoid involving the potentially expensive nonlinear solution in the
derivative computation.

€Nl SHENI0N Residuals and functions in structural analysis

Recall Ex. 3.2, where we introduced the structural model of a truss structure.
The residuals in this case are the linear equations,

r(u) =K(xu-q=0, (6.38)

where the state variables are the displacements, u. Solving for the displacement
requires only a linear solver in this case, but it is still the most costly part of the
analysis. Suppose that the design variables are the cross-sectional areas of the
truss members. Then, the stiffness matrix is a function of x, but the external
forces are not.

Suppose that the functions of interest are the stresses in each of the truss
members. This is an explicit function of the displacements, which is given by

f(x',u)|—>f

Fig. 6.25 Relationship between func-
tions and design variables for a sys-
tem involving a solver. The implicit
equations r(u; x) = 0 define the states
u for a given x, so the functions of
interest f depend explicitly and im-
plicitly on the design variables x.
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the matrix multiplication
flx,u)=0(u)=Su,

where S is a matrix that depends on x. This is a much cheaper computation
than solving the linear system (Eq. 6.38).

6.7.2 Direct and Adjoint Derivative Equations

The derivatives we ultimately want to compute are the ones in the
Jacobian df /dx. Given the explicit and implicit dependence of f on x,
we can use the chain rule to write the total derivative Jacobian of f as

ar _of orau o)
dx Jdx Judx
where the result is an (1 X 1) matrix.’

In this context, the total derivatives, df /dx, take into account the
change in u that is required to keep the residuals of the governing
equations (Eq. 6.37) equal to zero. The partial derivatives in Eq. 6.39
represent the variation of f(x,u) with respect to changes in x or u
without regard to satisfying the governing equations.

To better understand the difference between total and partial deriva-
tives in this context, imagine computing these derivatives using finite
differences with small perturbations. For the total derivatives, we
would perturb x, re-solve the governing equations to obtain u, and
then compute f, which would account for both dependency paths
in Fig. 6.25. To compute the partial derivatives df/dx and df/du,
however, we would perturb x or u and recompute f without re-solving
the governing equations. In general, these partial derivative terms are
cheap to compute numerically or can be obtained symbolically.

To find the total derivative du /dx, we need to consider the governing
equations. Assuming that we are at a point where 7(x,u) = 0, any
perturbation in x must be accompanied by a perturbation in u such that
the governing equations remain satisfied. Therefore, the differential of
the residuals can be written as

ar ar
dr = —dx+ ——du =0. 6.40
T T (6.40)
This constraint is illustrated in Fig. 6.26 in two dimensions, but keep
in mind that x, u, and r are vectors in the general case. The governing
equations (Eq. 6.37) map an n,-vector x to an n,-vector u. This mapping
defines a hypersurface (also known as a manifold) in the x—u space.

*This chain rule can be derived by writing
the total differential of f as

9 d
df:%dx+£du

and then “dividing” it by dx. See Ap-
pendix A.2 for more background on dif-
ferentials.
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The total derivative df /dx that we ultimately want to compute
represents the effect that a perturbation on x has on f subject to the
constraint of remaining on this hypersurface, which can be achieved
with the appropriate variation in u.

To obtain a more useful equation, we rearrange Eq. 6.40 to get the
linear system

dr du or

where dr/dx and du/dx are both (n, X ny) matrices, and dr/du is a
square matrix of size (n, X n,). This linear system is useful because if
we provide the partial derivatives in this equation (which are cheap
to compute), we can solve for the total derivatives du/dx (whose
computation would otherwise require re-solving r(u) = 0). Because
du/dx is a matrix with n, columns, this linear system needs to be solved
for each x; with the corresponding column of the right-hand-side matrix
or/dx;.

Now let us assume that we can invert the matrix in the linear system
(Eq. 6.41) and substitute the solution for du/dx into the total derivative
equation (Eq. 6.39). Then we get

df of of ar ' or

dx " dx ou du Ix’ (6:42)

where all the derivative terms on the right-hand side are partial deriva-
tives. The partial derivatives in this equation can be computed using any
of the methods that we have described earlier: symbolic differentiation,
finite differences, complex step, or AD. Equation 6.42 shows two ways
to compute the total derivatives, which we call the direct method and the
adjoint method.

The direct method (already outlined earlier) consists of solving the
linear system (Eq. 6.41) and substituting du /dx into Eq. 6.39. Defining
¢ = —du/dx, we can rewrite Eq. 6.41 as

or or
Eqb =5 (6.43)

After solving for ¢ (one column at the time), we can use it in the total
derivative equation (Eq. 6.39) to obtain,

df _of _9of

prial il (6.44)
This is sometimes called the forward mode because it is analogous to
forward-mode AD.

Fig. 6.26 The governing equations de-
termine the values of u for a given x.
Given a point that satisfies the equa-
tions, the appropriate differential in
1 must accompany a differential of x
about that point for the equations to
remain satisfied.
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Solving the linear system (Eq. 6.43) is typically the most computa-
tionally expensive operation in this procedure. The cost of this approach
scales with the number of inputs 7, but is essentially independent
of the number of outputs ny. This is the same scaling behavior as
finite differences and forward-mode AD. However, the constant of
proportionality is typically much smaller in the direct method because
we only need to solve the nonlinear equations r(u; x) = 0 once to obtain
the states.

¢ (n, Xny)

af |- of || 9f ort || or
dx ox u u ox
(nf X My) (nf X Ny) (nf X 1y) (ny Xny) (ny Xny)
lf“”T (”f X 1y)

The adjoint method changes the linear system that is solved to
compute the total derivatives. Looking at Fig. 6.27, we see that instead
of solving the linear system with dr/dx on the right-hand side, we
can solve it with df/du on the right-hand side. This corresponds
to replacing the two Jacobians in the middle with a new matrix of
unknowns,

oo
du Jdu
where the columns of 1 are called the adjoint vectors. Multiplying both
sides of Eq. 6.45 by dr/du on the right and taking the transpose of the
whole equation, we obtain the adjoint equation,

(6.45)

ot af T

e e (6.46)

This linear system has no dependence on x. Each adjoint vector is
associated with a function of interest f; and is found by solving the
adjoint equation (Eq. 6.46) with the corresponding row df;/du. The
solution () is then used to compute the total derivative

df df ar
2 = Lyt 47
dx Jx v Ix (6.47)
This is sometimes called the reverse mode because it is analogous to
reverse-mode AD.

Fig. 6.27 The total derivatives
(Eq. 6.42) can be computed either by
solving for ¢ (direct method) or by
solving for 1 (adjoint method).
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As we will see in Section 6.9, the adjoint vectors are equivalent to
the total derivatives df /dr, which quantify the change in the function
of interest given a perturbation in the residual that gets zeroed out by
an appropriate change in u.}

6.7.3 Direct or Adjoint?

Similar to the direct method, the solution of the adjoint linear system
(Eq. 6.46) tends to be the most expensive operation. Although the linear
system is of the same size as that of the direct method, the cost of the
adjoint method scales with the number of outputs 7 and is essentially
independent of the number of inputs . The comparison between the
computational cost of the direct and adjoint methods is summarized in
Table 6.3 and illustrated in Fig. 6.28.

Similar to the trade-offs between forward- and reverse-mode AD, if
the number of outputs is greater than the number of inputs, the direct
(forward) method is more efficient (Fig. 6.28, top). On the other hand, if
the number of inputs is greater than the number of outputs, it is more
efficient to use the adjoint (reverse) method (Fig. 6.28, bottom). When
the number of inputs and outputs is large and similar, neither method
has an advantage, and the cost of computing the full total derivative
Jacobian might be prohibitive. In this case, aggregating the outputs and
using the adjoint method might be effective, as explained in Tip 6.7.

In practice, the adjoint method is implemented much more often
than the direct method. Although both methods require a similar
implementation effort, the direct method competes with methods that
are much more easily implemented, such as finite differencing, complex
step, and forward-mode AD. On the other hand, the adjoint method
only competes with reverse-mode AD, which is plagued by the memory

issue.
Step Direct Adjoint
Partial derivative computation =~ Same Same
Linear solution ny times n f times
Matrix multiplications Same Same

Another reason why the adjoint method is more widely used is
that many optimization problems have a few functions of interest (one
objective and a few constraints) and many design variables. The adjoint
method has made it possible to solve optimization problems involving
computationally intensive PDE models.S

Although implementing implicit analytic methods is labor intensive,

#The adjoint vector can also be interpreted
as a Lagrange multiplier vector associated
with equality constraints 7 = 0. Defining
the Lagrangian L(x,u) = f +Tr and
differentiating it with respect to x, we get

9L _f | e 9r
Jdx  ox ox

Thus, the total derivatives df /dx are the
derivatives of this Lagrangian.

Solve n, times

A

-0 |

nx<nf

Fig. 6.28 Two possibilities for the size
of df /dx in Fig. 6.27. When ny < ny,
it is advantageous to solve the linear
system with the vector to the right
of the square matrix because it has
fewer columns. When ny > ny, it is
advantageous to solve the transposed
linear system with the vector to the
left because it has fewer rows.

Solve ns times

A

I e I [l I

Ny > ng

Table 6.3 Cost comparison of com-
puting derivatives with direct and
adjoint methods.

$One widespread application of the ad-
joint method hasbeen in aerodynamic and
hydrodynamic shape optimization.'?’

127. Martins, Perspectives on aerodynamic
design optimization, 2020.
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it is worthwhile if the differentiated code is used frequently and in
applications that demand repeated evaluations. For such applications,
analytic differentiation with partial derivatives computed using AD is
the recommended approach for differentiating code because it combines
the best features of these methods.

SEIEEREN Differentiating an implicit function

Consider the following simplified equation for the natural frequency of a
beam:

f=Am?, (6.48)

where A is a function of m through the following relationship:
A +cosA =0.
m

Figure 6.29 shows the equivalent of Fig. 6.25 in this case. Our goal is to compute
the derivative df /dm. Because A is an implicit function of m, we cannot find
an explicit expression for A as a function of m, substitute that expression into
Eq. 6.48, and then differentiate normally. Fortunately, the implicit analytic
methods allow us to compute this derivative.

Referring back to our nomenclature,

flx,u) = f(m,A) = Am?,
r(u;x) = r(A;m) = % +cosA =0,

where m is the design variable and A is the state variable. The partial derivatives
that we need for the total derivative computation (Eq. 6.42) are as follows:

of I af _of
5_9_111_2/\7”’ E_ﬁ_m
Jdr  or A Jr  or 1 .

_ — _ _ _ —sinA.

ox om w2 du A m
Because this is a problem of only one function of interest and one design variable,
there is no distinction between the direct and adjoint methods (forward and
reverse), and the linear system solution is simply a division. Substituting these
partial derivatives into the total derivative equation (Eq. 6.42) yields

Thus, we obtained the desired derivative despite the implicitly defined function.
Here, it was possible to get an explicit expression for the total derivative, but
generally, it is only possible to get a numeric value.

m 1

o .
B

Fig. 6.29 Model for Ex. 6.11.
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DEMENERPA Direct and adjoint methods applied to structural analysis

Consider the structural analysis we reintroduced in Ex. 6.10. Let us compute
the derivatives of the stresses with respect to the cross-sectional truss member
areas and denote the number of degrees of freedom as 1, and the number of
truss members as 1;. Figure 6.30 shows the equivalent of Fig. 6.25 for this case.

We require four Jacobians of partial derivatives: dr/dx, dr/du, do /dx, and
do/du. When differentiating the governing equations with respect to an area
x;, neither the displacements nor the external forces depend directly on the
areas, ! so we obtain

ar d 0 JK
—_ K —_ = — K = —Uu.

7 " o (Ku - q) o (Ku) o, u

This is a vector of size n, corresponding to one column of dr/dx. We can
compute this term by symbolically differentiating the equations that assemble
the stiffness matrix. Alternatively, we could use AD on the function that

computes the stiffness matrix or use finite differencing. Using AD, we can

employ the techniques described in Section 6.7 .4 for an efficient implementation.

It is more efficient to compute the derivative of the product Ku directly
instead of differentiating K and then multiplying by u. This avoids storing
and subtracting the entire perturbed matrix. We can apply a forward finite
difference to the product as follows:

dr  K(x +heéj)u — K(x)u
8x1~ ~ h ’
Because the external forces do not depend on the displacements in this

case,| the partial derivatives of the governing equations with respect to the
displacements are given by

ar
— =K.
du
We already have the stiffness matrix, so this term does not require any further

computations.

The partial derivative of the stresses with respect to the areas is zero
(do/dx = 0)because there is no direct dependence.** Thus, the partial derivative
of the stress with respect to displacements is

do
ETiRe

which is an (n; X 1) matrix that we already have from the stress computation.

Now we can use either the direct or adjoint method by replacing the partial
derivatives in the respective equations. The direct linear system (Eq. 6.43)
yields

0
Ko; = a_x,-(K”) ,

where i corresponds to each truss member area. Once we have ¢;, we can use
it to compute the total derivatives of all the stresses with respect to member
area i with Eq. 6.44, as follows:

do
d_xi =-5¢;.

* ‘

o]
u

S
:

Fig. 6.30 Model for Ex. 6.12

IThe displacements do change with the
areas but only through the solution of the
governing equations, which are not con-
sidered when taking partial derivatives.

IThis is not true for large displacements,
but we assume small displacements .

**Although ultimately, the areas do
change the stresses, they do so only
through changes in the displacements.
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The adjoint linear system (Eq. 6.46) yields'
. —gT
Ky, S],* ,

where j corresponds to each truss member, and S; . is the jth row of S. Once we
have 1p;, we can use it to compute the total derivative of the stress in member j
with respect to all truss member areas with Eq. 6.47, as follows:

do; 0

] _ T K
— = —uYT—(Ku).
dx l’b] Hx( )
In this case, there is no advantage in using one method over the other because
the number of areas is the same as the number of stresses. However, if
we aggregated the stresses as suggested in Tip 6.7, the adjoint would be
advantageous.

Aggregate outputs to reduce the cost of adjoint or reverse
methods

For problems with many outputs and many inputs, there is no efficient way
of computing the Jacobian. This is common in some structural optimization
problems, where the number of stress constraints is similar to the number of
design variables because they are both associated with each structural element
(see Ex. 6.12).

We can address this issue by aggregating the functions of interest as
described in Section 5.7 and then implementing the adjoint method to compute
the gradient. In Ex. 6.12, we would aggregate the stresses in one or more groups
to reduce the number of required adjoint solutions.

We can use these techniques to aggregate any outputs, but in principle,
these outputs should have some relation to each other. For example, they could
be the stresses in a structure (see Ex. 6.12). 3

6.7.4 Adjoint Method with AD Partial Derivatives

Implementing the implicit analytic methods for models involving long,
complicated code requires significant development effort. In this section,
we focus on implementing the adjoint method because it is more widely
used, as explained in Section 6.7.3. We assume that 1y < ny, so that the
adjoint method is advantageous.

To ease the implementation of adjoint methods, we recommend a
hybrid adjoint approach where the reverse mode of AD computes the
partial derivatives in the adjoint equations (Eq. 6.46) and total derivative
equation (Eq. 6.47).88

HUsually, the stiffness matrix is symmet-
ric, and KT = K. This means that the
solver for displacements can be repur-
posed for adjoint computation by setting
the right-hand side shown here instead of
the loads. For that reason, this right-hand
side is sometimes called a pseudo-load.

HLambe et al.'”® provide recommenda-
tions on constraint aggregation for struc-
tural optimization.

128. Lambe et al., An evaluation of con-
straint aggregation strategies fm’ wing box
mass minimization, 2017.

$SKenway et al.'””’ provide more details

on this approach and its applications.

129. Kenway et al., Effective Adjoint Ap-
proaches for Computational Fluid Dynamics,
2019.


https://dx.doi.org/10.1007/s00158-016-1495-1
https://dx.doi.org/10.1007/s00158-016-1495-1
https://dx.doi.org/10.1007/s00158-016-1495-1
https://dx.doi.org/10.1016/j.paerosci.2019.05.002
https://dx.doi.org/10.1016/j.paerosci.2019.05.002
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The partials terms df /dx form an (ns X ny) matrix and Jf /du is
an (ny X n,) matrix. These partial derivatives can be computed by
identifying the section of the code that computes f for a given x and u
and running the AD tool for that section. This produces code that takes
f as an input and outputs ¥ and i, as shown in Fig. 6.31. Recall that
we must first run the entire original code that computes u and f. Then
we can run the AD code with the desired seed. Suppose we want the
derivative of the jth component of f. We would set fj = 1 and the other
elements to zero. After running the AD code, we obtain X and i, which
correspond to the rows of the respective matrix of partial terms, that is,

9 2l
ox’ ou’
Thus, with each run of the AD code, we obtain the derivatives of one
function with respect to all design variables and all state variables. One
run is required for each element of f. The reverse mode is advantageous
ifng <ny,.

The Jacobian dr /du can also be computed using AD. Because dr/du
is typically sparse, the techniques covered in Section 6.8 significantly
increase the efficiency of computing this matrix. This is a square matrix,
so neither AD mode has an advantage over the other if we explicitly
compute and store the whole matrix.

However, reverse-mode AD is advantageous when using an iterative
method to solve the adjoint linear system (Eq. 6.46). When using an
iterative method, we do not form dr/du. Instead, we require products
of the transpose of this matrix with some vector v, 11

or’T

E [
The elements of v act as weights on the residuals and can be interpreted
as a projection onto the direction of v. Suppose we have the reverse
AD code for the residual computation, as shown in Fig. 6.32. This code
requires a reverse seed 7, which determines the weights we want on
each residual. Typically, a seed would have only one nonzero entry to
find partial derivatives (e.g., setting ¥ = [1,0,...,0] would yield the
first row of the Jacobian, ii = dr;/du). However, to get the product in
Eq. 6.50, we require the seed to be weighted as 7 = v. Then, we can
compute the product by running the reverse AD code once to obtain
it = [dr/ou]To.

The final term needed to compute total derivatives with the adjoint

method is the last term in Eq. 6.47, which can be written as

or arT \T
T _ 9"
ox (8x lP) ’

i= i = (6.49)

(6.50)

(6.51)

Original code
x
x,u)=0
u d
Reverse mode
X -
_ ~f
il

Fig. 6.31 Applying reverse AD to the
code that computes f produces code
that computes the partial derivatives
of f with respect to x and u.

19See Appendix B.4 for more details on
iterative solvers.

Original code
x
'
u
Reverse mode
_ 7
7

Fig. 6.32 Applying reverse AD to the
code that computes r produces code
that computes the partial derivatives
of r with respect to x and u.
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This is yet another transpose vector product that can be obtained using
the same reverse AD code for the residuals, except that now the residual
seed is 7 = ¢, and the product we want is given by x.

In sum, it is advantageous to use reverse-mode AD to compute
the partial derivative terms for the adjoint equations, especially if the
adjoint equations are solved using an iterative approach that requires
only matrix-vector products. Similar techniques and arguments apply
for the direct method, except that in that case, forward-mode AD is
advantageous for computing the partial derivatives.

1lseel Verifying the implementation of derivative computations

Always compare your derivative computation against a different implemen-
tation. You can compare analytic derivatives with finite-difference derivatives,
but that is only a partial verification because finite differences are not accurate
enough. Comparing against the complex-step method or AD is preferable. Still,
finite differences are recommended as an additional check. If you can only use
finite differences, compare two different finite difference approximations.

