
EnginEEring
DEsign OptimizatiOn
Joaquim R. R. A. Martins
Andrew Ning

Engineering

Design

Optimization

joaquim r. r. a. martins
University of Michigan

andrew ning
Brigham Young University

This is the electronic version of the book, which is available
on the following webpage:
https://mdobook.github.io

The page numbers have been adjusted to match those of the
printed book, which is available at:
https://www.cambridge.org/us/academic/subjects/
engineering/control-systems-and-optimization/
engineering-design-optimization

Please cite this book as:

Joaquim R. R. A. Martins and Andrew Ning. Engineering De-
sign Optimization. Cambridge University Press, 2021. ISBN:
9781108833417.

https://mdobook.github.io
https://www.cambridge.org/us/academic/subjects/engineering/control-systems-and-optimization/engineering-design-optimization
https://www.cambridge.org/us/academic/subjects/engineering/control-systems-and-optimization/engineering-design-optimization
https://www.cambridge.org/us/academic/subjects/engineering/control-systems-and-optimization/engineering-design-optimization

Copyright
© 2021 Joaquim R. R. A. Martins and Andrew Ning. All rights
reserved.

Publication
First electronic edition: January 2020.

Contents

Contents v

Preface xi

Acknowledgements xiii

1 Introduction 1
1.1 Design Optimization Process 2
1.2 Optimization Problem Formulation 6
1.3 Optimization Problem Classification 17
1.4 Optimization Algorithms 21
1.5 Selecting an Optimization Approach 26
1.6 Notation 28
1.7 Summary 29

Problems 30

2 A Short History of Optimization 33
2.1 The First Problems: Optimizing Length and Area 33
2.2 Optimization Revolution: Derivatives and Calculus 34
2.3 The Birth of Optimization Algorithms 36
2.4 The Last Decades 39
2.5 Toward a Diverse Future 43
2.6 Summary 45

3 Numerical Models and Solvers 47
3.1 Model Development for Analysis versus Optimization 47
3.2 Modeling Process and Types of Errors 48
3.3 Numerical Models as Residual Equations 50
3.4 Discretization of Differential Equations 52
3.5 Numerical Errors 53
3.6 Overview of Solvers 61
3.7 Rate of Convergence 63
3.8 Newton-Based Solvers 66
3.9 Models and the Optimization Problem 70

v

Contents vi

3.10 Summary 73
Problems 75

4 Unconstrained Gradient-Based Optimization 79
4.1 Fundamentals 80
4.2 Two Overall Approaches to Finding an Optimum 94
4.3 Line Search 96
4.4 Search Direction 110
4.5 Trust-Region Methods 139
4.6 Summary 147

Problems 149

5 Constrained Gradient-Based Optimization 153
5.1 Constrained Problem Formulation 154
5.2 Understanding n-Dimensional Space 156
5.3 Optimality Conditions 158
5.4 Penalty Methods 175
5.5 Sequential Quadratic Programming 187
5.6 Interior-Point Methods 204
5.7 Constraint Aggregation 211
5.8 Summary 214

Problems 215

6 Computing Derivatives 223
6.1 Derivatives, Gradients, and Jacobians 223
6.2 Overview of Methods for Computing Derivatives 225
6.3 Symbolic Differentiation 226
6.4 Finite Differences 227
6.5 Complex Step 232
6.6 Algorithmic Differentiation 237
6.7 Implicit Analytic Methods—Direct and Adjoint 252
6.8 Sparse Jacobians and Graph Coloring 262
6.9 Unified Derivatives Equation 265
6.10 Summary 275

Problems 277

7 Gradient-Free Optimization 281
7.1 When to Use Gradient-Free Algorithms 281
7.2 Classification of Gradient-Free Algorithms 284
7.3 Nelder–Mead Algorithm 287
7.4 Generalized Pattern Search 292
7.5 DIRECT Algorithm 298
7.6 Genetic Algorithms 306

Contents vii

7.7 Particle Swarm Optimization 316
7.8 Summary 321

Problems 323

8 Discrete Optimization 327
8.1 Binary, Integer, and Discrete Variables 327
8.2 Avoiding Discrete Variables 328
8.3 Branch and Bound 330
8.4 Greedy Algorithms 337
8.5 Dynamic Programming 339
8.6 Simulated Annealing 347
8.7 Binary Genetic Algorithms 351
8.8 Summary 351

Problems 352

9 Multiobjective Optimization 355
9.1 Multiple Objectives 355
9.2 Pareto Optimality 357
9.3 Solution Methods 358
9.4 Summary 369

Problems 370

10 Surrogate-Based Optimization 373
10.1 When to Use a Surrogate Model 374
10.2 Sampling 375
10.3 Constructing a Surrogate 384
10.4 Kriging 400
10.5 Deep Neural Networks 408
10.6 Optimization and Infill 414
10.7 Summary 418