You should use unit tests to verify each partial derivative term as you are
developing the code (see Tip 3.4) instead of just hoping it all works together
at the end (it usually does not!). One necessary but not sufficient test for the
verification of analytic methods is the dot-product test. For analytic methods,
the dot-product test can be derived from Eq. 6.42. For a chosen variable x; and
function f;, we have the following equality:

or afj
T— = —¢;. 52
I dx; du Pi (6:52)
Each side of this equation yields a scalar that should match to working precision.
The dot-product test verifies that your partial derivatives and the solutions for
the direct and adjoint linear systems are consistent. For AD, the dot-product

test for a code with inputs x and outputs f is as follows:

m:xT(%Tf)z(aeT %T)fzﬁf. (6.53)

6.8 Sparse Jacobians and Graph Coloring

In this chapter, we have discussed various ways to compute a Jacobian
of amodel. If the Jacobian has many zero elements, it is said to be sparse.
In many cases, we can take advantage of that sparsity to significantly
reduce the computational time required to construct the Jacobian.
When applying a forward approach (forward-mode AD, finite
differencing, or complex step), the cost of computing the Jacobian scales
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with n,. Each forward pass re-evaluates the model to compute one
column of the Jacobian. For example, when using finite differencing,
ny evaluations would be required. To compute the jth column of the
Jacobian, the input vector would be

[x1, x2, ..., xj+h, ..., xu.]. (6.54)

We can significantly reduce the cost of computing the Jacobian
depending on its sparsity pattern. As a simple example, consider a
square diagonal Jacobian:

Ju 0 0 0 0
df 0 Jo 0 0 O
=0 0 o0 0 (6.55)
Y 1o 0 0 Ju O

0 0 0 0 Jss

For this scenario, the Jacobian can be constructed with one evaluation
rather than n, evaluations. This is because a given output f; depends
on only one input x;. We could think of the outputs as n, independent
functions. Thus, for finite differencing, rather than requiring n, input
vectors with n, function evaluations, we can use one input vector, as
follows:

[x1+h,x2+h,...,x5+h], (6.56)

allowing us to compute all the nonzero entries in one pass.*

Although the diagonal case is easy to understand, it is a special
situation. To generalize this concept, let us consider the following (5 6)
matrix as an example:

Ju 0 0 Jiu 0 Jie
0 0 J Joau 0 O

31 Jz2 O 0 0 0 (6.57)
0o o0 0 0 Jss O
0 0 Js 0 Js5 Js6

A subset of columns that does not have more than one nonzero in
any given row are said to be structurally orthogonal. In this example,
the following sets of columns are structurally orthogonal: (1, 3), (1,
5),(2,3),(2,4,5), (2,6), and (4, 5). Structurally orthogonal columns
can be combined, forming a smaller Jacobian that reduces the number
of forward passes required. This reduced Jacobian is referred to as
compressed. There is more than one way to compress this Jacobian, but
in this case, the minimum number of compressed columns—referred to
as colors—is three. In the following compressed Jacobian, we combine

*Curtis et al.®’ were the first to show that
the number of function evaluations could
be reduced for sparse Jacobians.

130. Curtis et al., On the estimation of
sparse Jacobian matrices, 1974.
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columns 1 and 3 (blue); columns 2, 4, and 5 (red); and leave column 6
on its own (black):

Ju 0 0 Jiu 0 Ji Jit Jis e

0 0 Jn Joa 0 O Joz Joa O
Jsi J2 0 0 0 O0|=1/m /2 O0f. (6.58)
0 0 0 0 Js O 0 Js 0

0 0 Js3 0 Jss5 Js6 Js3 Jss5 56

For finite differencing, complex step, and forward-mode AD, only
compression among columns is possible. Reverse mode AD allows
compression among the rows. The concept is the same, but instead,
we look for structurally orthogonal rows. One such compression is as
follows:

Ju 0 0 Ju 0 Jis

0 0 Jos Ja 0O O Ju 0 0 Juu Jis Jis
Jst. J» 0 0 0 Of=]10 0 Jz Ja 0 0
0 0 0 0 Jss O Jsi J2 Js3 0 Js5 Jse

0 0 Jss 0 Js5 Js6
(6.59)

AD can also be used even more flexibly when both modes are used:
forward passes to evaluate groups of structurally orthogonal columns
and reverse passes to evaluate groups of structurally orthogonal rows.
Rather than taking incremental steps in each direction as is done in
finite differencing, we set the AD seed vector with 1s in the directions
we wish to evaluate, similar to how the seed is set for directional
derivatives, as discussed in Section 6.6.

For these small Jacobians, it is straightforward to determine how to
compress the matrix in the best possible way. For a large matrix, this is
not so easy. One approach is to use graph coloring. This approach starts
by building a graph where the vertices represent the row and column
indices, and the edges represent nonzero entries in the Jacobian. Then,
algorithms are applied to this graph that estimate the fewest number
of “colors” (orthogonal columns) using heuristics. Graph coloring is a
large field of research, where derivative computation is one of many
applications.”

SEIENENIEN Speed up from sparse derivatives

In static aerodynamic analyses, the forces and moments produced at two
different flow conditions are independent. If there are many different flow

conditions of interest, the resulting Jacobian is sparse. Examples include
evaluating the power produced by a wind turbine at different wind speeds or

fGebremedhin et al.'*! provide a review
of graph coloring in the context of comput-
ing derivatives. Gray et al.'*> show how
to use graph coloring to compute total cou-
pled derivatives.

131. Gebremedhin et al., What color is
your Jacobian? Graph coloring for comput-
ing derivatives, 2005.

132. Gray et al., OpenMDAO: An open-
source framework for multidisciplinary
design, (171(11}/51'5, and optimization, 2019.


https://dx.doi.org/10.1137/s0036144504444711
https://dx.doi.org/10.1137/s0036144504444711
https://dx.doi.org/10.1137/s0036144504444711
https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z
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assessing an aircraft’s performance throughout a flight envelope. Many other
engineering analyses have a similar structure.

Consider a typical wind turbine blade optimization. The Jacobian of the
functions of interest is fully dense with respect to geometry changes. However,
the part of the Jacobian that contains the derivatives with respect to the various
flow conditions is diagonal, as illustrated on left side of Fig. 6.33. Blank blocks
represent derivatives that are zero. We can compress the diagonal part of the
Jacobian as shown on the right side of Fig. 6.33.

Geometry Inflow Geometry  Inflow

Outputs Outputs

To illustrate the potential benefits of using a sparse representation, we time
the Jacobian computation for various sizes of inflow conditions using forward
AD with and without graph coloring (Fig. 6.34). For more than 100 inflow
conditions, the difference in time required exceeds one order of magnitude
(note the log-log scale). Because Jacobians are needed at every iteration in the
optimization, this is a tremendous speedup, enabled by exploiting the sparsity

pattern.133

Jacobian time [s]

AD with coloring

10° 10! 102

Inflow conditions

6.9 Unified Derivatives Equation

Now that we have introduced all the methods for computing deriva-
tives, we will see how they are connected. For example, we have
mentioned that the direct and adjoint methods are analogous to the
forward and reverse mode of AD, respectively, but we did not show

Fig. 6.33 Jacobian structure for wind
turbine problem. The original Jaco-
bian (left) can be replaced with a com-
pressed one (right).

133. Ning, Using blade element momen-
tum methods with gradient-based design
optimization, 2021.

Fig. 6.34 Jacobian computational time
with and without coloring.
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this mathematically. The unified derivatives equation (UDE) expresses
both methods.'** Also, the implicit analytic methods from Section 6.7
assumed one set of implicit equations (r = 0) and one set of explicit
functions (f). The UDE formulates the derivative computation for
systems with mixed sets of implicit and explicit equations.

We first derive the UDE from basic principles and give an intuitive
explanation of the derivative terms. Then, we show how we can use
the UDE to handle implicit and explicit equations. We also show how
the UDE can retrieve the direct and adjoint equations. Finally, we show
how the UDE is connected to AD.

6.9.1 UDE Derivation

Suppose we have a set of n residual equations with the same number
of unknowns,

rituy, up, ..., uy) =0, i=1,...,n, (6.60)

and that there is at least one solution u* such that (1#*) = 0. Such a
solution can be visualized for n = 2, as shown in Fig. 6.35.

These residuals are general: each one can depend on any subset of
the variables 1 and can be truly implicit functions or explicit functions
converted to the implicit form (see Section 3.3 and Ex. 3.3). The total
differentials for these residuals are

%du1+...+ﬁ

dri = duq uy,

du,, i=1,...,n. (6.61)
These represent first-order changes in 7 due to perturbations in u. The
differentials of 1 can be visualized as perturbations in the space of the
variables. The differentials of r can be visualized as linear changes to
the surface defined by r = 0, as illustrated in Fig. 6.36.

We can write the differentials (Eq. 6.61) in matrix form as

o o]l ] [y

Juq uy, n n

: : =1 1. (6.62)
ary, ar,

| duq o ouy, | dun dr

The partial derivatives in the matrix are derivatives of the expressions
for r with respect to u that can be obtained symbolically, and they
are in general functions of u. The vector of differentials du represents
perturbations in u that can be solved for a given vector of changes dr.

134. Martins and Hwang, Review and uni-

fication of methods for computing derivatives

of multidisciplinary computational models,
2013.

Fig. 6.35 Solution of a system of two
equations expressed by residuals.

7}

Fig. 6.36 The differential dr can be
visualized as a linearized (first-order)
change of the contour value.
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Now suppose that we are at a solution u*, such that r(u*) = 0. All
the partial derivatives (dr/du) can be evaluated at u*. When all entries

in dr are zero, then the solution of this linear system yields du = 0.

This is because if there is no disruption in the residuals that are already
zero, the variables do not need to change either.

How is this linear system useful? With these differentials, we can
choose different combinations of dr to obtain any total derivatives
that we want. For example, we can get the total derivatives of u
with respect to a single residual r; by keeping dr; while setting all
the other differentials to zero (drjz; = 0). The visual interpretation

of this total derivative is shown in Fig. 6.37 for n = 2 and i = 1.

Setting dr = [0, ...,0,dr;,0,...,0] in Eq. 6.62 and moving dr; to the
denominator, we obtain the following linear system:*

o 9 In][dm]

Juy Ju; du, | | dr; 0

ori o 9r o drifdu| (6.63)
duq ou; duy | | dr;
oo [du| g

L duy u; Ju,dLdr; I L}

Doing the same for all i = 1,...,n, we get the following n linear
systems:

o on|[dm du

Juq uy, drq dry 0

: : : Sol=r o ] (6.64)
Irn o O ||du o dun| g 1

_8u1 8un_ d7’1 d]’n

Solving these linear systems yields the total derivatives of all the
elements of u with respect to all the elements of r. We can write this
more compactly in matrix form as

or du

. .

Ju dr (6.65)
This is the forward form of the UDE.

The total derivatives du/dr might not seem like the derivatives
in which we are interested. Based on the implicit analytic methods

N o —
4 109
i AN
duy
il

/dm

1

Fig. 6.37 The total derivatives
duq/dr and duy/drq represent the
first-order changes needed to satisfy a
perturbation r1 = dry while keeping
rp =0.

*As explained in Appendix A.2, we take
the liberty of treating differentials alge-
braically and skip a more rigorous and
lengthy proof.
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derived in Section 6.7.2, these look like derivatives of states with respect
to residuals, not the derivatives that we ultimately want to compute
(df/dx). However, we will soon see that with the appropriate choice of
r and u, we can obtain a linear system that solves for the total derivatives
we want.

With Eq. 6.65, we can solve one column at a time. Similar to AD, we

can also solve for the rows instead by transposing the systems as '
orTduT
% ar L (6.66)

which is the reverse form of the UDE. Now, each column j yields
du;/dr—the total derivative of one variable with respect to all the
residuals. This total derivative is interpreted visually in Fig. 6.38.

The usefulness of the total derivative Jacobian du /dr might still not
be apparent. In the next section, we explain how to set up the UDE to
include df /dx in the UDE unknowns (du/dr).

S ElI NS Computing and interpreting du/dr

Suppose we want to find the rectangle that is inscribed in the ellipse given
by

2

A2 1=0
r1(u1, up) = 2 +uy =U.

A change in this residual represents a change in the size of the ellipse without
changing its proportions. Of all the possible rectangles that can be inscribed in
the ellipse, we want the rectangle with an area that is half of that of this ellipse,
such that

ro(uq, up) =4uqup —m=0.

A change in this residual represents a change in the area of the rectangle. There
are two solutions, as shown in the left pane of Fig. 6.39. These solutions can be
found using Newton’s method, which converges to one solution or the other,
depending on the starting guess. We will pick the one on the right, which is
[11,up] = [1.79944, 0.43647]. The solution represents the coordinates of the
rectangle corner that touches the ellipse.

Taking the partial derivatives, we can write the forward UDE (Eq. 6.65) for
this problem as follows:

y 5 dug  dwug 1
uy/ LGy dn | 0 | 667)
dupy dup
dur, 4| |— —= 0 1

d1’1 di’z

JrNormally, for two matrices A and B,
(AB)T = BTAT, but in this case,
AB=I=B=A"1=2BT=AT=
ATBT =1.

Fig. 6.38 The total derivatives
duq/dry and duq/dry represent the
first-order change in u; resulting
from perturbations drq and dr;.
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Fig. 6.39 Rectangle inscribed in el-
Residuals and solution First-order perturbation view showing lipse problem.
interpretation of du /drq

Solving this linear system for each of the two right-hand sides, we get

duy  dug

SELOSELL | 45353 —0.17628

dr, dr | _ , (6.68)
dup dia | 45557 018169

d1’1 d1’2

These derivatives reflect the change in the coordinates of the point where the
rectangle touches the ellipse as a result of a perturbation in the size of the
ellipse, dr1, and the area of the rectangle dr,. The right side of Fig. 6.39 shows
the visual interpretation of du/dr; as an example.

6.9.2 UDE for Mixed Implicit and Explicit Components

In the previous section, the UDE was derived based on residual equa-
tions. The equations were written in implicit form, but there was no
assumption on whether the equations were implicit or explicit. Because
we can write an explicit equation in implicit form (see Section 3.3 and
Ex. 3.3), the UDE allows a mix of implicit and explicit set of equations,
which we now call components.

To derive the implicit analytic equations in Section 6.7, we considered
two components: an implicit component that determines u by solving
r(u; x) = 0 and an explicit component that computes the functions of
interest, f(x, u).

We can recover the implicit analytic differentiation equations (di-
rect and adjoint) from the UDE by defining a set of variables that
concatenates the state variables with inputs and outputs as follows:

x
= |u (6.69)
f
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This is a vector with (nx +n,+n f) variables. For the residuals, we
need a vector with the same size. We can obtain this by realizing that
the residuals associated with the inputs and outputs are just explicit
functions that can be written in implicit form. Then, we have

x—x
f=|r—-7(x,u)|=0. (6.70)
f = Fe,u)

Here, we distinguish x (the actual variable in the UDE system) from
X (a given input) and f (the variable) from f (an explicit function of
x and u). Similarly, r is the vector of variables associated with the
residual and 7 is the residual function itself. Taking the differential of
the residuals, and considering only one of them to be nonzero at a time,
we obtain,
dx
d7 = |dr| . (6.71)
df
Using these variable and residual definitions in Egs. 6.65 and 6.66 yields
the full UDE shown in Fig. 6.40, where the block we ultimately want to

compute is df /dx.
FTafT dut IR
I 0 0 I 0 0 I 0 0 I > 3% I ar i
o7 or du du oF T af i du™ dfT
L g (S22 o =0 I 0o = o & _9 0 | == |8
dx Jdu dx dr u ou dr dr
of [ of  ; EN Y 0o 0 I 0o 0 I 0o 0 I
ox u dx dr

To compute df/dx using the forward UDE (left-hand side of the Fig. 6.40 The direct and adjoint meth-
equation in Fig. 6.40, we can ignore all but three blocks in the total ~°ds ¢an be recovered from the UDE.
derivatives matrix: I, du/dx, and df /dx. By multiplying these blocks
and using the definition ¢ = —du/dx, we recover the direct linear
system (Eq. 6.43) and the total derivative equation (Eq. 6.44).

To compute df/dx using the reverse UDE (right-hand side of
the equation in Fig. 6.40), we can ignore all but three blocks in the
total derivatives matrix: I, df /dr, and df/dx. By multiplying these
blocks and defining i) = —df/dr, we recover the adjoint linear system
(Eq. 6.46) and the corresponding total derivative equation (Eq. 6.47). The
definition of i here is significant because, as mentioned in Section 6.7.2,
the adjoint vector is the total derivative of the objective function with
respect to the governing equation residuals.
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By defining one implicit component (associated with u) and two
explicit components (associated with x and f), we have retrieved
the direct and adjoint methods from the UDE. In general, we can
define an arbitrary number of components, so the UDE provides a
mathematical framework for computing the derivatives of coupled
systems. Furthermore, each component can be implicit or explicit, so
the UDE can handle an arbitrary mix of components. All we need to do
is to include the desired states in the UDE augmented variables vector
(Eg. 6.69) and the corresponding residuals in the UDE residuals vector
(Eq. 6.70). We address coupled systems in Section 13.3.3 and use the
UDE in Section 13.2.6, where we extend it to coupled systems with a
hierarchy of components.

SEMEENIY Computing arbitrary derivatives with the UDE

Say we want to compute the total derivatives of the perimeter of the rectangle
from Ex. 6.14 with respect to the axes of the ellipse. The equation for the ellipse
can be rewritten as

uj uj
r3(u,up) = =+ —5-1=0,
TN

where x7 and x; are the semimajor and semiminor axes of the ellipse, respec-
tively. The baseline values are [x1, x2] = [2,1]. The residual for the rectangle
area is

r4(uy, up) = 4uquy — gmxz =0.

To add the independent variables x1 and xp, we write them as residuals in
implicit form as

ri(x1)=x1-2=0, r(x2)=x-1=0.
The perimeter can be written in implicit form as
rs(uy, up) = f —4(ug +u2) = 0.

Now we have a system of five equations and five variables, with the
dependencies shown in Fig. 6.41. The first two variables in x are given, and we
can compute u and f using a solver as before.

Taking all the partial derivatives, we get the following forward system:

1 0 0 0 0|1 0 0 0 0

0 1 0 0 0]] o0 1 0 0 0
2 20 o 2w (| |dwdw o dwdu
x3 x3 x2 xZ dx1 dxz dr3 d7’4

1 2 1 2

n n dup dup dup duy
_Exz _Exl duy 4w Of|dx; dxy drs dm

4 _ - = = = 1
0 0 4 4 1_ _dx1 d,\‘z d7’3 d1’4 ]

X ﬁ

rs(u) =0

f

Fig. 6.41 Dependencies of the residu-
als.
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We only want the two df /dx terms in this equation. We can either solve this
linear system twice to compute the first two columns, or we can compute both
terms with a single solution of the reverse (transposed) system. Transposing
the system, substituting the numerical values for x and u, and removing the
total derivative terms that we do not need, we get the following system:

T dr
1 0 -0.80950 -1.57080 O a7 0
dX]
df
0 1 -0.38101 -3.14159 O || — 0
Cle
af | -
0 0 0.89972 1.74588 —4||=—|=10
di’g
df 0
0 0 087294 719776 —4||-=—
di’4
00 0 0 1| 1 1

Solving this linear system, we obtain

4T T _
o | [359sss

d

A1 asss
de —

d

| 440385
dr3

af 1 o.02163
L d}’4 | - -

The total derivatives of interest are shown in Fig. 6.42.

We could have obtained the same solution using the adjoint equations
from Section 6.7.2. The only difference is the nomenclature because the adjoint
vector in this case is i = —[df/dr3, df /drs]. We can interpret these terms as
the change of f with respect to changes in the ellipse size and rectangle area,
respectively.

6.9.3 Recovering AD

Now we will see how we can recover AD from the UDE. First, we
define the UDE variables associated with each operation or line of code
(assuming all loops have been unrolled), such that # = v and

vi:z?i(m,...,v,-_l), izl,...,}’l. (6.72)

Recall from Section 6.6.1 that each variable is an explicit function of the
previous ones.

1.5+

0.5

Fig. 6.42 Contours of f as a function
of x and the total derivatives at x =
[2,1].
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To define the appropriate residuals, we use the same technique from
before to convert an explicit function into implicit form by moving all
the terms in the left-hand side to obtain

ri =0; — 5,‘(01, e ,’01‘_1) . (6.73)

The distinction between v and @ is that v represents variables that are
considered independent in the UDE, whereas 0 represents the explicit
expressions. Of course, the values for these become equal once the
system is solved. Similar to the differentials in Eq. 6.71, dr = dv

Taking the partial derivatives of the residuals (Eq. 6.73) with respect
to v (Eq. 6.72), and replacing the total derivatives in the forward form
of the UDE (Eq. 6.65) with the new symbols yields

114 -
10 ... ol o ... o0
. dU1

_9% dvy  dovp
Jvq dov;  dos =1. (6.74)
: . 0 : 0
00, 20y, do, dv, do,

_ _ 1| 1 &9

| Jdvp dv,1 | doq dv,-1 dv,

This equation is the matrix form of the AD forward chain rule (Eq. 6.21),
where each column of the total derivative matrix corresponds to the
tangent vector (9) for the chosen input variable. As observed in Fig. 6.16,
the partial derivatives form a lower triangular matrix. The Jacobian
we ultimately want to compute (df/dx) is composed of a subset of
derivatives in the bottom-left corner near the dv,, /dv; term. To compute
these derivatives, we need to perform forward substitution and compute
one column of the total derivative matrix at a time, where each column
is associated with the inputs of interest.

Similarly, the reverse form of the UDE (Eq. 6.66) yields the transpose
of Eq. 6.74,

| 9% 9% |[du du don |
Jduy vy do; dog doq
. dvz .
0 1 : 0 d0, :
_d0y dv,-1 do, =1. (675)
20,1 dv,-1  dovy—
Un
1
0 0 0 o |

This is equivalent to the AD reverse chain rule (Eq. 6.26), where each
column of the total derivative matrix corresponds to the gradient vector
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(9) for the chosen output variable. The partial derivatives now form
an upper triangular matrix, as previously shown in Fig. 6.21. The
derivatives of interest are now near the top-right corner of the total
derivative matrix near the dv, /dv; term. To compute these derivatives,
we need to perform back substitutions, computing one column of the
matrix at a time.

HIIeIGHR Scaling affects the derivatives

When scaling a problem (Tips 4.4 and 5.3), you should be aware that the
scale changes also affect the derivatives. You can apply the derivative methods
of this chapter to the scaled function directly. However, scaling is often done
outside the model because the scaling is specific to the optimization problem. In
this case, you may want to use the original functions and derivatives and make
the necessary modifications in an outer function that provides the objectives
and constraints.

Using the nomenclature introduced in Tip 4.4, we represent the scaled
design variables given to the optimizer as X. Then, the unscaled variables are
x = sy © X. Thus, the required scaled derivatives are

df _df

Sx
ir ~ dr 0] 5t . (6.76)

Provide your own derivatives and use finite differences only
as a last resort

Because of the step-size dilemma, finite differences are often the cause of
failed optimizations. To put it more dramatically, finite differences are the root
of all evil. Most gradient-based optimization software uses finite differences
internally as a default if you do not provide your own gradients. Although
some software packages try to find reasonable finite-difference steps, it is easy
to get inaccurate derivatives, which then causes optimization difficulties or
total failure. This is the top reason why beginners give up on gradient-based
optimization!

Instead, you should provide gradients computed using one of the other
methods described in this chapter. In contrast with finite differences, the
derivatives computed by the other methods are usually as accurate as the
function computation. You should also avoid using finite-difference derivatives
as a reference for a definitive verification of the other methods.

If you have to use finite differences as a last resort, make sure to do a step-
size study (see Tip 6.2). You should then provide your own finite-difference
derivatives to the optimization or make sure that the optimizer finite-difference
estimates are acceptable.
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6.10 Summary

Derivatives are useful in many applications beyond optimization. This
chapter introduced the methods available to compute the first deriva-
tives of the outputs of a model with respect to its inputs. In optimization,
the outputs are usually the objective function and the constraint func-
tions, and the inputs are the design variables. The typical characteristics
of the available methods are compared in Table 6.4.

Accuracy Scalability  Ease of Implicit
implementation  functions
Symbolic . Hard
Finite difference Easy .
Complex step . Intermediate .
AD . . Intermediate .
Implicit analytic . . Hard .

Symbolic differentiation is accurate but only scalable for simple,
explicit functions of low dimensionality. Therefore, it is necessary to
compute derivatives numerically. Although it is generally intractable
or inefficient for many engineering models, symbolic differentiation is
used by AD at each line of code and in implicit analytic methods to
derive expressions for computing the required partial derivatives.

Finite-difference approximations are popular because they are easy
to implement and can be applied to any model, including black-box
models. The downsides are that these approximations are not accurate,
and the cost scales linearly with the number of variables. Many of
the issues practitioners experience with gradient-based optimization
can be traced to errors in the gradients when algorithms automatically
compute these gradients using finite differences.

The complex-step method is accurate and relatively easy to imple-
ment. It usually requires some changes to the analysis source code, but
this process can be scripted. The main advantage of the complex-step
method is that it produces analytically accurate derivatives. However,
like the finite-difference method, the cost scales linearly with the num-
ber of inputs, and each simulation requires more effort because of the
complex arithmetic.

AD produces analytically accurate derivatives, and many implemen-
tations can be fully automated. The implementation requires access
to the source code but is still relatively straightforward to apply. The
computational cost of forward-mode AD scales with the number of
inputs, and the reverse mode scales with the number of outputs. The

Table 6.4 Characteristics of the vari-
ous derivative computation methods.
Some of these characteristics are prob-
lem or implementation dependent, so
these are not universal.
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scaling factor for the forward mode is generally lower than that for
finite differences. The cost of reverse-mode AD is independent of the
number of design variables.

Implicit analytic methods (direct and adjoint) are accurate and
scalable but require significant implementation effort. These methods
are exact (depending on how the partial derivatives are obtained), and
like AD, they provide both forward and reverse modes with the same
scaling advantages. Gradient-based optimization using the adjoint
method is a powerful combination that scales well with the number
of variables, as shown in Fig. 6.43. The disadvantage is that because
implicit methods are intrusive, they require considerable development
effort.

A hybrid approach where the partial derivatives for the implicit

analytic equations are computed with AD is generally recommended.

This hybrid approach is computationally more efficient than AD while
reducing the implementation effort of implicit analytic methods and
ensuring accuracy.

The UDE encapsulates all the derivative computation methods
in a single linear system. Using the UDE, we can formulate the
derivative computation for an arbitrary system of mixed explicit and
implicit components. This will be used in Section 13.2.6 to develop a
mathematical framework for solving coupled systems and computing
the corresponding derivatives.

Finite
difference

102

10! 102 103

Number of function evaluations

Number of design variables

Fig. 6.43 Efficient gradient compu-
tation with an analytic method im-
proves the scalability of gradient-
based algorithms compared to finite
differencing. In this case, we show
the results for the n-dimensional
Rosenbrock, where the cost of com-
puting the derivatives analytically is
independent of 7.
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Problems

6.1 Answer true or false and justify your answer.

a. A first-order derivative is only one of many types of sensitiv-
ity analysis.
b. Each column of the Jacobian matrix represents the gradient

of one of the functions of interest with respect to all the
variables.

¢. You can only compute derivatives of models for which you
have the source code or, at the very least, understand how
the model computes the functions of interest.

d. Symbolic differentiation is intractable for all but the simplest
models because of expression swell.

e. Finite-difference approximations can compute first deriva-
tives with a precision matching that of the function being
differentiated.

f. The complex-step method can only be used to compute
derivatives of real functions.

g. AD via source code transformation uses a code parser to
differentiate each line of code symbolically.

h. The forward mode of AD computes the derivatives of all
outputs with respect to one input, whereas the reverse mode
computes the derivative of one output with respect to all
inputs.

i. The adjoint method requires the same partial derivatives as
the direct method.

j- Of the two implicit analytic methods, the direct method is
more widely used than the adjoint method because most
problems have more design variables than functions of
interest.

k. Graph coloring makes Jacobians sparse by selectively replac-
ing small-valued entries with zeros to trade accuracy for
speed.

1. The unified derivatives equation can represent implicit ana-
lytic approaches but not AD.

6.2 Reproduce the comparison between the complex-step and finite-
difference methods from Ex. 6.4. Do you get any complex-step
derivatives with zero error compared with the analytic reference?
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6.3

6.4

6.5

6.6

What does that mean, and how should you show those points on
the plot?

Compute the derivative using symbolic differentiation and using
algorithmic differentiation (either forward or reverse mode) for
the iterative code in Ex. 6.2. Use a package to facilitate the AD
portion. Most scientific computing languages have AD packages
(see Tip 6.6).

Write a forward-mode-AD script that computes the derivative of
the function in Ex. 6.3 using operator overloading. You need to
define your own type and provide it with overloaded functions
for exp, sin, cos, sqrt, addition, division, and exponentiation.

Suppose you have two airplanes that are flying in a horizontal
plane defined by x and y coordinates. Both airplanes startaty = 0,
but airplane 1 starts at x = 0, whereas airplane 2 has a head start
of x = Ax. The airplanes fly at a constant velocity. Airplane 1 has
a velocity of v1 in the direction of the positive x-axis, and airplane
2 has a velocity of v, at an angle y with the x-axis. The functions
of interest are the distance (d) and the angle (0) between the two
airplanes as a function of time. The independent variables are
Ax,y,v1, v, and t. Write the code that computes the functions of
interest (outputs) for a given set of independent variables (inputs).
Use AD to differentiate the code. Choose a set of inputs, compute
the derivatives of all the outputs with respect to the inputs, and
verify them against the complex-step method.

Kepler’s equation, which we mentioned in Section 2.2, defines the
relationship between a planet’s polar coordinates and the time
elapsed from a given initial point through the implicit equation

E-esin(E)=M,

where M is the mean anomaly (a parameterization of time), E
is the eccentric anomaly (a parameterization of the polar angle),
and e is the eccentricity of the elliptical orbit. Suppose that the
function of interest is the difference between the eccentric and
mean anomalies,

f(E,M)=E-M.

Derive an analytic expression for df /de and d f /dM. Verify your
result against the complex-step method or AD (you will need a
solver for Kepler’s equation, which was the subject of Prob. 3.6).
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6.7

6.8

6.9

Compute the derivatives for the 10-bar truss problem described
in Appendix D.2.2 using the direct and adjoint implicit differenti-
ation methods. Compute the derivatives of the objective (mass)
with respect to the design variables (10 cross-sectional areas),
and the derivatives of the constraints (stresses in all 10 bars)
with respect to the design variables (a 10 x 10 Jacobian matrix).
Compute the derivatives using the following:

a. A finite-difference formula of your choice
b. The complex-step derivative method

c. AD

. The implicit analytic method (direct and adjoint)

Q.

Report the errors relative to the implicit analytic methods. Discuss
your findings and the relative merits of each approach.

You can now solve the 10-bar truss problem (previously solved in
Prob. 5.15) using the derivatives computed in Prob. 6.7. Solve this
optimization problem using both finite-difference derivatives and
derivatives computed using an implicit analytic method. Report
the following:

a. Convergence plot with two curves for the different derivative
computation approaches on the same plot

b. Number of function calls required to converge for each
method (This metric is more meaningful if you use more
than one starting point and average the results.)

Discuss your findings.

Aggregate the constraints for the 10-bar truss problem and extend
the code from Prob. 6.7 to compute the required constraint deriva-
tives using the implicit analytic method that is most advantageous
in this case. Verify your derivatives against the complex-step
method. Solve the optimization problem and compare your re-
sults to the ones you obtained in Prob. 6.8. How close can you get
to the reference solution?



Gradient-Free Optimization

Gradient-free algorithms fill an essential role in optimization. The
gradient-based algorithms introduced in Chapter 4 are efficient in
finding local minima for high-dimensional nonlinear problems defined
by continuous smooth functions. However, the assumptions made
for these algorithms are not always valid, which can render these
algorithms ineffective. Also, gradients might not be available when a
function is given as a black box.

In this chapter, we introduce only a few popular representative
gradient-free algorithms. Most are designed to handle unconstrained
functions only, but they can be adapted to solve constrained problems
by using the penalty or filtering methods introduced in Chapter 5. We
start by discussing the problem characteristics relevant to the choice
between gradient-free and gradient-based algorithms and then give an
overview of the types of gradient-free algorithms.

e )

By the end of this chapter you should be able to:

1. Identify problems that are well suited for gradient-free
optimization.

2. Describe the characteristics and approach of more than
one gradient-free optimization method.

3. Use gradient-free optimization algorithms to solve real
engineering problems.

7.1 When to Use Gradient-Free Algorithms

Gradient-free algorithms can be useful when gradients are not available,
such as when dealing with black-box functions. Although gradients
can always be approximated with finite differences, these approxima-
tions suffer from potentially significant inaccuracies (see Section 6.4.2).
Gradient-based algorithms require a more experienced user because
they take more effort to set up and run. Overall, gradient-free algo-

281



7 GRADIENT-FREE OPTIMIZATION 282

rithms are easier to get up and running but are much less efficient,
particularly as the dimension of the problem increases.

One significant advantage of gradient-free algorithms is that they
do not assume function continuity. For gradient-based algorithms,
function smoothness is essential when deriving the optimality con-
ditions, both for unconstrained functions and constrained functions.
More specifically, the Karush-Kuhn-Tucker (KKT) conditions (Eq. 5.11)
require that the function be continuous in value (C?), gradient (C!), and
Hessian (C?) in at least a small neighborhood of the optimum. If, for
example, the gradient is discontinuous at the optimum, it is undefined,
and the KKT conditions are not valid. Away from optimum points, this
requirement is not as stringent. Although gradient-based algorithms
work on the same continuity assumptions, they can usually tolerate
the occasional discontinuity, as long as it is away from an optimum
point. However, for functions with excessive numerical noise and
discontinuities, gradient-free algorithms might be the only option.

Many considerations are involved when choosing between a gradient-
based and a gradient-free algorithm. Some of these considerations are
common sources of misconception. One problem characteristic often
cited as a reason for choosing gradient-free methods is multimodality.
Design space multimodality can be a result of an objective function
with multiple local minima. In the case of a constrained problem, the
multimodality can arise from the constraints that define disconnected
or nonconvex feasible regions.

As we will see shortly, some gradient-free methods feature a global
search that increases the likelihood of finding the global minimum. This
feature makes gradient-free methods a common choice for multimodal
problems. However, not all gradient-free methods are global search
methods; some perform only a local search. Additionally, even though
gradient-based methods are by themselves local search methods, they
are often combined with global search strategies, as discussed in Tip 4.8.
It is not necessarily true that a global search, gradient-free method is
more likely to find a global optimum than a multistart gradient-based
method. As always, problem-specific testing is needed.

Furthermore, it is assumed far too often that any complex prob-
lem is multimodal, but that is frequently not the case. Although it
might be impossible to prove that a function is unimodal, it is easy to
prove that a function is multimodal simply by finding another local
minimum. Therefore, we should not make any assumptions about
the multimodality of a function until we show definite multiple local
minima. Additionally, we must ensure that perceived local minima are
not artificial minima arising from numerical noise.
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Another reason often cited for using a gradient-free method is
multiple objectives. Some gradient-free algorithms, such as the genetic
algorithm discussed in this chapter, can be naturally applied to multiple
objectives. However, it is a misconception that gradient-free methods
are always preferable just because there are multiple objectives. This
topic is introduced in Chapter 9.

Another common reason for using gradient-free methods is when
there are discrete design variables. Because the notion of a derivative
with respect to a discrete variable is invalid, gradient-based algorithms
cannot be used directly (although there are ways around this limitation,
as discussed in Chapter 8). Some gradient-free algorithms can handle
discrete variables directly.

The preceding discussion highlights that although multimodality,
multiple objectives, or discrete variables are commonly mentioned as
reasons for choosing a gradient-free algorithm, these are not necessarily
automatic decisions, and careful consideration is needed. Assuming a
choice exists (i.e., the function is not too noisy), one of the most relevant
factors when choosing between a gradient-free and a gradient-based
approach is the dimension of the problem.

Gradient-free

10° ¢

Gradient-based

Number of function evaluations
=

10! 102 103

Number of design variables

Figure 7.1 shows how many function evaluations are required to
minimize the n-dimensional Rosenbrock function for varying numbers
of design variables. Two classes of algorithms are shown in the plot:
gradient-free and gradient-based algorithms. The gradient-based
algorithm uses analytic gradients in this case. Although the exact
numbers are problem dependent, similar scaling has been observed
in large-scale computational fluid dynamics-based optimization.'®
The general takeaway is that for small-size problems (usually < 30

variables'*°), gradient-free methods can be useful in finding a solution.

Fig. 7.1 Cost of optimization for in-
creasing number of design variables
in the n-dimensional Rosenbrock
function. A gradient-free algorithm
is compared with a gradient-based
algorithm, with gradients computed
analytically. The gradient-based al-
gorithm has much better scalability.

135. Yu et al., On the influence of optimiza-
tion algorithm and starting design on wing
aerodynamic shape optimization, 2018.

136. Rios and Sahinidis, Derivative-free
optimization: a review of algorithms and
comparison of software implementations,
2013.
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https://dx.doi.org/10.1016/j.ast.2018.01.016
https://dx.doi.org/10.1007/s10898-012-9951-y
https://dx.doi.org/10.1007/s10898-012-9951-y
https://dx.doi.org/10.1007/s10898-012-9951-y
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Furthermore, because gradient-free methods usually take much less
developer time to use, a gradient-free solution may even be preferable for
these smaller problems. However, if the problem is large in dimension,
then a gradient-based method may be the only viable method despite
the need for more developer time.

194 Choose your bounds carefully for global algorithms

Unlike gradient-based methods, which usually do not require design
variable bounds, global algorithms require these bounds to be set. Because
the global search tends to explore the whole design space within the specified
bounds, the algorithm’s effectiveness diminishes considerably if the variable
bounds are unnecessarily wide.

7.2 Classification of Gradient-Free Algorithms

There is a much wider variety of gradient-free algorithms compared
with their gradient-based counterparts. Although gradient-based algo-
rithms tend to perform local searches, have a mathematical rationale,
and be deterministic, gradient-free algorithms exhibit different combi-
nations of these characteristics. We list some of the most widely known
gradient-free algorithms in Table 7.1 and classify them according to the
characteristics introduced in Fig. 1.22.*

Search Algorithm Function Stochas-
evaluation ticity
< .9
g g | g =2
- F|E |y ElE Z
E 2| % 2| £ E| & %
| Q p= T A %) A 193]
Nelder-Mead . ° ° °
GPS . .
MADS ° . . .
Trust region . . ° °
Implicit filtering ° . °
DIRECT ° . °
MCS ° . °
EGO ° ° ° °
Hit and run .
Evolutionary o

*Rios and Sahinidis'*® review and bench-
mark a large selection of gradient-free op-
timization algorithms.

136. Rios and Sahinidis, Derivative-free
optimization: a review of algorithms and
comparison of software implementations,
2013.

Table 7.1 Classification of gradient-
free optimization methods using the
characteristics of Fig. 1.22.


https://dx.doi.org/10.1007/s10898-012-9951-y
https://dx.doi.org/10.1007/s10898-012-9951-y
https://dx.doi.org/10.1007/s10898-012-9951-y
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Local search, gradient-free algorithms that use direct function evalu-
ations include the Nelder-Mead algorithm, generalized pattern search
(GPS), and mesh-adaptive direct search (MADS). Although classified
as local search in the table, the latter two methods are frequently used
with globalization approaches. The Nelder-Mead algorithm (which
we detail in Section 7.3) is heuristic, whereas the other two are not.

GPS and MADS (discussed in Section 7.4) are examples of derivative-
free optimization (DFO) algorithms, which, despite the name, do not
include all gradient-free algorithms. DFO algorithms are understood
to be largely heuristic-free and focus on local search.” GPS is a family
of methods that iteratively seek an improvement using a set of points
around the current point. In its simplest versions, GPS uses a pattern
of points based on the coordinate directions, but more sophisticated
versions use a more general set of vectors. MADS improves GPS
algorithms by allowing a much larger set of such vectors and improving
convergence.

Model-based, local search algorithms include trust-region algo-
rithms and implicit filtering. The model is an analytic approximation
of the original function (also called a surrogate model), and it should
be smooth, easy to evaluate, and accurate in the neighborhood of the
current point. The trust-region approach detailed in Section 4.5 can be
considered gradient-free if the surrogate model is constructed using
just evaluations of the original function without evaluating its gradients.
This does not prevent the trust-region algorithm from using gradients
of the surrogate model, which can be computed analytically. Implicit
filtering methods extend the trust-region method by adding a surrogate
model of the function gradient to guide the search. This effectively
becomes a gradient-based method applied to the surrogate model
instead of evaluating the function directly, as done for the methods in
Chapter 4.

Global search algorithms can be broadly classified as deterministic
or stochastic, depending on whether they include random parameter
generation within the optimization algorithm.

Deterministic, global search algorithms can be either direct or
model based. Direct algorithms include Lipschitzian-based parti-
tioning techniques—such as the “divide a hyperrectangle” (DIRECT)
algorithm detailed in Section 7.5 and branch-and-bound search (dis-
cussed in Chapter 8)—and multilevel coordinate search (MCS). The
DIRECT algorithm selectively divides the space of the design variables
into smaller and smaller n-dimensional boxes—hyperrectangles. It
uses mathematical arguments to decide which boxes should be sub-
divided. Branch-and-bound search also partitions the design space,

*The textbooks by Conn et al.'*” and Au-
det and Hare' provide a more extensive
treatment of gradient-free optimization al-
gorithms that are based on mathematical
criteria. Kokkolaras'®’ presents a succinct
discussion on when to use DFO.