Problems 420

11 Convex Optimization 423
11.1 Introduction 423
11.2 Linear Programming 425
11.3 Quadratic Programming 427
11.4 Second-Order Cone Programming 429
11.5 Disciplined Convex Optimization 430
11.6 Geometric Programming 434
11.7 Summary 437

Problems 438

Contents viii

12 Optimization Under Uncertainty 441
12.1 Robust Design 442
12.2 Reliable Design 447
12.3 Forward Propagation 448
12.4 Summary 469

Problems 471

13 Multidisciplinary Design Optimization 475
13.1 The Need for MDO 475
13.2 Coupled Models 478
13.3 Coupled Derivatives Computation 501
13.4 Monolithic MDO Architectures 510
13.5 Distributed MDO Architectures 519
13.6 Summary 533

Problems 535

A Mathematics Background 539
A.1 Taylor Series Expansion 539
A.2 Chain Rule, Total Derivatives, and Differentials 541
A.3 Matrix Multiplication 544
A.4 Four Fundamental Subspaces in Linear Algebra 547
A.5 Vector and Matrix Norms 548
A.6 Matrix Types 550
A.7 Matrix Derivatives 552
A.8 Eigenvalues and Eigenvectors 553
A.9 Random Variables 554

B Linear Solvers 559
B.1 Systems of Linear Equations 559
B.2 Conditioning 560
B.3 Direct Methods 560
B.4 Iterative Methods 562

C Quasi-Newton Methods 571
C.1 Broyden’s Method 571
C.2 Additional Quasi-Newton Approximations 572
C.3 Sherman–Morrison–Woodbury Formula 576

D Test Problems 579
D.1 Unconstrained Problems 579
D.2 Constrained Problems 586

Contents ix

Bibliography 591

Index 615

∗In the words of Donald Knuth: “The ul-
timate test of whether I understand something
is if I can explain it to a computer. I can say
something to you and you’ll nod your head,
but I’m not sure that I explained it well. But
the computer doesn’t nod its head. It repeats
back exactly what I tell it. In most of life, you
can bluff, but not with computers.”

Preface
Despite its usefulness, design optimization remains underused in in-
dustry. One of the reasons for this is the shortage of design optimization
courses in undergraduate and graduate curricula. This is changing;
today, most top aerospace and mechanical engineering departments in-
clude at least one graduate-level course on numerical optimization. We
have also seen design optimization increasingly used in an expanding
number of industries.

The word engineering in the title reflects the types of problems
and algorithms we focus on, even though the methods are applicable
beyond engineering. In contrast to explicit analytic mathematical
functions, most engineering problems are implemented in complex
multidisciplinary codes that involve implicit functions. Such problems
might require hierarchical solvers and coupled derivative computation.
Furthermore, engineeringproblemsoften involvemanydesignvariables
and constraints, requiring scalable methods.

The target audience for this book is advanced undergraduate and
beginning graduate students in science and engineering. No previous
exposure to optimization is assumed. Knowledge of linear algebra,
multivariable calculus, and numerical methods is helpful. However,
these subjects’ core concepts are reviewed in an appendix and as needed
in the text. The content of the book spans approximately two semester-
length university courses. Our approach is to start from the most
general case problem and then explain special cases. The first half
of the book covers the fundamentals (along with an optional history
chapter). In contrast, the second half, from Chapter 8 onward, covers
more specialized or advanced topics.

Our philosophy in the exposition is to provide a detailed enough
explanation and analysis of optimization algorithms so that readers
can implement a basic working version. Although we do not encourage
readers to use their implementations instead of existing software for
solving optimization problems, implementing a method is crucial in
understanding the method and its behavior.∗ A deeper knowledge of
these methods is useful for developers, researchers, and those who
want to use numerical optimization more effectively. The problems at

xi

Preface xii

the end of each chapter are designed to provide a gradual progression
in difficulty and eventually require implementing the methods. Some
of the problems are open-ended to encourage students to explore a
given topic on their own. When discussing the various optimization
techniques, we also explain how to avoid the potential pitfalls of using a
particular method and how to employ it more effectively. Practical tips
are included throughout the book to alert the reader to common issues
encountered in engineering design optimization and how to address
them.

We have created a repository with code, data, templates, and
examples as a supplementary resource for this book: https://github.
com/mdobook/resources. Some of the end-of-chapter exercises refer
to code or data from this repository.