137. Conn et al., Introduction to Derivative-
Free Optimization, 2009.

138. Audet and Hare, Derivative-Free and
Blackbox Optimization, 2017.

139. Kokkolaras, When, why, and how

can derivative-free optimization be useful to
computational engineering design? 2020.


https://dx.doi.org/10.1137/1.9780898718768
https://dx.doi.org/10.1137/1.9780898718768
https://dx.doi.org/10.1007/978-3-319-68913-5
https://dx.doi.org/10.1007/978-3-319-68913-5
https://dx.doi.org/10.1115/1.4045043
https://dx.doi.org/10.1115/1.4045043
https://dx.doi.org/10.1115/1.4045043
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but it estimates lower and upper bounds for the optimum by using
the function variation between partitions. MCS is another algorithm
that partitions the design space into boxes, where a limit is imposed on
how small the boxes can get based on the number of times it has been
divided.

Global-search algorithms based on surrogate models are similar to
their local search counterparts. However, they use surrogate models
to reproduce the features of a multimodal function instead of convex
surrogate models. One of the most widely used of these algorithms is
efficient global optimization (EGO), which employs kriging surrogate
models and uses the idea of expected improvement to maximize the
likelihood of finding the optimum more efficiently (surrogate modeling
techniques, including kriging are introduced in Chapter 10, which also
described EGO). Other algorithms use radial basis functions (RBFs) as
the surrogate model and also maximize the probability of improvement
at new iterates.

Stochastic algorithms rely on one or more nondeterministic pro-
cedures; they include hit-and-run algorithms and the broad class of
evolutionary algorithms. When performing benchmarks of a stochastic
algorithm, you should run a large enough number of optimizations to
obtain statistically significant results.

Hit-and-run algorithms generate random steps about the current
iterate in search of better points. A new point is accepted when it is
better than the current one, and this process repeats until the point
cannot be improved.

What constitutes an evolutionary algorithm is not well defined ¥
Evolutionary algorithms are inspired by processes that occur in nature
orsociety. Thereisa plethora of evolutionary algorithms in the literature,
thanks to the fertile imagination of the research community and a
never-ending supply of phenomena for inspiration.5 These algorithms
are more of an analogy of the phenomenon than an actual model.
They are, at best, simplified models and, at worst, barely connected
to the phenomenon. Nature-inspired algorithms tend to invent a
specific terminology for the mathematical terms in the optimization
problem. For example, a design point might be called a “member of
the population”, or the objective function might be the “fitness”.

The vast majority of evolutionary algorithms are population based,
which means they involve a set of points at each iteration instead of a
single one (we discuss a genetic algorithm in Section 7.6 and a particle
swarm method in Section 7.7). Because the population is spread out in
the design space, evolutionary algorithms perform a global search. The
stochastic elements in these algorithms contribute to global exploration

Simon'* provides a more comprehen-
sive review of evolutionary algorithms.

140. Simon, Evolutionary Optimization
Algorithms, 2013.

§ These algorithms include the follow-
ing: ant colony optimization, artifi-
cial bee colony algorithm, artificial fish
swarm, artificial flora optimization al-
gorithm, bacterial foraging optimization,
bat algorithm, big bang-big crunch al-
gorithm, biogeography-based optimiza-
tion, bird mating optimizer, cat swarm
optimization, cockroach swarm optimiza-
tion, cuckoo search, design by shop-
ping paradigm, dolphin echolocation al-
gorithm, elephant herding optimization,
firefly algorithm, flower pollination algo-
rithm, fruit fly optimization algorithm,
galactic swarm optimization, gray wolf op-
timizer, grenade explosion method, har-
mony search algorithm, hummingbird op-
timization algorithm, hybrid glowworm
swarm optimization algorithm, imperial-
ist competitive algorithm, intelligent wa-
ter drops, invasive weed optimization,
mine bomb algorithm, monarch butter-
fly optimization, moth-flame optimiza-
tion algorithm, penguin search optimiza-
tion algorithm, quantum-behaved parti-
cle swarm optimization, salp swarm algo-
rithm, teaching-learning-based optimiza-
tion, whale optimization algorithm, and
water cycle algorithm.


https://books.google.com/books?vid=ISBN1118659503
https://books.google.com/books?vid=ISBN1118659503
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and reduce the susceptibility to getting stuck in local minima. These
features increase the likelihood of getting close to the global minimum
but by no means guarantee it. The algorithm may only get close because
heuristic algorithms have a poor convergence rate, especially in higher
dimensions, and because they lack a first-order mathematical optimality
criterion.

This chapter covers five gradient-free algorithms: the Nelder-Mead
algorithm, GPS, the DIRECT method, genetic algorithms, and particle
swarm optimization. A few other algorithms that can be used for
continuous gradient-free problems (e.g., simulated annealing and
branch and bound) are covered in Chapter 8 because they are more
frequently used to solve discrete problems. In Chapter 10, on surrogate
modeling, we discuss kriging and efficient global optimization.

7.3 Nelder-Mead Algorithm

The simplex method of Nelder and Mead?® is a deterministic, direct-
search method that is among the most cited gradient-free methods. It
is also known as the nonlinear simplex—not to be confused with the
simplex algorithm used for linear programming, with which it has
nothing in common. To avoid ambiguity, we will refer to it as the
Nelder-Mead algorithm.

The Nelder-Mead algorithm is based on a simplex, which is a
geometric figure defined by a set of n + 1 points in the design space of
variables, X = {x©, x®, .. x("} Each point x!) represents a design
(i.e., a full set of design variables). In two dimensions, the simplex
is a triangle, and in three dimensions, it becomes a tetrahedron (see
Fig. 7.2).

Each optimization iteration corresponds to a different simplex. The
algorithm modifies the simplex at each iteration using five simple
operations. The sequence of operations to be performed is chosen
based on the relative values of the objective function at each of the
points.

The first step of the simplex algorithm is to generate n + 1 points
based on an initial guess for the design variables. This could be done by
simply adding steps to each component of the initial point to generate
n new points. However, this will generate a simplex with different edge
lengths, and equal-length edges are preferable. Suppose we want the
length of all sides to be I and that the first guess is x(’). The remaining
points of the simplex, {x(l), .., x(")}, can be computed by

x® = xO 4 50 (7.1)

28. Nelder and Mead, A simplex method
for function minimization, 1965.
x®
x©
x@
‘T s~ x®

Fig. 7.2 A simplex for n = 3 has four
vertices.


https://dx.doi.org/10.1093/comjnl/7.4.308
https://dx.doi.org/10.1093/comjnl/7.4.308
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where s(¥) is a vector whose components j are defined by

1 _ 1 sp s
S0 _ o~ (\/n 1 1)+_ﬁ’ ifj=1i 72)
] I (] i .

rﬁ( 7’l+1—1), lf]:/:l.

Figure 7.3 shows a starting simplex for a two-dimensional problem.

At any given iteration, the objective f is evaluated for every point,
and the points are ordered based on the respective values of f, from
the lowest to the highest. Thus, in the ordered list of simplex points
X = {x(o), xW, ., x1=D x(01 the best point is x(?), and the worst one
is x(").

The Nelder-Mead algorithm performs five main operations on the
simplex to create anew one: reflection, expansion, outside contraction, inside
contraction, and shrinking, as shown in Fig. 7.4. Except for shrinking,
each of these operations generates a new point,

X=xc+a (xc - x(”)) , (7.3)

where a is a scalar, and x. is the centroid of all the points except for the
worst one, that is,

1 n-1
xe== 3 a0 (7.4)
i=0

This generates a new point along the line that connects the worst point,
x™ and the centroid of the remaining points, x.. This direction can be
seen as a possible descent direction.

Each iteration aims to replace the worst point with a better one
to form a new simplex. Each iteration always starts with reflection,
which generates a new point using Eq. 7.3 with a = 1, as shown in
Fig. 7.4. If the reflected point is better than the best point, then the
“search direction” was a good one, and we go further by performing an
expansion using Eq. 7.3 with a = 2. If the reflected point is between the
second-worst and the worst point, then the direction was not great, but
it improved somewhat. In this case, we perform an outside contraction
(a = 1/2). If the reflected point is worse than our worst point, we try
an inside contraction instead (@ = —1/2). Shrinking is a last-resort
operation that we can perform when nothing along the line connecting
x™ and x, produces a better point. This operation consists of reducing
the size of the simplex by moving all the points closer to the best point,

x® = 5O 4 )4 (x(i) - x(o)) for i=1,...,n, (7.5)

where y = 0.5.

x©

Fig. 7.3 Starting simplex for n = 2.
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Initial simplex Reflection (a = 1) Expansion (a = 2)

Outside contraction Inside contraction Shrink
(@ =0.5) (@ =-0.5)

Algorithm 7.1 details how a new simplex is obtained for each
iteration. In each iteration, the focus is on replacing the worst point
with a better one instead of improving the best. The corresponding
flowchart is shown in Fig. 7.5.

The cost for each iteration is one function evaluation if the reflection
is accepted, two function evaluations if an expansion or contraction is
performed, and n + 2 evaluations if the iteration results in shrinking.
Although we could parallelize the n evaluations when shrinking, it
would not be worthwhile because the other operations are sequential.

There several ways to quantify the convergence of the simplex
method. One straightforward way is to use the size of simplex, that is,

n—1
Ay = Z ||x(i) - x(”)” , (7.6)
i=0

and specify that it must be less than a certain tolerance. Another
measure of convergence we can use is the standard deviation of the
function value,

7.7)

where f is the mean of the n + 1 function values. Another possible
convergence criterion is the difference between the best and worst value
in the simplex. Nelder-Mead is known for occasionally converging to
non-stationary points, so you should check the result if possible.

Fig. 7.4 Nelder-Mead algorithm op-
erations for n = 2.
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\Pelgial WAl Nelder-Mead algorithm

Inputs:

x(o): Starting point

Tyx: Simplex size tolerances

Tf: Function value standard deviation tolerances
Outputs:

x*: Optimal point

forj=1ton do
(D = 0 4 5()
end for

Create a simplex with edge length [

s) given by Eq. 7.2

while Ay > 7y or Af > Tf do  Simplex size (Eq. 7.6) and standard deviation (Eq. 7.7)

Sort {x(o), ey x(”‘l), x(")} Order from the lowest (best) to the highest f(x'/)

Xe = % Z?:_Ol %@ The centroid excluding the worst point x") (Eq. 7.4)

Xy = Xc + (xc - x(”))

Reflection, Eq. 7.3 with @ = 1

if f(x,) < f(x(o)) then Is reflected point is better than the best?
Xe = Xc +2 (xc - x(")) Expansion, Eq. 7.3 with a = 2
if f(xe) < f(x(o)) then Is expanded point better than the best?
x(") = Xe Accept expansion and replace worst point
else
x(") =Xr Accept reflection
end if
elseif f(x;) < f(x(n_l)) then Is reflected better than second worst?
x(") =Xr Accept reflected point
else
if f(xr) > f(x(n)) then Is reflected point worse than the worst?
Xic =x.—0.5 (xc - x(")) Inside contraction, Eq. 7.3 with a = —0.5
if f(xi) < f(x(")) then Inside contraction better than worst?
x(") = Xj¢ Accept inside contraction
else

forj=1ton do
g»:gm+05@m_xm)

Shrink, Eq. 7.5 with y = 0.5

end for
end if
else
Xoc = Xc +0.5 (xc - x(")) Outside contraction, Eq. 7.3 with a = 0.5
if f(xoc) < f(xr) then Is contraction better than reflection?
x(”) = Xoc Accept outside contraction
else

forj=1ton do
gn:gm+a5@m_x@)

Shrink, Eq. 7.5 with y = 0.5
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end for
end if
end if
end if
end while

l k=k+1
flxr) < f(x@) flxe) < f(x©)
—_— > x(") = 5
else
flxr) < fxt1) oy,
flxr) = f(x™) flxie) < f(x™) @
XY= Xice
else
else ]
else flxoc) < f(xr

Like most direct-search methods, Nelder-Mead cannot directly
handle constraints. One approach to handling constraints would be to
use a penalty method (discussed in Section 5.4) to form an unconstrained
problem. In this case, the penalty does not need not be differentiable,
so a linear penalty method would suffice.

SEII VAR Nelder-Mead algorithm applied to the bean function

Figure 7.6 shows the sequence of simplices that results when minimizing
the bean function using a Nelder-Mead simplex. The initial simplex on the
upper left is equilateral. The first iteration is an expansion, followed by an
inside contraction, another reflection, and an inside contraction before the
shrinking. The simplices then shrink dramatically in size, slowly converging to
the minimum.

Using a convergence tolerance of 107° in the difference between fi,eq¢ and
fworst, the problem took 68 function evaluations.

x(n) = Xoc

Fig. 7.5 Flowchart of Nelder-Mead
(Alg. 7.1).
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7.4 Generalized Pattern Search

GPS builds upon the ideas of a coordinate search algorithm. In co-
ordinate search, we evaluate points along a mesh aligned with the
coordinate directions, move toward better points, and shrink the mesh
when we find no improvement nearby. Consider a two-dimensional
coordinate search for an unconstrained problem. At a given point
X, we evaluate points that are a distance Ay away in all coordinate
directions, as shown in Fig. 7.7. If the objective function improves at any
of these points (four points in this case), we recenter with x4 at the
most improved point, keep the mesh size the same at Agy1 = Ak, and
start with the next iteration. Alternatively, if none of the points offers an
improvement, we keep the same center (xx4+1 = xx) and shrink the mesh
to Ag+1 < Ag. This process repeats until it meets some convergence
criteria.

We now explore various ways in which GPS improves coordinate
search. Coordinate search moves along coordinate directions, but
this is not necessarily desirable. Instead, the GPS search directions
only need to form a positive spanning set. Given a set of directions
D ={dy,dy,...,ds,}, the set D is a positive spanning set if the vectors
are linearly independent and a nonnegative linear combination of these
vectors spans the n-dimensional space.” Coordinate vectors fulfill this
requirement, but there is an infinite number of options. The vectors d
are referred to as positive spanning directions. We only consider linear
combinations with positive multipliers, so in two dimensions, the unit
coordinate vectors €; and é; are not sufficient to span two-dimensional
space; however, é1, 6, -1, and —é, are sufficient.

Fig. 7.6 Sequence of simplices that
minimize the bean function.

Ag

Xk

Fig. 7.7 Local mesh for a two-
dimensional coordinate search at it-
eration k.

*Section 5.2 discusses the concept of span
and polyhedral cones; Fig. 5.6 is particu-
larly relevant.
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For a given dimension 7, the largest number of vectors that could
be used while remaining linearly independent (known as the maximal
set) is 2n. Conversely, the minimum number of possible vectors needed
to span the space (known as the minimal set) is n + 1. These sizes are
necessary but not sufficient conditions.

Some algorithms randomly generate a positive spanning set, whereas
other algorithms require the user to specify a set based on knowledge
of the problem. The positive spanning set need not be fixed throughout
the optimization. A common default for a maximal set is the set of
coordinate directions +¢;. In three dimensions, this would be:

4 =1[1,0,0]
d =1[0,1,0]
d
D={dy,...,d¢}, where dz {Of l,]] . (7.8)
d5 [Or ’ ]
de =1[0,0,-1]

A potential default minimal set is the positive coordinate directions +é;
and a vector filled with —1 (or more generally, the negative sum of the
other vectors). As an example in three dimensions:

di =11,0,0]
d, =10,1,0

D ={dy,...,dy}, where 2 [ ] . (7.9)
d; =10,0,1]

d4 = [_1/ _11_1]

Figure 7.8 shows an example maximal set (four vectors) and minimal
set (three vectors) for a two-dimensional problem.

These direction vectors are then used to create a mesh. Given a
current center point x, which is the best point found so far, and a mesh
size Ay, the mesh is created as follows:

Xk +Ard forall d € D. (7.10)

For example, in two dimensions, if the current point is xx = [1, 1], the
mesh size is Ay = 0.5, and we use the coordinate directions for d, then
the mesh points would be {[1,1.5],[1,0.5], [0.5,1], [1.5, 1]}.

The evaluation of points in the mesh is called polling or a poll. In
the coordinate search example, we evaluated every point in the mesh,
which is usually inefficient. More typically, we use opportunistic polling,
which terminates polling at the first point that offers an improvement.

Fig. 7.8 A maximal set of positive
spanning vectors in two dimensions
(left) and a minimal set (right).
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Figure 7.9 shows a two-dimensional example where the order of eval-
uation is dy = [1,0],d> = [0,1],ds = [-1,0],ds = [0, —1]. Because we
found an improvement at d,, we do not continue evaluating d3 and dj.
Opportunistic polling may not yield the best point in the mesh, but the
improvement in efficiency is usually worth the trade-off. Some algo-
rithms add a user option for utilizing a full poll, in which case all points
in the mesh are evaluated. If more than one point offers a reduction,
the best one is accepted. Another approach that is sometimes used is
called dynamic polling. In this approach, a successful poll reorders the
direction vectors so that the direction that was successful last time is
checked first in the next poll.

GPS consists of two phases: a search phase and a poll phase. The
search phase is global, whereas the poll phase is local. The search phase
is intended to be flexible and is not specified by the GPS algorithm.
Common options for the search phase include the following:

e No search phase.

e A mesh search, similar to polling but with large spacing across
the domain.

e An alternative solver, such as Nelder-Mead or a genetic algorithm.

e A surrogate model, which could then use any number of solvers
that include gradient-based methods. This approach is often used
when the function is expensive, and a lower-fidelity surrogate
can guide the optimizer to promising regions of the larger design
space.

e Random evaluation using a space-filling method (see Section 10.2).

The type of search can change throughout the optimization. Like the
polling phase, the goal of the search phase is to find a better point
(i.e., f(xk+1) < f(xx)) but within a broader domain. We begin with a
search at every iteration. If the search fails to produce a better point, we
continue with a poll. If a better point is identified in either phase, the
iteration ends, and we begin a new search. Optionally, a successful poll
could be followed by another poll. Thus, at each iteration, we might
perform a search and a poll, just a search, or just a poll.

We describe one option for a search procedure based on the same
mesh ideas as the polling step. The concept is to extend the mesh
throughout the entire domain, as shown in Fig. 7.10. In this example, the
mesh size A is shared between the search and poll phases. However, it
is usually more effective if these sizes are independent. Mathematically,
we can define the global mesh as the set

G = {xx + AxDz forall z; € Z*}, (7.11)

Fig. 7.9 A two-dimensional example
of opportunistic polling with d; =
(1,0],d2 = [0,1],d3 = [-1,0],d4 =
[0,-1]. An improvement in f was
found at dp, so we do not evaluate d3
and dy4 (shown with a faded color).

Fig. 7.10 Meshing strategy extended
across the domain. The same direc-
tions (and potentially spacing) are
repeated at each mesh point, as indi-
cated by the lighter arrows through-
out the entire domain.
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where D is a matrix whose columns contain the basis vectors d. The
vector z consists of nonnegative integers, and we consider all possible
combinations of integers that fall within the bounds of the domain.

We choose a fixed number of search evaluation points and randomly
select points from the global mesh for the search strategy. If improve-
ment is found among that set, then we recenter xy. at this improved
point, grow the mesh (Ax+1 > Ag), and end the iteration (and then
restart the search). A simple search phase along these lines is described
in Alg. 7.2 and the main GPS algorithm is shown in Alg. 7.3.

\[{elqidalns WAl An example search phase for GPS

Inputs:

X Center point

Ag: Mesh size

X, X: Lower and upper bounds

D: Column vectors representing positive spanning set

Mg Number of search points

fk: The function previously evaluated at f(x)
Outputs:

success: True if successful in finding improved point

Xk+1- New center point

fk+1: Corresponding function value

success = false
Xk+1 = Xk
fre+1 = fi
Construct global mesh G, using directions D, mesh size Ay, and bounds x, X
fori =1tong do
Randomly select s € G
Evaluate f; = f(s)
if fs < fi then
Xk+1 =S
f k+1 = f s
success = true
break
end if
end for

The convergence of the GPS algorithm is often determined by a
user-specified maximum number of iterations. However, other criteria
are also used, such as a threshold on mesh size or a threshold on the
improvement in the function value over previous iterations.
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\Pelgilaln AN Generalized Pattern Search

Inputs:

X Starting point

X, X: Lower and upper bounds

Ag: Starting mesh size

Mg Number of search points

kmax: Maximum number of iterations
Outputs:

x*: Best point

f*: Corresponding function value

D =[I,-I] where I is (n X n) A coordinate aligned maximal positive spanning set

k=0

Xk = XQ

Evaluate fx = f(xg)
while k < kmax do

search_success, X1, fr+1 = search(xy, Ak, fi)

if search_success then
A1 = min(2Ag, Amax)

k=k+1
continue
else

poll_success = false
forj=1ton, do
s =xp + Ard j
Evaluate fs = f(s)
if fs < fi then

Xk+1 =8
Jier1 = fs
A1 = Ak
k=k+1
poll_success = true
break
end if
end for
end if
if not poll_success then
Xk+1 = Xk
fre1 = fk
A1 = 0.5A;
end if
k=k+1

end while

(for example)

Or other termination criteria

Any search strategy

Or some other growth rate

Move on to next iteration
Poll

Where d; is a column of D

Shrink
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GPS can handle linear and nonlinear constraints. For linear con-
straints, one effective strategy is to change the positive spanning di-
rections so that they align with any linear constraints that are nearby
(Fig. 7.11). For nonlinear constraints, penalty approaches (Section 5.4)
are applicable, although the filter method (Section 5.5.3) is another
effective approach.

SEMIEVA Minimization of a multimodal function with GPS

In this example, we optimize the Jones function (Appendix D.1.4). We start
at x = [0, 0] with an initial mesh size of A = 0.1. We evaluate two search points
at each iteration and run for 12 iterations. The iterations are plotted in Fig. 7.12.

MADS is a well-known extension of GPS. The main difference
between these two methods is in the number of possibilities for polling
directions.'*! In GPS, the polling directions are relatively restrictive
(e.g., left side of Fig. 7.13 for a minimal basis in two dimensions). MADS
adds a new sizing parameter called the poll size parameter (Ai) that can
be varied independently from the existing mesh size parameter (A}").
These sizes are constrained by A? > A}’ so the mesh sizing can become

Fig. 7.11 Mesh direction changed dur-
ing optimization to align with linear
constraints when close to the con-
straint.

Fig. 7.12 Convergence history of a
GPS algorithm on the multimodal
Jones function. Faded points indicate
past iterations.

141. Audet and J. E. Dennis, Mesh adap-
tive direct search algorithms for constrained
optimization, 2006.
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smaller while allowing the poll size (which dictates the maximum
magnitude of the step) to remain large. This provides a much denser
set of options in poll directions (e.g., the grid points on the right panel
of Fig. 7.13). MADS randomly chooses the polling directions from this
much larger set of possibilities while maintaining a positive spanning
set.t

Al Af’
k k
k> L —
o
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GPS MADS

7.5 DIRECT Algorithm

The DIRECT algorithm is different from the other gradient-free opti-
mization algorithms in this chapter in that it is based on mathematical
arguments.” This is a deterministic method guaranteed to converge
to the global optimum under conditions that are not too restrictive
(although it might require a prohibitive number of function evaluations).
DIRECT has been extended to handle constraints without relying on
penalty or filtering methods, but here we only explain the algorithm
for unconstrained problems.'**

One way to ensure that we find the global optimum within a finite
design space is by dividing this space into a regular rectangular grid
and evaluating every point in this grid. This is called an exhaustive search,
and the precision of the minimum depends on how fine the grid is. The
cost of this brute-force strategy is high and goes up exponentially with
the number of design variables.

The DIRECT method relies on a grid, but it uses an adaptive meshing
scheme that dramatically reduces the cost. It starts with a single n-
dimensional hypercube that spans the whole design space—like many
other gradient-free methods, DIRECT requires upper and lower bounds
on all the design variables. Each iteration divides this hypercube into
smaller ones and evaluates the objective function at the center of each
of these. At each iteration, the algorithm only divides rectangles
determined to be potentially optimal. The fundamental strategy in the

*The NOMAD software is an open-source
implementation of MADS. 142

142. Le Digabel, Algorithm 909: NOMAD:
Nonlinear optimization with the MADS
algorithm, 2011.

Fig. 7.13 Typical GPS spanning di-
rections (left). In contrast, MADS
randomly selects from many poten-
tial spanning directions by utilizing
a finer mesh (right).

*Jones etal.>? developed this method, aim-
ing for a global search that did not rely on
tunable parameters (e.g., population size
in genetic algorithms).”

52. Jones et al., Lipschitzian optimization
without the Lipschitz constant, 1993.

53. Jones and Martins, The DIRECT
algorithm—25 years later, 2021.

143. Jones, Direct Global Optimization
Algorithm, 2009.
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https://dx.doi.org/10.1007/s10898-020-00952-6
https://dx.doi.org/10.1007/s10898-020-00952-6
https://dx.doi.org/10.1007/978-0-387-74759-0_128
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DIRECT method is how it determines this subset of potentially optimal
rectangles, which is based on the mathematical concept of Lipschitz
continuity.

We start by explaining Lipschitz continuity and then describe
an algorithm for finding the global minimum of a one-dimensional
function using this concept—Shubert’s algorithm. Although Shubert’s
algorithm is not practical in general, it will help us understand the
mathematical rationale for the DIRECT algorithm. Then we explain the
DIRECT algorithm for one-dimensional functions before generalizing
it for n dimensions.

Lipschitz Constant

Consider the single-variable function f(x) shown in Fig. 7.14. For a
trial point x*, we can draw a cone with slope L by drawing the lines

fr(x) = f(x") + L(x = x"), (7.12)
f-(x) = f(x") = L(x — x7), (7.13)

to the left and right, respectively. We show this cone in Fig. 7.14 (left),
as well as cones corresponding to other values of k.

fx)

~

A function f is said to be Lipschitz continuous if there is a cone slope
L such that the cones for all possible trial points in the domain remain
under the function. This means that there is a positive constant k such
that
|f(x)—f(x*) <Llx-x*|, forall x,x*eD, (7.14)
where D is the function domain. Graphically, this condition means
that we can draw a cone with slope L from any trial point evaluation
f(x*) such that the function is always bounded by the cone, as shown
in Fig. 7.14 (right). Any k that satisfies Eq. 7.14 is a Lipschitz constant for
the corresponding function.

Shubert's Algorithm

If a Lipschitz constant for a single-variable function is known, Shubert’s
algorithm can find the global minimum of that function. Because the

Fig. 7.14 From a given trial point x*,
we can draw a cone with slope L (left).
For a function to be Lipschitz contin-
uous, we need all cones with slope L
to lie under the function for all points
in the domain (right).
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Lipschitz constant is not available in the general case, the DIRECT
algorithm is designed to not require this constant. However, we explain
Shubert’s algorithm first because it provides some of the basic concepts
used in the DIRECT algorithm.

Shubert’s algorithm starts with a domain within which we want to
find the global minimum—{a, b] in Fig. 7.15. Using the property of the
Lipschitz constant L defined in Eq. 7.14, we know that the function is
always above a cone of slope L evaluated at any point in the domain.

X5 X3 X4 X4

k=2 k=3

Shubert’s algorithm starts by sampling the endpoints of the interval

within which we want to find the global minimum ([4, b] in Fig. 7.15).

We start by establishing a first lower bound on the global minimum by
finding the cone’s intersection (x7 in Fig. 7.15, k = 0) for the extremes of
the domain. We evaluate the function at x; and can now draw a cone
about this point to find two more intersections (x> and x3). Because
these two points always intersect at the same objective lower bound
value, they both need to be evaluated. Each subsequent iteration of
Shubert’s algorithm adds two new points to either side of the current
point. These two points are evaluated, and the lower bounding function

Fig.7.15 Shubert’s algorithm requires
an initial domain and a valid Lips-
chitz constant and then increases the
lower bound of the global minimum
with each successive iteration.
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is updated with the resulting new cones. We then iterate by finding the
two points that minimize the new lower bounding function, evaluating
the function at these points, updating the lower bounding function,
and so on.

The lowest bound on the function increases at each iteration and
ultimately converges to the global minimum. At the same time, the
segments in x decrease in size. The lower bound can switch from
distinct regions as the lower bound in one region increases beyond the
lower bound in another region.

The two significant shortcomings of Shubert’s algorithm are that
(1) a Lipschitz constant is usually not available for a general function,
and (2) itis not easily extended to n dimensions. The DIRECT algorithm
addresses these two shortcomings.

One-Dimensional DIRECT

Before explaining the n-dimensional DIRECT algorithm, we introduce
the one-dimensional version based on principles similar to those of the
Shubert algorithm.

/ \
+L -L
f f
f©-1Lb-a)
z d=1b-a)
a C:%(ﬂ-i-b) b a c:%(ﬂ+b) b

X

Like Shubert’s method, DIRECT starts with the domain [a, b]. How-
ever, instead of sampling the endpoints a2 and b, it samples the midpoint.
Consider the closed domain [a, b] shown in Fig. 7.16 (left). For each
segment, we evaluate the objective function at the segment’s midpoint.
In the first segment, which spans the whole domain, the midpoint is
co = (a + b)/2. Assuming some value of L, which is not known and
that we will not need, the lower bound on the minimum would be
f(c)—L(b—a)/2.

We want to increase this lower bound on the function minimum
by dividing this segment further. To do this in a regular way that
reuses previously evaluated points and can be repeated indefinitely,

X

Fig. 7.16 The DIRECT algorithm eval-
uates the middle point (left), and each
successive iteration trisects the seg-
ments that have the greatest potential
(right).
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we divide it into three segments, as shown in Fig. 7.16 (right). Now we
have increased the lower bound on the minimum. Unlike the Shubert
algorithm, the lower bound is a discontinuous function across the
segments, as shown in Fig. 7.16 (right).

Instead of continuing to divide every segment into three other
segments, we only divide segments selected according to a potentially
optimal criterion. To better understand this criterion, consider a set of
segments [a;, b;] at a given DIRECT iteration, where segment i has a
half-length d; = (b; — 4;)/2 and a function value f(c;) evaluated at the
segment center ¢; = (a; + b;)/2. If we plot f(c;) versus d; for a set of
segments, we get the pattern shown in Fig. 7.17.

f(c)

f(ci)

A/miﬂ

fmin - flfmin‘ T //’//

The overall rationale for the potentially optimal criterion is that two
metrics quantify this potential: the size of the segment and the function
value at the center of the segment. The larger the segment is, the greater
the potential for that segment to contain the global minimum. The
lower the function value, the greater that potential is as well. For a set
of segments of the same size, we know that the one with the lowest
function value has the best potential and should be selected. If two
segments have the same function value and different sizes, we should
select the one with the largest size. For a general set of segments with
various sizes and value combinations, there might be multiple segments
that can be considered potentially optimal.

We identify potentially optimal segments as follows. If we draw a
line with a slope corresponding to a Lipschitz constant L from any point
in Fig. 7.17, the intersection of this line with the vertical axis is a bound
on the objective function for the corresponding segment. Therefore,
the lowest bound for a given L can be found by drawing a line through
the point that achieves the lowest intersection.

However, we do not know L, and we do not want to assume a value
because we do not want to bias the search. If L were high, it would favor
dividing the larger segments. Low values of L would result in dividing
the smaller segments. The DIRECT method hinges on considering all

Fig. 7.17 Potentially optimal seg-
ments in the DIRECT algorithm are
identified by the lower convex hull of
this plot.
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possible values of L, effectively eliminating the need for this constant.

To eliminate the dependence on L, we select all the points for which
there is a line with slope L that does not go above any other point. This
corresponds to selecting the points that form a lower convex hull, as
shown by the piecewise linear function in Fig. 7.17. This establishes a
lower bound on the function for each segment size.

Mathematically, a segment j in the set of current segments S is said
to be potentially optimal if there is a L > 0 such that

f(cj)—Ld; < f(c;)—Ld; forall i€S (7.15)
f(¢j) = Ldj < fmin = € |fmin| , (7.16)

where fnin is the best current objective function value, and ¢ is a small
positive parameter. The first condition corresponds to finding the
points in the lower convex hull mentioned previously.

The second condition in Eq. 7.16 ensures that the potential minimum
is better than the lowest function value found so far by at least a small
amount. This prevents the algorithm from becoming too local, wasting
function evaluations in search of smaller function improvements. The
parameter ¢ balances the search between local and global. A typical
value is ¢ = 107, and its range is usually such that 107 < ¢ < 1072.

There are efficient algorithms for finding the convex hull of an
arbitrary set of points in two dimensions, such as the Jarvis march.'*
These algorithms are more than we need because we only require the
lower part of the convex hull, so the algorithms can be simplified for
our purposes.

As in the Shubert algorithm, the division might switch from one
part of the domain to another, depending on the new function values.
Compared with the Shubert algorithm, the DIRECT algorithm produces
a discontinuous lower bound on the function values, as shown in
Fig. 7.18.

N

—

A

144. Jarvis, On the identification of the
convex hull of a finite set of points in the
plane, 1973.

Fig. 7.18 The lower bound for the
DIRECT method is discontinuous at
the segment boundaries.
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DIRECT in n Dimensions

The n-dimensional DIRECT algorithm is similar to the one-dimensional
version but becomes more complex.” The main difference is that we
deal with hyperrectangles instead of segments. A hyperrectangle can
be defined by its center-point position c in n-dimensional space and a
half-length in each direction i, de;, as shown in Fig. 7.19. The DIRECT
algorithm assumes that the initial dimensions are normalized so that
we start with a hypercube.

To identify the potentially optimal rectangles at a given iteration, we
use exactly the same conditions in Eqs. 7.15 and 7.16, but c; is now the
center of the hyperrectangle, and d; is the maximum distance from the
center to a vertex. The explanation illustrated in Fig. 7.17 still applies
in the n-dimensional case and still involves simply finding the lower
convex hull of a set of points with different combinations of f and d.

The main complication introduced in the n-dimensional case is
the division (trisection) of a selected hyperrectangle. The question is
which directions should be divided first. The logic to handle this in
the DIRECT algorithm is to prioritize reducing the dimensions with
the maximum length, ensuring that hyperrectangles do not deviate too
much from the proportions of a hypercube. First, we select the set of the
longest dimensions for division (there are often multiple dimensions
with the same length). Among this set of the longest dimensions, we
select the direction that has been divided the least over the whole history
of the search. If there are still multiple dimensions in the selection, we
simply select the one with the lowest index. Algorithm 7.4 details the
full algorithm.*

Figure 7.20 shows the first three iterations for a two-dimensional ex-
ample and the corresponding visualization of the conditions expressed
in Egs. 7.15 and 7.16. We start with a square that contains the whole
domain and evaluate the center point. The value of this point is plotted
on the f-d plot on the far right.

The first iteration trisects the starting square along the first dimen-
sion and evaluates the two new points. The values for these three points

*In this chapter, we present an improved
version of DIRECT.'**

143. Jones, Direct Global Optimization
Algorithm, 2009.

Fig. 7.19 Hyperrectangle in three di-
mensions, where d is the maximum
distance between the center and the
vertices, and de; is the half-length in
each direction i.

T Alg. 7.4 follows the revised version of DI-
RECT,'*> which differs from the original
version.'*> The original version trisected
all the long sides of the selected rectangles
instead of just one side.

143. Jones, Direct Global Optimization
Algorithm, 2009.

145. Jones et al., Efficient global optimiza-
tion of expensive black-box functions, 1998.
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are plotted in the second column from the right in the f—d plot, where
the center point is reused, as indicated by the arrow and the matching

color. At this iteration, we have two points that define the convex hull.

In the second iteration, we have three rectangles of the same size, so

we divide the one with the lowest value and evaluate the centers of

the two new rectangles (which are squares in this case). We now have
another column of points in the f-d plot corresponding to a smaller d
and an additional point that defines the lower convex hull. Because the
convex hull now has two points, we trisect two different rectangles in
the third iteration.

\ffelgitalna ‘8 DIRECT in n-dimensions

Inputs:

X, X: Lower and upper bounds

Outputs:
x*: Optimal point

k=0

fmin = f(co)

Initialize t(i)) =0 fori=1,...,n

while not converged do

Initialize iteration counter

Normalize bounded space to hypercube and evaluate its center, cg

Stores the minimum function value so far

Counts the times dimension i has been trisected

Fig. 7.20 DIRECT iterations for two-
dimensional case (left) and corre-
sponding identification of potentially
optimal rectangles (right).
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Find set S of potentially optimal hyperrectangles

for each hyperrectangle in S do
Find the set I of dimensions with maximum side length
Select i in I with the lowest ¢(i), breaking ties in favor of lower i
Divide the rectangle into thirds along dimension i
tHi)=t@{@) +1
Evaluate the center points of the outer two hyperrectangles
Update fmin based on these evaluations

end for

k=k+1 Increment iteration counter

end while

S EIEVAEN Minimization of multimodal function with DIRECT

Consider the multimodal Jones function (Appendix D.1.4). Applying the
DIRECT method to this function, we get the f-d plot shown in Fig. 7.21, where
the final points and convex hull are highlighted. The sequence of rectangles
is shown in Fig. 7.22. The algorithm converges to the global minimum after
dividing the rectangles around the other local minima a few times.
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7.6 Genetic Algorithms

Genetic algorithms (GAs) are the most well-known and widely used
type of evolutionary algorithm. They were also among the earliest to
have been developed.” Like many evolutionary algorithms, GAs are
population based. The optimization starts with a set of design points (the
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Fig. 7.21 Potentially optimal rectan-
gles for the DIRECT iterations shown
in Fig. 7.22.

Fig. 7.22 The DIRECT method
quickly determines the region with
the global minimum of the Jones
function after briefly exploring the
regions with other minima.

*The first GA software was written in 1954,
followed by other seminal work.!*® Ini-
tially, these GAs were not developed to
perform optimization but rather to model
the evolutionary process. GAs were even-
tually applied to optimization.'*”

146. Barricelli, Esempi numerici di processi
di evoluzione, 1954.

147. Jong, An analysis of the behavior of a
class of genetic adaptive systems, 1975.



7 GRADIENT-FREE OPTIMIZATION 307

population) rather than a single starting point, and each optimization
iteration updates this set in some way. Each GA iteration is called
a generation, each of which has a population with 7, points. Each
point is represented by a chromosome, which contains the values for
all the design variables, as shown in Fig. 7.23. Each design variable is
represented by a gene. As we will see later, there are different ways for
genes to represent the design variables.

Population
— Gene - Chromosome
v v
o BRCLELT I
Fig. 7.23 Each GA iteration involves
x® ‘ | | | | | | | ‘ a population of design points, where
each design is represented by a chro-
: mosome, and each design variable is
represented by a gene.
~(1p
el L]
GAs evolve the population using an algorithm inspired by biological Population Py
reproduction and evolution using three main steps: (1) selection, (2) . °
crossover, and (3) mutation. Selection is based on natural selection, . .
where members of the population that acquire favorable adaptations °
are more likely to survive longer and contribute more to the population : ’
gene pool. Crossover is inspired by chromosomal crossover, which is Selection
the exchange of genetic material between chromosomes during sexual : A
reproduction. Mutation mimics genetic mutation, which is a permanent . e .
change in the gene sequence that occurs naturally. &
Algorithm 7.5 and Fig. 7.24 show how these three steps perform f @ \j
optimization. Although most GAs follow this general procedure, there
is a great degree of flexibility in how the steps are performed, leading
to many variations in GAs. For example, there is no single method | Crossover
specified for the generation of the initial population, and the size of Offspring
that population varies. Similarly, there are many possible methods o
for selecting the parents, generating the offspring, and selecting the ¢ >%
survivors. Here, the new population (Pi+1) is formed exclusively by ('/3 %O,
the offspring generated from the crossover. However, some GAs add

an extra selection process that selects a surviving population of size 1, Mutation
among the population of parents and offspring. Populﬂt'i'm e
In addition to the flexibility in the various operations, GAs use differ-

ent methods for representing the design variables. The design variable v

representation can be used to classify genetic algorithms into two broad . °
categories: binary-encoded and real-encoded genetic algorithms. Binary-
encoded algorithms use bits to represent the design variables, whereas
the real-encoded algorithms keep the same real value representation Fig. 7.24 GA iteration steps.
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used in most other algorithms. The details of the operations in Alg. 7.5
depend on whether we are using one or the other representation, but
the principles remain the same. In the rest of this section, we describe a
particular way of performing these operations for each of the possible
design variable representations.

A\ Ffelginalna WA Genetic algorithm

Inputs:

X, X: Lower and upper bounds
Outputs:

x*: Best point

f*: Corresponding function value

k=0

Py = {x(l), x(z), ceey x(”V)} Generate initial population

while k < kmax do
Compute f(x) for all x € Py, Evaluate objective function
Select np, /2 parent pairs from Py for crossover Selection
Generate a new population of 1, offspring (P41) Crossover
Randomly mutate some points in the population Mutation
k=k+1

end while

7.6.1 Binary-Encoded Genetic Algorithms

The original genetic algorithms were based on binary encoding because
they more naturally mimic chromosome encoding. Binary-coded GAs
are applicable to discrete or mixed-integer problems.” When using
binary encoding, we represent each variable as a binary number with
m bits. Each bit in the binary representation has a location, i, and a
value, b; (which is either 0 or 1). If we want to represent a real-valued
variable, we first need to consider a finite interval x € [x, X], which we
can then divide into 2" — 1 intervals. The size of the interval is given by

X-Xx

Ax = .
YT ow

(7.17)

To have a more precise representation, we must use more bits.

When using binary-encoded GAs, we do not need to encode the
design variables because they are generated and manipulated directly
in the binary representation. Still, we do need to decode them be-
fore providing them to the evaluation function. To decode a binary

*One popular binary-encoded genetic al-
gorithm implementation is the elitist
nondominated sorting genetic algorithm
(NSGA-II; discussed in Section 9.3.4 in
connection with multiobjective optimiza-
tion). 4%

148. Deb et al., A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II, 2002.
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representation, we use

m—1
x=x+ Z bi2iAx . (7.18)
i=0

SEIIEVAZY Binary representation of a real number

Suppose we have a continuous design variable x that we want to represent
in the interval [-20, 80] using 12 bits. Then, we have 212 _ 1 = 4,095 intervals,
and using Eq. 7.17, we get Ax ~ 0.0244. This interval is the error in this
finite-precision representation. For the following sample binary representation:

i 1 2 3 4 5 6 7 8 9 10 11 12
by 0 0 0 1 0 1 1 0 0 O 0 1

We can use Eq. 7.18 to compute the equivalent real number, which turns out to
be x ~ 32.55.

Initial Population

The first step in a genetic algorithm is to generate an initial set (pop-
ulation) of points. As a rule of thumb, the population size should
be approximately one order of magnitude larger than the number of
design variables, and this size should be tuned.

One popular way to choose the initial population is to do it at random.
Using binary encoding, we can assign each bit in the representation of
the design variables a 50 percent chance of being either 1 or 0. This
can be done by generating a random number 0 < r < 1 and setting the
bitto 0 if » < 0.5 and 1 if » > 0.5. For a population of size n,, with n
design variables, where each variable is encoded using m bits, the total
number of bits that needs to be generated is 1, X n X m.

To achieve better spread in a larger dimensional space, the sampling
methods described in Section 10.2 are generally more effective than
random populations.

Although we then need to evaluate the function across many points
(a population), these evaluations can be performed in parallel.

Selection

In this step, we choose points from the population for reproduction
in a subsequent step (called a mating pool). On average, it is desirable
to choose a mating pool that improves in fitness (thus mimicking the
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concept of natural selection), but it is also essential to maintain diversity.

In total, we need to generate 1, /2 pairs.

The simplest selection method is to randomly select two points from
the population until the requisite number of pairs is complete. This
approach is not particularly effective because there is no mechanism to
move the population toward points with better objective functions.

Tournament selection is a better method that randomly pairs up 7,

points and selects the best point from each pair to join the mating pool.

The same pairing and selection process is repeated to create 7, /2 more
points to complete a mating pool of 1, points.

I EIIEVASH Tournament selection process

Figure 7.25 illustrates the process with a small population. Each member of
the population ends up in the mating pool zero, one, or two times, with better
points more likely to appear in the pool. The best point in the population will
always end up in the pool twice, whereas the worst point in the population is
always eliminated.

@_
_@@_
_@
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Another standard method is roulette wheel selection. This concept
is patterned after a roulette wheel used in a casino. Better points
are allocated a larger sector on the roulette wheel to have a higher
probability of being selected.

First, the objective function for all the points in the population must
be converted to a fitness value because the roulette wheel needs all
positive values and is based on maximizing rather than minimizing. To
achieve that, we first perform the following conversion to fitness:

—fi + AF

- max(1, AF = fiow) ’ (7.19)

Fig. 7.25 Tournament selection exam-
ple. The best point in each randomly
selected pair is moved into the mating
pool.
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where AF = 1.1 fhigh —0.1 fiow is based on the highest and lowest function
values in the population, and the denominator is introduced to scale
the fitness.

Then, to find the sizes of the sectors in the roulette wheel selection,
we take the normalized cumulative sum of the scaled fitness values to
compute an interval for each member in the population j as

j
Sj = 1”‘” . (7.20)
2 Fi
i=1

We can now create a mating pool of 1, points by turning the roulette
wheel 1, times. We do this by generating a random number 0 < r <1
at each turn. The jth member is copied to the mating pool if

S]'_l <r< S]' . (7.21)

This ensures that the probability of a member being selected for repro-
duction is proportional to its scaled fitness value.

SEII VAN Roulette wheel selection process

Assume that F = [5,10,20,45]. Then S = [0.25,0.3125,0.875, 1], which
divides the “wheel” into four segments, shown graphically in Fig. 7.26. We
would then draw four random numbers (say, 0.6, 0.2, 0.9, 0.7), which would
correspond to the following 1, /2 pairs: (x3 and x1), (x4 and x3).

Crossover

In the reproduction operation, two points (offspring) are generated
from a pair of points (parents). Various strategies are possible in genetic
algorithms. Single-point crossover usually involves generating a random
integer 1 < k < m — 1 that defines the crossover point. This is illustrated
in Fig.7.27. For one of the offspring, the first k bits are taken from parent
1 and the remaining bits from parent 2. For the second offspring, the
first k bits are taken from parent 2 and the remaining ones from parent
1. Various extensions exist, such as two-point crossover or n-point
Crossover.

Mutation

Mutation is a random operation performed to change the genetic infor-
mation and is needed because even though selection and reproduction

0.875

0.3125

Fig. 7.26 Roulette wheel selection ex-
ample. Fitter members receive a pro-
portionally larger segment on the

wheel.

Parent 1
[1]2]ofofof1]of1]
Parent 2
[2]ofxfof1]1]1]o]
Offspring 1
[1]2]ofofo[1]1]o]
Offspring 2
[2]ofx]of1]1]of1]

Crossover point

Fig. 7.27 The crossover point deter-
mines which parts of the chromo-
some from each parent get inherited

by each offspring.
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effectively recombine existing information, occasionally some useful
genetic information might be lost. The mutation operation protects
against such irrecoverable loss and introduces additional diversity into
the population.

When using bit representation, every bit is assigned a small permu-
tation probability, say p = 0.005 ~ 0.05. This is done by generating a
random number 0 < r < 1 for each bit, which is changed if ¥ < p. An
example is illustrated in Fig. 7.28.

7.6.2 Real-Encoded Genetic Algorithms

As the name implies, real-encoded GAs represent the design variables
in their original representation as real numbers. This has several
advantages over the binary-encoded approach. First, real encoding
represents numbers up to machine precision rather than being limited
by the number of bits chosen for the binary encoding. Second, it
avoids the “Hamming cliff” issue of binary encoding, which is caused
by the fact that many bits must change to move between adjacent
real numbers (e.g., 0111 to 1000). Third, some real-encoded GAs can
generate points outside the design variable bounds used to create the
initial population; in many problems, the design variables are not
bounded. Finally, it avoids the burden of binary coding and decoding.
The main disadvantage is that integer or discrete variables cannot be
handled. For continuous problems, a real-encoded GA is generally
more efficient than a binary-encoded GA.'*" We now describe the
required changes to the GA operations in the real-encoded approach.

Initial Population

The most common approach is to pick the 1, points using random
sampling within the provided design bounds. Each member is often
chosen at random within some initial bounds. For each design variable
x;, with bounds such that x, < x; < ¥;, we could use,

Xi=Xx;+ r(xi — L‘) (7.22)

where 1 is a random number such that 0 < r < 1. Again, the sam-

pling methods described in Section 10.2 are more effective for higher-
dimensional spaces.

Selection

The selection operation does not depend on the design variable encod-
ing. Therefore, we can use one of the selection approaches described
for the binary-encoded GA: tournament or roulette wheel selection.

Before mutation
[1ofofxfof1]1]o]

After mutation
[2fofofa[1]2]1]o]

Fig. 7.28 Mutation randomly
switches some of the bits with low
probability.

140. Simon, Evolutionary Optimization
Algorithms, 2013.
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Crossover

When using real encoding, the term crossover does not accurately
describe the process of creating the two offspring from a pair of points.
Instead, the approaches are more accurately described as a blending,
although the name crossover is still often used.

There are various options for the reproduction of two points encoded
using real numbers. A standard method is linear crossover, which
generates two or more points in the line defined by the two parent
points. One option for linear crossover is to generate the following two
points:

Xe = 0.5xp, +0.5x,, (7.23)
Xy = 2Xp, — Xpy,
where parent 2 is more fit than parent 1 (f(x,,) < f(xp,)). An example
of this linear crossover approach is shown in Fig. 7.29, where we can
see that child 1 is the average of the two parent points, whereas child 2
is obtained by extrapolating in the direction of the “fitter” parent.

Another option is a simple crossover like the binary case where a
random integer is generated to split the vectors—for example, with a
split after the first index:

Xpy = [x1, %2, X3, x4]
Xp, = x5, %6, X7, xg]
U (7.24)
Xe, = [x1, %6, x7, x5]
Xep = [XS/ X2, X3, XJ,] .
This simple crossover does not generate as much diversity as the

binary case and relies more heavily on effective mutation. Many other
strategies have been devised for real-encoded GAs.'*’

Mutation

As with a binary-encoded GA, mutation should only occur with a small
probability (e.g., p = 0.005 ~ 0.05). However, rather than changing
each bit with probability p, we now change each design variable with
probability p.

Many mutation methods rely on random variations around an
existing member, such as a uniform random operator:

Xnew; = X; +(r; —0.5)A;, for i=1,...n, (7.25)

where r; is a random number between 0 and 1, and A; is a preselected
maximum perturbation in the ith direction. Many nonuniform methods

Fig. 7.29 Linear crossover produces
two new points along the line defined
by the two parent points.

149. Deb, Multi-Objective Optimization
Using Evolutionary Algorithms, 2001.
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exist as well. For example, we can use a normal probability distribution
Ynewi = Xi + N(0,07), for i=1,...n, (7.26)

where ¢; is a preselected standard deviation, and random samples are
drawn from the normal distribution. During the mutation operations,
bound checking is necessary to ensure the mutations stay within the
lower and upper limits.

SENIEVAA Genetic algorithm applied to the bean function

x2

Figure 7.30 shows the evolution of the population when minimizing the
bean function using a bit-encoded GA. The initial population size was 40, and
the simulation was run for 50 generations. Figure 7.31 shows the evolution
when using a real-encoded GA but otherwise uses the same parameters as the
bit-encoded optimization. The real-encoded GA converges faster in this case.

7.6.3 Constraint Handling

Various approaches exist for handling constraints. Like the Nelder—
Mead method, we can use a penalty method (e.g., augmented La-

Fig. 7.30 Evolution of the population
using a bit-encoded GA to minimize
the bean function, where k is the gen-
eration number.
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grangian, linear penalty). However, there are additional options for
GAs. In the tournament selection, we can use other selection criteria
that do not depend on penalty parameters. One such approach for
choosing the best selection among two competitors is as follows:

1. Prefer a feasible solution.

2. Among two feasible solutions, choose the one with a better
objective.

3. Among two infeasible solutions, choose the one with a smaller
constraint violation.

This concept is a lot like the filter methods discussed in Section 5.5.3.

7.6.4 Convergence

Rigorous mathematical convergence criteria, like those used in gradient-

based optimization, do not apply to GAs. The most common way to
terminate a GA is to specify a maximum number of iterations, which
corresponds to a computational budget. Another similar approach is
to let the algorithm run indefinitely until the user manually terminates
the algorithm, usually by monitoring the trends in population fitness.

Fig. 7.31 Evolution of the population
using a real-encoded GA to minimize
the bean function, where k is the gen-
eration number.
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A more automated approach is to track a running average of the
population’s fitness. However, it can be challenging to decide what
tolerance to apply to this criterion because we generally are not inter-
ested in the average performance. A more direct metric of interest
is the fitness of the best member in the population. However, this
can be a problematic criterion because the best member can disappear
as a result of crossover or mutation. To avoid this and to improve
convergence, many GAs employ elitism. This means that the fittest
population member is retained to guarantee that the population does
not regress. Even without this behavior, the best member often changes
slowly, so the user should not terminate the algorithm unless the best
member has not improved for several generations.

7.7 Particle Swarm Optimization

Like a GA, particle swarm optimization (PSO) is a stochastic population-
based optimization algorithm based on the concept of “swarm intel-
ligence”. Swarm intelligence is the property of a system whereby
the collective behaviors of unsophisticated agents interacting locally
with their environment cause coherent global patterns. In other words:
dumb agents, properly connected into a swarm, can yield smart results.*

The “swarm” in PSO is a set of design points (agents or particles) that
move in n-dimensional space, looking for the best solution. Although
these are just design points, the history for each point is relevant to
the PSO algorithm, so we adopt the term particle. Each particle moves
according to a velocity. This velocity changes according to the past
objective function values of that particle and the current objective values
of the rest of the particles. Each particle remembers the location where
it found its best result so far, and it exchanges information with the
swarm about the location where the swarm has found the best result
so far.

The position of particle i for iteration k + 1 is updated according to

(@)
k+1

(@)

W ol At, (7.27)

x k+

=X

where At is a constant artificial time step. The velocity for each particle
is updated as follows:
O] O] (@
0 _ (@), o best ~ ¥k Xbest ~ Xj
Uk = 0 PTG VA

(7.28)

The first component in this update is the “inertia”, which determines
how similar the new velocity is to the velocity in the previous iteration

*PSO was first proposed by Eberhart and
Kennedy.'*" Eberhart was an electrical en-
gineer, and Kennedy was a social psychol-
ogist.

150. Eberhart and Kennedy, New opti-
mizer using particle swarm theory, 1995.
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through the parameter a. Typical values for the inertia parameter « are
in the interval [0.8, 1.2]. A lower value of & reduces the particle’s inertia
and tends toward faster convergence to a minimum. A higher value of
increases the particle’s inertia and tends toward increased exploration to
potentially help discover multiple minima. Some methods are adaptive,
choosing the value of « based on the optimizer’s progress.'”!

The second term represents “memory” and is a vector pointing
toward the best position particle i has seen in all its iterations so far, xl(;gst.
The weight in this term consists of a random number f in the interval
[0, Bmax] that introduces a stochastic component to the algorithm. Thus,
B controls how much influence the best point found by the particle so
far has on the next direction.

The third term represents “social” influence. It behaves similarly
to the memory component, except that xpest is the best point the entire
swarm has found so far, and y is a random number between [0, Ymax]
that controls how much of an influence this best point has in the next
direction. The relative values of § and y thus control the tendency
toward local versus global search, respectively. Both fmax and ymax are
in the interval [0, 2] and are typically closer to 2. Sometimes, rather
than using the best point in the entire swarm, the best point is chosen
within a neighborhood.

Because the time step is artificial, we can eliminate it by multiplying
Eq. 7.28 by At to yield a step:

Ax) = anx! 4 (xi — ")+ (oo = 1) - (7.29)

We then use this step to update the particle position for the next
iteration:
x

@O _ @ (@)
ki1 = X TAX L (7.30)

The three components of the update in Eq. 7.29 are shown in Fig. 7.32
for a two-dimensional case.

Xbest
°

(1)
“best
L]

151. Zhan et al., Adaptive particle swarm
optimization, 2009.

Fig. 7.32 Components of the PSO up-
date.
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The first step in the PSO algorithm is to initialize the set of particles
(Alg. 7.6). As with a GA, the initial set of points can be determined
randomly or can use a more sophisticated sampling strategy (see
Section 10.2). The velocities are also randomly initialized, generally

using some fraction of the domain size (x — x).

\f={elaitalna WS Particle swarm optimization algorithm

Inputs:
X: Variable upper bounds
X: Variable lower bounds
a: Inertia parameter
ﬁmaxi Self influence parameter
Vmax: Social influence parameter
AXmax: Maximum velocity
Outputs:
Xx*: Best point

f*: Corresponding function value

k=0

fori =1tondo Loop to initialize all particles

Generate position xg) within specified bounds.
(@)

Initialize “velocity” Ax,

end for
while not converged do
fori=1tondo

if £ (x0) < £ (x{,,) then

xlf)lzst = x(i)
end if
if f(x(i)) < f(xpest) then
Xbest = x(®
end if
end for

fori=1tondo . ' '
Ax?{’il = anE(’) +B (xge)st - xg)) +y (xbest - x](;))

Axl(cill = max (min (Ax;(iil, Axmax) , —Axmax)

@ _ . 3) (1)
xl(c'J)rl =x+ Axk+1 "
1 . 1 —
X, = max (mm (xk+1, x) ,g)
end for
k=k+1

end while

Main iteration loop

Best individual points

Best swarm point

Limit velocity

Update the particle position

Enforce bounds
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The main loop in the algorithm computes the steps to be added to
each particle and updates their positions. Particles must be prevented
from going beyond the bounds. If a particle reaches a boundary and
has a velocity pointing out of bounds, it is helpful to reset to velocity to
zero or reorient it toward the interior for the next iteration. It is also
helpful to impose a maximum velocity. If the velocity is too large, the
updated positions are unrelated to their previous positions, and the
search is more random. The maximum velocity might also decrease
across iterations to shift from exploration toward exploitation.

SEMEVAE PSO algorithm applied to the bean function

Figure 7.33 shows the particle movements that result when minimizing the
bean function using a particle swarm method. The initial population size was
40, and the optimization required 600 function evaluations. Convergence was
assumed if the best value found by the population did not improve by more
than 10~ for three consecutive iterations.

Several convergence criteria are possible, some of which are similar
to the Nelder-Mead algorithm and GAs. Examples of convergence

Fig. 7.33 Sequence of PSO iterations
that minimize the bean function.
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criteria include the distance (sum or norm) between each particle and
the best particle, the best particle’s objective function value changes
for the last few generations, and the difference between the best and
worst member. For PSO, another alternative is to check whether the
velocities for all particles (as measured by a metric such as norm or
mean) are below some tolerance. Some of these criteria that assume
all the particles congregate (distance, velocities) do not work well for
multimodal problems. In those cases, tracking only the best particle’s
objective function value may be more appropriate.

17474 Compare optimization algorithms fairly

It is challenging to compare different algorithms fairly, especially when they
use different convergence criteria. You can either compare the computational
cost of achieving an objective with a specified accuracy or compare the objective
achieved for a specified computational cost. To compare algorithms that use
different convergence criteria, you can run them for as long as you can afford
using the lowest convergence tolerance possible and tabulate the number of
function evaluations and the respective objective function values. To compare
the computational cost for a specified tolerance, you can determine the number
of function evaluations that each algorithm requires to achieve a given number
of digit agreement in the objective function. Alternatively, you can compare the
objective achieved for the different algorithms for a given number of function
evaluations. Comparison becomes more challenging for constrained problems
because a better objective that is less feasible is not necessarily better. In that
case, you need to make sure that all results are feasible to the same tolerance.
When comparing algorithms that include stochastic procedures (e.g., GAs,
PSO), you should run each optimization multiple times to get statistically
significant data and compare the mean and variance of the performance metrics.
Even for deterministic algorithms, results can vary significantly with starting
points (or other parameters), so running multiple optimizations is preferable.

I EIIEVASE Comparison of algorithms for a multimodal discontinuous
function
We now return to the Jones function (Appendix D.1.4), but we make it
discontinuous by adding the following function:

Af = 4[sin(mxq) sin(rxp)] . (7.31)

By taking the ceiling of the product of the two sine waves, this function creates a
checkerboard pattern with Os and 4s. In this latter case, each gradient evaluation
is counted as an evaluation in addition to each function evaluation. Adding this
function to the Jones function produces the discontinuous pattern shown in
Fig.7.34. This is a one-dimensional slice of constant x; through the optimum of

-10 +

=20

Discontinuous

Original

Fig. 7.34 Slice of the Jones function
with the added checkerboard pattern.
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the Jones function; the full two-dimensional contour plot is shown in Fig. 7.35.
The global optimum remains the same as the original function.

AN 33 SO0 37 SO0
aluat{]ons \ 119 evaluations, \ 99 evaluat&lons \
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Genetic algorithm Particle swarm optimization Quasi-Newton method

The resulting optimization paths demonstrate that some gradient-free Fig. 7.35 Convergence path for
algorithms effectively handle the discontinuities and find the global minimum. g?a}‘iientc'ifree ilgogﬂ;ms ‘c}cimpar‘eﬁ
Nelder-Mead converges quickly, but not necessarily to the global minimum. with gradient-based algorithms wit

multistart.
GPS and DIRECT quickly converge to the global minimum. GAs and PSO
also find the global minimum, but they require many more evaluations. The
gradient-based algorithm (quasi-Newton) with multistart also converges the
global minimum in two of the six random starts.

7.8 Summary

Gradient-free optimization algorithms are needed when the objective
and constraint functions are not smooth enough or when it is not
possible to compute derivatives with enough precision. One major
advantage of gradient-free methods is that they tend to be robust to
numerical noise and discontinuities, making them easier to use than
gradient-based methods.



7 GRADIENT-FREE OPTIMIZATION 322

However, the overall cost of gradient-free optimization is sensitive to
the cost of the function evaluations because they require many iterations
for convergence, and the number of iterations scales poorly with the
number of design variables.

There is a wide variety of gradient-free methods. They can perform
a local or global search, use mathematical or heuristic criteria, and
be deterministic or stochastic. A global search does not guarantee
convergence to the global optimum but increases the likelihood of such
convergence. We should be wary when heuristics establish convergence
because the result might not correspond to the actual mathematical
optimum. Heuristics in the optimization algorithm also limit the rate
of convergence compared with algorithms based on mathematical
principles.

In this chapter, we covered only a small selection of popular gradient-
free algorithms. The Nelder-Mead algorithm is a local search algorithm
based on heuristics and is easy to implement. GPS and DIRECT are
based on mathematical criteria.

Evolutionary algorithms are global search methods based on the
evolution of a population of designs. They stem from appealing
heuristics inspired by natural or societal phenomena and have some
stochastic element in their algorithms. The GAs and PSO algorithms
covered in this chapter are only two examples from the plethora of
evolutionary algorithms that have been invented.

Many of the methods presented in this chapter do not directly
address constrained problems; in those cases, penalty or filtering
methods are typically used to enforce constraints.
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Problems

7.1 Answer true or false and justify your answer.

a.

Gradient-free optimization algorithms are not as efficient as
gradient-based algorithms, but they converge to the global
optimum.

. None of the gradient-free algorithms checks the KKT condi-

tions for optimality.

. The Nelder-Meade algorithm is a deterministic local search

algorithm using heuristic criteria and direct function evalua-
tions.

. The simplex is a geometric figure defined by a set of  points,

where 1 is the dimensionality of the design variable space.

. The DIRECT algorithm is a deterministic global search al-

gorithm using mathematical criteria and direct function
evaluations.

. The DIRECT method favors small rectangles with better

function values over large rectangles with worse function
values.

. Evolutionary algorithms are stochastic global search algo-

rithms based on heuristics and direct function evaluations.

. GAs start with a population of designs that gradually de-

creases to a single individual design at the optimum.

. Each design in the initial population of a GA should be

carefully selected to ensure a successful optimization.

. Stochastic procedures are necessary in the GAs to maintain

population diversity and therefore reduce the likelihood of
getting stuck in local minima.

. PSO follows a model developed by biologists in the research

of how bee swarms search for pollen and nectar.

. All evolutionary algorithms are based on either evolutionary

genetics or animal behavior.

7.2 Program the Nelder-Mead algorithm and perform the following
studies:

a.

b.

Reproduce the bean function results shown in Ex. 7.1.

Add random noise to the function with a magnitude of 10~
using a normal distribution and see if that makes a difference
in the convergence of the Nelder-Mead algorithm. Compare
the results to those of a gradient-based algorithm.
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C.

Consider the following function:
fx1,x2,x3) = |x1] + 2|x2| + x3. (7.32)
Minimize this function with the Nelder-Mead algorithm

and a gradient-based algorithm. Discuss your results.

Exploration: Study the logic of the Nelder-Mead algorithm
and devise possible improvements. For example, is it a good
idea to be greedier and do multiple expansions?

7.3 Program the DIRECT algorithm and perform the following stud-

1es:

a.

b.

Reproduce the Jones function results shown in Ex. 7.3.

Use a gradient-based algorithm with a multistart strategy to
minimize the same function. On average, how many different
starting points do you need to find the global minimum?

. Minimize the Hartmann function (defined in Appendix D.1.5)

using both methods. Compare and discuss your results.

. Exploration: Develop a hybrid approach that starts with

DIRECT and then switches to the gradient-based algorithm.
Are you able to reduce the computational cost of DIRECT
significantly while converging to the global minimum?

7.4 Program a GA and perform the following studies:

a.

b.

Reproduce the bean function results shown in Ex. 7.7.

Use your GA to minimize the Harmann function. Estimate
the rate of convergence and compare the performance of the
GA with a gradient-based algorithm.

Study the effect of adding checkerboard steps (Eq. 7.31) with
a suitable magnitude to this function. How does this affect
the performance of the GA and the gradient-based algorithm
compared with the smooth case? Study the effect of reducing
the magnitude of the steps.

Exploration: Experiment with different population sizes,
types of crossover, and mutation probability. Can you
improve on your original algorithm? Is that improvement
still observed for other problems?

7.5 Program the PSO algorithm and perform the following studies:

a.

Reproduce the bean function results shown in Ex. 7.8.
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b. Use your PSO to minimize the n-dimensional Rosenbrock
function (defined in Appendix D.1.2) with n = 4. Estimate
the convergence rate and discuss the performance of PSO
compared with a gradient-based algorithm.

c. Study the effect of adding noise to the objective function for
both algorithms (see Prob. 7.2). Experiment with different
levels of noise.

d. Exploration: Experiment with different population sizes and
with the values of the coefficients in Eq. 7.29. Are you able
to improve the performance of your implementation for
multiple problems?

7.6 Study the effect of increased problem dimensionality using the
n-dimensional Rosenbrock function defined in Appendix D.1.2.
Solve the problem using three approaches:

a. Gradient-free algorithm

b. Gradient-based algorithm with gradients computed using
finite differences

c. Gradient-based algorithm with exact gradients

You can either use an off-the-shelf optimizer or your own im-
plementation. In each case, repeat the minimization for n =
2,4,8,16, ... up to at least 128, and see how far you can get with
each approach. Plot the number of function calls required as a
function of the problem dimension (#) for all three methods on
one figure. Discuss any differences in optimal solutions found by
the various algorithms and dimensions. Compare and discuss
your results.

7.7 Consider the aircraft wing design problem described in Ap-
pendix D.1.6. We add a wrinkle to the drag computation to make
the objective discontinuous. Previously, the approximation for
the skin friction coefficient assumed that the boundary layer on
the wing was fully turbulent. In this assignment, we assume
that the boundary layer is fully laminar when the wing chord
Reynolds number is less or equal to Re = 6 x 10°. The laminar
skin friction coefficient is given by

C, = 1.328
! VRe
For Re > 6 X 10°, the boundary layer is assumed to be fully

turbulent, and the previous skin friction coefficient approximation
(Eq. D.14) holds.
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Minimize the power with respect to span and chord by doing the
following;:

a. Implement one gradient-free algorithm of your choice, or
alternatively, make up your own algorithm (and give it a
good name!)

b. Use the quasi-Newton method you programmed in Prob. 4.9.
c. Use an existing optimizer

Discuss the relative performance of these methods as applied to
this problem.



Discrete Optimization

Most algorithms in this book assume that the design variables are
continuous. However, sometimes design variables must be discrete.
Common examples of discrete optimization include scheduling, net-
work problems, and resource allocation. This chapter introduces some
techniques for solving discrete optimization problems.

e A

By the end of this chapter you should be able to:

1. Identify problems where you can avoid using discrete
variables.

2. Convert problems with integer variables to ones with
binary variables.

3. Understand the basics of various discrete optimization
algorithms (branch and bound, greedy, dynamic program-
ming, simulated annealing, binary genetic).

4. Identify which algorithms are likely to be most suitable
for a given problem.

8.1 Binary, Integer, and Discrete Variables

Discrete optimization variables can be of three types: binary (sometimes
called zero-one), integer, and discrete. A light switch, for example, can
only be on or off and is a binary decision variable that is either 0 or 1.
The number of wheels on a vehicle is an integer design variable because
it is not useful to build a vehicle with half a wheel. The material in a
structure that is restricted to titanium, steel, or aluminum is an example
of a discrete variable. These cases can all be represented as integers
(including the discrete categories, which can be mapped to integers).
An optimization problem with integer design variables is referred to as
integer programming, discrete optimization, or combinatorial optimization.*
Problems with both continuous and discrete variables are referred to
as mixed-integer programming.

327

8

*Sometimes subtle differences in meaning
are intended, but typically, and in this
chapter, these terms can be used inter-
changeably.
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Unfortunately, discrete optimization is nondeterministic polynomial-
time complete, or NP-complete, which means that we can easily verify
a solution, but there is no known approach to find a solution efficiently.
Furthermore, the time required to solve the problem becomes much
worse as the problem size grows.

IS EM I ERENE The drawback of an exhaustive search

The scaling issue in discrete optimization is illustrated by a well-known
discrete optimization problem: the traveling salesperson problem. Consider a
set of cities represented graphically on the left of Fig. 8.1. The problem is to
find the shortest possible route that visits each city exactly once and returns
to the starting city. The path on the right of Fig. 8.1 shows one such solution
(not necessarily the optimum). If there were only a handful of cities, you could
imagine doing an exhaustive search. You would enumerate all possible paths,
evaluate them, and return the one with the shortest distance. Unfortunately,
this is not a scalable algorithm. The number of possible paths is (n — 1)!, where
n is the number of cities. If, for example, we used all 50 U.S. state capitals as the
set of cities, then there would be 49! = 6.08 x 10%2 possible paths! This is such a
large number that we cannot evaluate all paths using an exhaustive search.

It is possible to construct algorithms that find the global optimum
of discrete problems, such as exhaustive searches. Exhaustive search
ideas can also be used for continuous problems (see Section 7.5, for
example, but the cost is much higher). Although an exhaustive search
may eventually arrive at the correct answer, executing that algorithm
to completion is often not practical, as Ex. 8.1 highlights. Discrete
optimization algorithms aim to search the large combinatorial space
more efficiently, often using heuristics and approximate solutions.

8.2 Avoiding Discrete Variables

Even though a discrete optimization problem limits the options and thus
conceptually sounds easier to solve, discrete optimization problems

Fig. 8.1 Example of the traveling sales-
person problem.
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are usually much more challenging to solve than continuous problems.
Thus, it is often desirable to find ways to avoid using discrete design
variables. There are a few approaches to accomplish this.

1)[sR ] Avoid discrete variables when possible

Unless your optimization problem fits specific forms that are well suited to
discrete optimization, your problem is likely expensive to solve, and it may be
helpful to consider approaches to avoid discrete variables.

The first approach is an exhaustive search. We just discussed how
exhaustive search scales poorly, but sometimes we have many continu-
ous variables and only a few discrete variables with few options. In
that case, enumerating all options is possible. For each combination
of discrete variables, the optimization is repeated using all continuous
variables. We then choose the best feasible solution among all the opti-
mizations. This approach yields the global optimum, assuming that the
continuous optimization finds the global optimum in the continuous
variable space.

Evaluate discrete variables exhaustively when the number of
combinations is small

Consider the optimization of a propeller. Although most of the design vari-
ables are continuous (e.g., propeller blade shape, twist, and chord distributions),
the number of blades on a propeller is not. Fortunately, the number of blades
falls within a reasonably small set (e.g., two to six). Assuming there are no other
discrete variables, we could just perform five optimizations corresponding to
each option and choose the best solution among the optima.

A second approach is rounding. We can optimize the discrete design
variables for some problems as if they were continuous and round the
optimal design variable values to integer values afterward. This can be
a reasonable approach if the magnitude of the design variables is large
or if there are many continuous variables and few discrete variables.
After rounding, it is best to repeat the optimization once more, allowing
only the continuous design variables to vary. This process might not
lead to the true optimum, and the solution might not even be feasible.
Furthermore, if the discrete variables are binary, rounding is generally
too crude. However, rounding is an effective and practical approach
for many problems.

Dynamic rounding is a variation of the rounding approach. Rather
than rounding all continuous variables at once, dynamic rounding is an
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iterative process. It rounds only one or a subset of the discrete variables,
fixes them, and re-optimizes the remaining variables using continuous
optimization. The process is repeated until all discrete variables are
fixed, followed by one last optimization with the continuous variables.

A third approach to avoiding discrete variables is to change the
parameterization. For example, one approach in wind farm layout
optimization is to parametrize the wind turbine locations as a discrete
set of points on a grid. To turn this into a continuous problem, we could
parametrize the position of each turbine using continuous coordinates.
The trade-off of this continuous parameterization is that we can no
longer change the number of turbines, which is still discrete. To re-
parameterize, sometimes a continuous alternative is readily apparent,
but more often, it requires a good deal of creativity.

Sometimes, an exhaustive search is not feasible, rounding is unac-
ceptable, and a continuous representation is impossible. Fortunately,
there are several techniques for solving discrete optimization problems.

8.3 Branch and Bound

A popular method for solving integer optimization problems is the
branch-and-bound method. Although it is not always the most efficient
method,* it is popular because it is robust and applies to a wide variety
of discrete problems. One case where the branch-and-bound method
is especially effective is solving convex integer programming problems
where it is guaranteed to find the global optimum. The most common
convex integer problem is a linear integer problem (where all the
objectives and constraints are linear in the design variables). This
method can be extended to nonconvex integer optimization problems,
but it is generally far less effective for those problems and is not
guaranteed to find the global optimum. In this section, we assume linear
mixed-integer problems but include a short discussion on nonconvex
problems.
A linear mixed-integer optimization problem can be expressed as
follows:
minimize cTx
subject to Ax <b
Ax+b=0

x; € Z" for someorall i,

8.1)

where Z* represents the set of all positive integers, including zero.

*Better methods may exist that leverage
the specific problem structure, some of
which are discussed in this chapter.
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8.3.1 Binary Variables

Before tackling the integer variable case, we explore the binary variable
case, where the discrete entries in x; must be 0 or 1. Most integer
problems can be converted to binary problems by adding additional
variables and constraints. Although the new problem is larger, it is
usually far easier to solve.

I ElSFFEN Converting an integer problem to a binary one

Consider a problem where an engineering device may use one of n different
materials: y € (1...n). Rather than having one design variable y, we can
convert the problem to have n binary variables x;, where x; = 0 if material i is
not selected and x; = 1 if material i is selected. We would also need to add an
additional linear constraint to make sure that one (and only one) material is

selected:
n
Z Xi = 1.
i=1

The key to a successful branch-and-bound problem is a good relax-
ation. Relaxation aims to construct an approximation of the original
optimization problem that is easier to solve. Such approximations are
often accomplished by removing constraints.

Many types of relaxation are possible for a given problem, but for lin-
ear mixed-integer programming problems, the most natural relaxation
is to change the integer constraints to continuous bound constraints
(0 < x; < 1). In other words, we solve the corresponding continuous
linear programming problem, also known as an LP (discussed in Sec-
tion 11.2). If the solution to the original LP happens to return all binary
values, that is the final solution, and we terminate the search. If the LP
returns fractional values, then we need to branch.

Branching is done by adding constraints and solving the new
optimization problems. For example, we could branch by adding
constraints on x; to the relaxed LP, creating two new optimization
problems: one with the constraint x; = 0 and another with the constraint
x1 = 1. This procedure is then repeated with additional branching as
needed.

Figure 8.2 illustrates the branching concept for binary variables. If
we explored all of those branches, this would amount to an exhaustive
search. The main benefit of the branch-and-bound algorithm is that we
can find ways to eliminate branches (referred to as pruning) to narrow
down the search scope.
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X1 = 0
X2 =

0 1
AU
[ ]

There are two ways to prune. If any of the relaxed problems is
infeasible, we know that everything from that node downward (i.e.,
that branch) is also infeasible. Adding more constraints cannot make
an infeasible problem feasible again. Thus, that branch is pruned, and
we go back up the tree. We can also eliminate branches by determining
that a better solution cannot exist on that branch. The algorithm keeps
track of the best solution to the problem found so far.

If one of the relaxed problems returns an objective that is worse
than the best we have found, we can prune that branch. We know this
because adding constraints always leads to a solution that is either the
same or worse, never better (assuming that we find the global optimum,
which is guaranteed for LP problems).

The solution from a relaxed problem provides a lower bound—the
best that could be achieved if continuing on that branch. The logic for
these various possibilities is summarized in Alg. 8.1.

The initial best known solution can be set as fpest = o0 if nothing is
known, but if a known feasible solution exists (or can be found quickly
by some heuristic), providing any finite best point can speed up the
optimization.

Many variations exist for the branch-and-bound algorithm. One
variation arises from the choice of which variables to branch on at a
given node.

One common strategy is to branch on the variable with the largest
fractional component. For example, if £ = [1.0,0.4, 0.9, 0.0], we could
branch on x; or x3 because both are fractional. We hypothesize that
we are more likely to force the algorithm to make faster progress by
branching on variables that are closer to midway between integers. In
this case, that value would be x; = 0.4. We would choose to branch on
the value closest to 0.5, that is,

min |x; —0.5]. (8.2)

Another variation of branch and bound arises from how the tree
search is performed. Two common strategies are depth-first and breadth-

Fig. 8.2 Enumerating the options for
a binary problem with branching.
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first. A depth-first strategy continues as far down as possible (e.g., by
always branching left) until it cannot go further, and then it follows
right branches. A breadth-first strategy explores all nodes on a given
level before increasing depth. Various other strategies exist. In general,
we do not know beforehand which one is best for a given problem.

Depth-first is a common strategy because, in the absence of more
information about a problem, it is most likely to be the fastest way
to find a solution—reaching the bottom of the tree generally forces a
solution. Finding a solution quickly is desirable because its solution
can then be used as a lower bound on other branches.

The depth-first strategy requires less memory storage because
breadth-first must maintain a longer history as the number of lev-
els increases. In contrast, depth-first only requires node storage equal
to the number of levels.

\{elqilal RNl Branch-and-bound algorithm

Inputs:

fbest: Best known solution, if any; otherwise fpest = o0
Outputs:

x*: Optimal point

f(x™): optimal function value

Let S be the set of indices for binary constrained design variables
while branches remain do
Solve relaxed problem for %, f
if relaxed problem is infeasible then
Prune this branch, back up tree
else
if ¥; € {0,1} foralli € S then A solution is found

~

Soest = min(fpest, f), back up tree
else

if f > fpet then
Prune this branch, back up tree
else A better solution might exist
Branch further
end if
end if
end if

end while
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S EIERERZE A binary branch-and-bound optimization

Consider the following discrete problem with binary design variables:

minimize —2.5x1 —1.1xp —0.9x3 — 1.5x4
subjectto  4.3x1 +3.8x7 + 1.6x3 +2.1x4 < 9.2
4x1 +2x9 +1.9x3 +3x4 <9
x; € {0,1} for all i.
To solve this problem, we begin at the first node by solving the linear

relaxation. The binary constraint is removed and instead replaced with
continuous bounds: 0 < x; < 1. The solution to this LP is as follows:

x* =[1,0.5274,0.4975,1]
f=-5.0279.
There are nonbinary values in the solution, so we need to branch. As
mentioned previously, a typical choice is to branch on the variable with the

most fractional component. In this case, that is x3, so we create two additional
problems, which add the constraints x3 = 0 and x3 = 1, respectively (Fig. 8.3).

x*=[1,0.53,0.50, 1]
f*=-5.03

X3 = 1

Although depth-first was recommended previously, in this example, we
use breadth-first because it yields a more concise example. The depth-first tree
is also shown at the end of the example. We solve both of the problems at this
next level as shown in Fig. 8.4. Neither of these optimizations yields all binary
values, so we have to branch both of them. In this case, the left node branches
on x3 (the only fractional component), and the right node also branches on x;
(the most fractional component).

X' =[1,0.53,0.50,1]
fr=-5.03

X3= 0 1

x*=11,0.74,0,1]7 x*=11,0.47,1,0.72]7
f*=—-4.81 f*=-5.00

The first branch (see Fig. 8.5) yields a feasible binary solution! The corre-
sponding function value f = —4 is saved as the best value so far. There is no
need to continue on this branch because the solution cannot be improved on
this particular branch.

We continue solving along the rest of this row (Fig. 8.6). The third node
in this row yields another binary solution. In this case, the function value is
f = —4.9, which is better, so this becomes the new best value so far. The second

Fig. 8.3 Initial binary branch.

Fig. 8.4 Solutions along these two
branches.
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x* =[1,0.53,0.50,1]7
f=-503

X3 = 1
x*=11,0.74,0,1]7 x*=1[1,047,1,0.72]7
fr=-481 f*=-5.00
2= 0 1
x* :f[l, 0,0,1]7 Fig. 8.5 The first feasible solution.
*= 4

and fourth nodes do not yield a solution. Typically, we would have to branch
these further, but they have a lower bound that is worse than the best solution
so far. Thus, we can prune both of these branches.

x*=[1,0.53,0.50, 1]
f*=-5.03

X3 =
x*=[1,0.74,0,1]7 x*=[1,0.47,1,0.72]7
fr=-481 £+ ==5.00
2= 0
x*=1[1,0,0,1]7 x*=[040,1,1,1]
£ = L fr=-4.49 Fig. 8.6 The rest of the solutions on
’ x*=[0.77,1,0,1]7 x*=[1,0,1,1]" this row.
fr=-452 fr=-49

All branches have been pruned, so we have solved the original problem:

x*=[1,0,1,1]
f=-49.

X3 =

X2 =

*=-49 Dbounded

X4 =
Fig. 8.7 Search path using a depth-
first strategy.

f*=-3.6 infeasible

Alternatively, we could have used a depth-first strategy. In this case, it is
less efficient, but in general, the best strategy is not known beforehand. The
depth-first tree for this same example is shown in Fig. 8.7. Feasible solutions to
the problem are shown as f*.
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8.3.2 Integer Variables

If the problem cannot be cast in binary form, we can use the same proce-
dure with integer variables. Instead of branching with two constraints
(x; = 0 and x; = 1), we branch with two inequality constraints that
encourage integer solutions. For example, if the variable we branched
on was x; = 3.4, we would branch with two new problems with the
following constraints: x; < 3 or x; > 4.

S EII RSN Branch and bound with integer variables

Consider the following problem:

minimize —x1—2x» —3x3—1.5x4

subject to  x7 + xp +2x3 +2x4 < 10
7x1 + 8xy +5x3 + x4 = 31.5
x; €Z fori=1,2,3

x4 >0.

We begin by solving the LP relaxation, replacing the integer constraints
with a lower bound constraint of zero (x; > 0). The solution to that problem is

x* =1[0,1.1818,4.4091,0], f*=-15.59.

We begin by branching on the most fractional value, which is x3. We create
two new branches:

o The original LP with the added constraint x3 < 4
e The original LP with the added constraint x3 > 5

Even though depth-first is usually more efficient, we use breadth-first because
it is easier to display on a figure. The solution to that first problem is

x*=1[0,1.4,4,03], f*=-15.25.

The second problem is infeasible, so we can prune that branch.

Recall that the last variable is allowed to be continuous, so we now branch
on x by creating two new problems with additional constraints: x; <1 and
Xp = 2.

The problem continues using the same procedure shown in the breadth-
first tree in Fig. 8.8. The figure gives some indication of why solving integer
problems is more time-consuming than solving binary ones. Unlike the binary
case, the same value is revisited with tighter constraints. For example, the
constraint x3 < 4 is enforced early on. Later, two additional problems are
created with tighter bounds on the same variable: x3 < 2 and x3 > 3. In
general, the same variable could be revisited many times as the constraints are
slowly tightened, whereas in the binary case, each variable is only visited once
because the values can only be 0 or 1.
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x3<4 x3>5

infeasible

infeasible fr=-13.75

infeasible  bounded

Once all the branches are pruned, we obtain the solution:

x* =10,2,3,0.5]
f*=-13.75.

Nonconvex mixed-integer problems can also be used with the
branch-and-bound method and generally use this latter strategy of
forming two branches of continuous constraints. In this case, the
relaxed problem is not a convex problem, so there is no guarantee that
we have found a lower bound for that branch. Furthermore, the cost
of each suboptimization problem is increased. Thus, for nonconvex
discrete problems, this approach is usually only practical for a relatively
small number of discrete design variables.

8.4 Greedy Algorithms

Greedy algorithms are among the simplest methods for discrete opti-
mization problems. This method is more of a concept than a specific
algorithm. The implementation varies with the application. The idea is
to reduce the problem to a subset of smaller problems (often down to a
single choice) and then make a locally optimal decision. That decision
is locked in, and then the next small decision is made in the same
manner. A greedy algorithm does not revisit past decisions and thus
ignores much of the coupling between design variables.

Fig. 8.8 A breadth search of the
mixed-integer programming exam-
ple.
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Dl BREH A weighted directed graph

As an example, consider the weighted directed graph shown in Fig. 8.9.
This graph might represent a transportation problem for shipping goods,
information flow through a social network, or a supply chain problem. The
objective is to traverse from node 1 to node 12 with the lowest possible total
cost (the numbers above the path segments denote the cost of each path). A
series of discrete choices must be made at each step, and those choices limit the
available options in the next step.

Global

Greedy

A greedy algorithm simply makes the best choice assuming each decision
is the only decision to be made. Starting at node 1, we first choose to move to
node 3 because that is the lowest cost between the three options (node 2 costs
2, node 3 costs 1, node 4 costs 5). We then choose to move to node 6 because
that is the smallest cost between the next two available options (node 6 costs
4, node 7 costs 6), and so on. The path selected by the greedy algorithm is
highlighted in the figure and results in a total cost of 15. The global optimum
is also highlighted in the figure and has a total cost of 10.

The greedy algorithm used in Ex. 8.6 is easy to apply and scalable
but does not generally find the global optimum. To find that global
optimum, we have to consider the impact of our choices on future
decisions. A method to achieve this for certain problem structures is
discussed in the next section.

Even for a fixed problem, there are many ways to construct a greedy
algorithm. The advantage of the greedy approach is that the algorithms
are easy to construct, and they bound the computational expense of
the problem. One disadvantage of the greedy approach is that it
usually does not find an optimal solution (and in some cases finds the

worst solution!'>?). Furthermore, the solution is not necessarily feasible.

Fig. 8.9 The greedy algorithm in this
weighted directed graph results in
a total cost of 15, whereas the best
possible cost is 10.

152. Gutin et al., Traveling salesman should
not be greedy: domination analysis of greedy-
type heuristics for the TSP, 2002.
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Despite the disadvantages, greedy algorithms can sometimes quickly
find solutions reasonably close to an optimal solution.

S EIIERVA Greedy algorithms

A few other examples of greedy algorithms are listed below. For the
traveling salesperson problem (Ex. 8.1), always select the nearest city as the
next step. Consider the propeller problem (Ex. 8.2 but with additional discrete
variables (number of blades, type of material, and number of shear webs). A
greedy method could optimize the discrete variables one at a time, with the
others fixed (i.e., optimize the number of blades first, fix that number, then
optimize material, and so on). As a final example, consider the grocery store
shopping problem discussed in a separate chapter (Ex. 11.1).* A few possible
greedy algorithms for this problem include: always pick the cheapest food
item next, or always pick the most nutritious food item next, or always pick the
food item with the most nutrition per unit cost.

8.5 Dynamic Programming

Dynamic programming is a valuable approach for discrete optimiza-
tion problems with a particular structure. This structure can also be
exploited in continuous optimization problems and problems beyond
optimization. The required structure is that the problem can be posed
as a Markov chain (for continuous problems, this is called a Markov
process). A Markov chain or process satisfies the Markov property,
where a future state can be predicted from the current state without
needing to know the entire history. The concept can be generalized to a
finite number of states (i.e., more than one but not the entire history)
and is called a variable-order Markov chain.

If the Markov property holds, we can transform the problem into a
recursive one. Using recursion, a smaller problem is solved first, and
then larger problems are solved that use the solutions from the smaller
problems.

This approach may sound like a greedy optimization, but it is not.
We are not using a heuristic but fully solving the smaller problems.
Because of the problem structure, we can reuse those solutions. We will
illustrate this in examples. This approach hasbecome particularly useful
in optimal control and some areas of economics and computational
biology. More general design problems, such as the propeller example
(Ex. 8.2), do not fit this type of structure (i.e., choosing the number
of blades cannot be broken up into a smaller problem separate from
choosing the material).

*This is a form of the knapsack problem,
which is a classic problem in discrete op-
timization discussed in more detail in the
following section.
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A classic example of a Markov chain is the Fibonacci sequence,
defined as follows:

fo=0
A=1 (8.3)
fn = fn—l +fn—2~

We can compute the next number in the sequence using only the last
two states.* We could implement the computation of this sequence
using recursion, as shown algorithmically in Alg. 8.2 and graphically
in Fig. 8.10 for f5.

Ptelgialna Al Fibonacci with recursion

procedure fib(n)
if n <1 then
return n
else
return fib(n — 1) + fib(n — 2)
end if
end procedure

[ﬁb(z)] [ﬁba)} [ﬁba)} [ﬁb(O)} [ﬁba)} [ﬁb(O)}

fib(1) fib(0)

Although this recursive procedure is simple, it is inefficient. For
example, the calculation for £ib(2) (highlighted in Fig. 8.10) is repeated
multiple times. There are two main approaches to avoiding this
inefficiency. The first is a top-down procedure called memoization,
where we store previously computed values to avoid having to compute
them again. For example, the first time we need £ib(2), we call the fib
function and store the result (the value 1). As we progress down the
tree, if we need £ib(2) again, we do not call the function but retrieve
the stored value instead.

*We can also convert this to a standard
first-order Markov chain by defining ¢, =
fu-1 and considering our state to be
(fu,gn)- Then, each state only depends
on the previous state.

Fig. 8.10 Computing Fibonacci se-
quence using recursion. The function
fib(2) is highlighted as an example
to show the repetition that occurs in
this recursive procedure.
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A bottom-up procedure called tabulation is more common. This
procedure is how we would typically show the Fibonacci sequence. We
start from the bottom (fy) and work our way forward, computing each
new value using the previous states. Rather than using recursion, this
involves a simple loop, as shown in Alg. 8.3. Whereas memoization fills
entries on demand, tabulation systematically works its way up, filling
in entries. In either case, we reduce the computational complexity of
this algorithm from exponential complexity (approximately O(2")) to
linear complexity (O(n)).

\Lelqidalna kRN Fibonacci with tabulation

fo=0

fi=1

fori =2tondo
fi = firr + fi2

end for

These procedures can be applied to optimization, but before intro-
ducing examples, we formalize the mathematics of the approach. One
main difference in optimization is that we do not have a set formula
like a Fibonacci sequence. Instead, we need to make a design decision
at each state, which changes the next state. For example, in the problem
shown in Fig. 8.9, we decide which path to take.

Mathematically, we express a given state as s; and make a design
decision x;, which transitions us to the next state s, (Fig. 8.11),

Siv1 = ti(si, xi), (8.4)

where t is a transition function.” At each transition, we compute the
cost function c.} For generality, we specify a cost function that may
change at each iteration i:

ci(si, xi)- (8.5)

We want to make a set of decisions that minimize the sum of the
current and future costs up to a certain time, which is called the value
function,

v(si) = minimxize (ci(si, xi) + cip1(Siv1, Xiz1) + ...+ CulSn, X)), (8.6)
where n defines the time horizon up to which we consider the cost.
For continuous problems, the time horizon may be infinite. The value
function (Eq. 8.6) is the minimum cost, not just the cost for some arbitrary
set of decisions.$

: : - e — @

Fig. 8.11 Diagram of state transitions
in a Markov chain.

tFor some problems, the transition func-
tion is stochastic.

#1t is common to use discount factors on
future costs.

SWe use v and c for the scalars in Eq. 8.6
instead of Greek letters because the con-
nection to “value” and “cost” is clearer.
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Bellman'’s principle of optimality states that because of the structure
of the problem (where the next state only depends on the current state),
we can determine the best solution at this iteration x} if we already know
all the optimal future decisions x7_,, ..., x;,. Thus, we can recursively
solve this problem from the back (bottom) by determining xj,, then
x; _, and so on back to x;. Mathematically, this recursive procedure is

captured by the Bellman equation:
v(s;) = minimize (c(s;, x;) + v(Si+1)) - (8.7)
Xi

We can also express this equation in terms of our transition function to
show the dependence on the current decision:

v(s;) = min}(r_nize (c(si, x;) + v(ti(si, x1))) - (8.8)

SElI RS Dynamic programming applied to a graph problem

Let us solve the graph problem posed in Ex. 8.6 using dynamic programming.
For convenience, we repeat a smaller version of the figure in Fig. 8.12. We use
the tabulation (bottom-up) approach. To do this, we construct a table where we
keep track of the cost to move from this node to the end (node 12) and which
node we should move to next:

Node 1 2 3 4 5 6 7 8 9 10 11 12

Cost
Next

We start from the end. The last node is simple: there is no cost to move
from node 12 to the end (we are already there), and there is no next node.

Node 1 2 3 4 5 6 7 8 9 10 11 12

Cost 0
Next _

Now we move back one level to consider nodes 9, 10, and 11. These nodes
all lead to node 12 and are thus straightforward. We need to be more careful
with the formulas as we get to the more complicated cases next.

Node 1 2 3 4 5 6 7 8 9 10 11 12

Cost 3 6 2 0
Next 12 12 12 -

Fig. 8.12 Small version of Fig. 8.9 for
convenience.
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Now we move back one level to nodes 5, 6, 7, and 8. Using the Bellman
equation for node 5, the cost is

cost(5) = min[3 + cost(9), 2 + cost(10), 1 + cost(11)]. (8.9)

We have already computed the minimum value for cost(9), cost(10), and cost(11),
so we just look up these values in the table. In this case, the minimum total
value is 3 and is associated with moving to node 11. Similarly, the cost for node
61is

cost(6) = min[5 + cost(9), 4 + cost(10)]. (8.10)

The result is 8, and it is realized by moving to node 9.

Node 1 2 3 4 5 6 7 8 9 10 11 12

Cost 3 8 3 6 2 0
Next 1 9 12 12 12 -

We repeat this process, moving back and reusing optimal solutions to find
the global optimum. The completed table is as follows:

Node 1 2 3 4 5 6 7 8 9 10 11 12

Cost 10 8 12 9 3 8 7 4 3 6 2 0
Next 2 5 6 8 11 9 11 11 12 12 12 -

From this table, we see that the minimum cost is 10. This cost is achieved
by moving first to node 2. Under node 2, we see that we next go to node 5, then
11, and finally 12. Thus, the tabulation gives us the global minimum for cost
and the design decisions to achieve that.

To illustrate the concepts more generally, consider another classic
problem in discrete optimization—the knapsack problem. In this
problem, we have a fixed set of items we can select from. Each item
has a weight w; and a cost c;. Because the knapsack problem is usually
written as a maximization problem and cost implies minimization,
we should use value instead. However, we proceed with cost to be
consistent with our earlier notation. The knapsack has a fixed capacity
K (a scalar) that cannot be exceeded.

The objective is to choose the items that yield the highest total
cost subject to the capacity of our knapsack. The design variables x;
are either 1 or 0, indicating whether we take or do not take item i.
This problem has many practical applications, such as shipping, data
transfer, and investment portfolio selection.
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The problem can be written as

n
maximize Z CiXi
X
i=1

! 8.11
subject to Z wix; < K ( )
i=1

Xi € {0,1}

In its present form, the knapsack problem has a linear objective and
linear constraints, so branch and bound would be a good approach.
However, this problem can also be formulated as a Markov chain, so we
can use dynamic programming. The dynamic programming version
accommodates variations such as stochasticity and other constraints
more easily.

To pose this problem as a Markov chain, we define the state as the
remaining capacity of the knapsack k and the number of items we
have already considered. In other words, we are interested in v(k, i),
where v is the value function (optimal value given the inputs), k is
the remaining capacity in the knapsack, and i indicates that we have
already considered items 1 through i (this does not mean we have
added them all to our knapsack, only that we have considered them).
We iterate through a series of decisions x; deciding whether to take
item 7 or not, which transitions us to a new state where i increases and
k may decrease, depending on whether or not we took the item.

The real problem we are interested in is v(K, n), which we solve
using tabulation. Starting at the bottom, we know that v(k,0) = 0 for
any k. This means that no matter the capacity, the value is 0 if we have
not considered any items yet. To work forward, consider a general case
considering item 7, with the assumption that we have already solved
up to item i — 1 for any capacity. If item i cannot fit in our knapsack
(w; > k), then we cannot take the item. Alternatively, if the weight is
less than the capacity, we need to decide whether to select item i or
not. If we do not, then the value is unchanged, and v(k, i) = v(k,i — 1).
If we do select item i, then our value is ¢; plus the best we could do
with the previous items but with a capacity that was smaller by w;:
v(k,i) = ¢; + v(k — w;, i —1). Whichever of these decisions yields a
better value is what we should choose.

To determine which items produce this cost, we need to add more
logic. To keep track of the selected items, we define a selection matrix
S of the same size as v (note that this matrix is indexed starting at zero
in both dimensions). Every time we accept an item i, we register that in
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the matrix as S ; = 1. Algorithm 8.4 summarizes this process.

345

\ffe]aitalnaRR“W Knapsack with tabulation

Inputs:

c;j: Cost of item i

wj: Weight of item i

K: Total available capacity
Outputs:

x*: Optimal selections

v(K, n): Corresponding cost, v(k, i) is the optimal cost for capacity k considering items 1

through i; note that indexing starts at 0

fork=0to K do

v(k,0)=0 No items considered; value is zero for any capacity
end for
fori =1tondo Iterate forward solving for one additional item at a time

fork=0to K do
if w; > k then

v(k,i)=ov(k,i—1) Weight exceeds capacity; value unchanged
else
ifci+uv(k—w;,i—1)>v(k,i—1)then Take item
v(k,i)=ci+v(k—w;,i—-1)
S(k,i) =1
else Reject item
v(k,i)=ov(k,i—1)
end if
end if
end for
end for
k=K Initialize
Xt = {} Initialize solution x* as an empty set
fori =ntolby-1do Loop to determine which items we selected
if Sy ; = 1 then
add i to x* Item i was selected
k=k- wi
end if
end for

We fill all entries in the matrix v[k,i] to extract the last value
v[K,n]. For small numbers, filling this matrix (or table) is often
illustrated manually, hence the name fabulation. As with the Fibonacci
example, using dynamic programming instead of a fully recursive
solution reduces the complexity from O(2") to O(Kn), which means it
is pseudolinear. It is only pseudolinear because there is a dependence
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on the knapsack size. For small capacities, the problem scales well
even with many items, but as the capacity grows, the problem scales
much less efficiently. Note that the knapsack problem requires integer
weights. Real numbers can be scaled up to integers (e.g., 1.2, 2.4 become
12, 24). Arbitrary precision floats are not feasible given the number of
combinations to search across.

SElIERERN Knapsack problem with dynamic programming

Consider five items with the following weights and costs:
w; =1[4,5,2,6,1]
¢ =1[4,3,3,7,2].

The capacity of our knapsack is K = 10. Using Alg. 8.4, we find that the optimal
cost is 12. The value matrix is as follows:

00 0 0 0 O
00 0 0 0 2
0003 3 3
0003 3 5
0 4 4 4 4 5
0 4 4 4 4 6
0 4 47 7 7
0 4 4 7 7 9
0 4 4 7 10 10
0 4 7 7 10 12
0 4 7 7 11 12]

For this example, the selection matrix S is as follows:
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Following this algorithm, we find that we selected items 3, 4, and 5 for a total
cost of 12, as expected, and a total weight of 9.

Like greedy algorithms, dynamic programming is more of a tech-
nique than a specific algorithm. The implementation varies with the
particular application.
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8.6 Simulated Annealing

Simulated annealing* is a methodology designed for discrete opti-
mization problems. However, it can also be effective for continuous
multimodal problems, as we will discuss. The algorithm is inspired by
the annealing process of metals. The atoms in a metal form a crystal
lattice structure. If the metal is heated, the atoms move around freely.
As the metal cools down, the atoms slow down, and if the cooling is slow
enough, they reconfigure into a minimum-energy state. Alternatively,
if the metal is quenched or cooled rapidly, the metal recrystallizes with
a different higher-energy state (called an amorphous metal).

From statistical mechanics, the Boltzmann distribution (also called
Gibbs distribution) describes the probability of a system occupying a
given energy state:

P(e) cc exp (I;—;) , (8.12)

where e is the energy level, T is the temperature, and kp is Boltzmann's
constant. This equation shows that as the temperature decreases, the
probability of occupying a higher-energy state decreases, but it is not
zero. Therefore, unlike in classical mechanics, an atom could jump
to a higher-energy state with some small probability. This property
imparts an exploratory nature to the optimization algorithm, which
avoids premature convergence to a local minimum. The temperature
level provides some control on the level of expected explorat