Go forth and optimize!

https://github.com/mdobook/resources
https://github.com/mdobook/resources

Acknowledgments
Our workflow was tremendously enhanced by the support of Edmund
Lee and Aaron Lu, who took our sketches and plots and translated
them to high-quality, consistently formatted figures. The layout of this
book was greatly improved based in part on a template provided by
Max Opgenoord. We are indebted to many students and colleagues
who provided feedback and insightful questions on our concepts,
examples, lectures, and manuscript drafts. At the risk of leaving
out some contributors, we wish to express particular gratitude to the
following individuals who helped create examples, problems, solutions,
or content that was incorporated in the book: Tal Dohn, Xiaosong
Du, Sicheng He, Jason Hicken, Donald Jones, Shugo Kaneko, Taylor
McDonnell, Judd Mehr, Santiago Padrón, Sabet Seraj, P. J. Stanley, and
Anil Yildirim. Additionally, the following individuals provided helpful
suggestions and corrections to themanuscript: EytanAdler, JoshAnibal,
Eliot Aretskin-Hariton, Alexander Coppeans, Alec Gallimore, Philip
Gill, Justin Gray, Christina Harvey, John Hwang, Kevin Jacobsen, Kai
James, Eirikur Jonsson, Matthew Kramer, Alexander Kleb, Michael
Kokkolaras, Yingqian Liao, Sandy Mader, Marco Mangano, Giuliana
Mannarino, Yara Martins, Johannes Norheim, Bernardo Pacini, Malhar
Prajapati,Michael Saunders, Nikhil Shetty, TamásTerlaky, andElizabeth
Wong. We are grateful to peer reviewers who provided enthusiastic
encouragement and helpful suggestions and wish to thank our editors
at Cambridge University Press, who quickly and competently offered
corrections. Finally, we express our deepest gratitude to our families
for their loving support.

Joaquim Martins and Andrew Ning

xiii

1Introduction
Optimization is a human instinct. People constantly seek to improve
their lives and the systems that surround them. Optimization is intrinsic
in biology, as exemplified by the evolution of species. Birds optimize
their wings’ shape in real time, and dogs have been shown to find
optimal trajectories. Even more broadly, many laws of physics relate to
optimization, such as the principle of minimum energy. As Leonhard
Euler once wrote, “nothing at all takes place in the universe in which
some rule of maximum or minimum does not appear.”

The term optimization is often used to mean “improvement”, but
mathematically, it is a much more precise concept: finding the best
possible solution by changing variables that can be controlled, often
subject to constraints. Optimization has a broad appeal because it is
applicable in all domains and because of the human desire to make
things better. Any problem where a decision needs to be made can be
cast as an optimization problem.

Although some simple optimization problems can be solved an-
alytically, most practical problems of interest are too complex to be
solved this way. The advent of numerical computing, together with
the development of optimization algorithms, has enabled us to solve
problems of increasing complexity.

By the end of this chapter you should be able to:

1. Understand the design optimization process.

2. Formulate an optimization problem.

3. Identify key characteristics to classify optimization prob-
lems and optimization algorithms.

4. Select an appropriate algorithm for a given optimization
problem.

Optimization problems occur in various areas, such as economics,
political science, management, manufacturing, biology, physics, and
engineering. This book focuses on the application of numerical opti-

1

1 Introduction 2

Requirements
and

specifications

Conceptual
design

Preliminary
design

Detailed
design

Final
design

Fig. 1.1 Design phases.

mization to the design of engineering systems. Numerical optimization
first emerged in operations research, which deals with problems such as
deciding on the price of a product, setting up a distribution network,
scheduling, or suggesting routes. Other optimization areas include
optimal control and machine learning. Although we do not cover these
other areas specifically in this book, many of the methods we cover are
useful in those areas.

Design optimization problems abound in the various engineering
disciplines, such as wing design in aerospace engineering, process
control in chemical engineering, structural design in civil engineering,
circuit design in electrical engineering, and mechanism design in
mechanical engineering. Most engineering systems rarely work in
isolation and are linked to other systems. This gave rise to the field of
multidisciplinary design optimization (MDO), which applies numerical
optimization techniques to the design of engineering systems that
involve multiple disciplines.

In the remainder of this chapter, we start by explaining the design
optimization process and contrasting it with the conventional design
process (Section 1.1). Then we explain how to formulate optimization
problems and the different types of problems that can arise (Section 1.2).
Because design optimization problems involve functions of different
types, these are also briefly discussed (Section 1.3). (A more detailed
discussion of the numerical models used to compute these functions is
deferred to Chapter 3.) We then provide an overview of the different
optimization algorithms, highlighting the algorithms covered in this
book and linking to the relevant sections (Section 1.4). We connect
algorithm types andproblem types byproviding guidelines for selecting
the right algorithm for a given problem (Section 1.5). Finally, we
introduce the notation used throughout the book (Section 1.6).

1.1 Design Optimization Process
Engineering design is an iterative process that engineers follow to
develop a product that accomplishes a given task. For any product
beyond a certain complexity, this process involves teams of engineers
and multiple stages with many iterative loops that may be nested. The
engineering teams are formed to tackle different aspects of the product
at different stages.

Thedesignprocess can bedivided into the sequence of phases shown
in Fig. 1.1. Before the design process begins, we must determine the
requirements and specifications. This might involve market research,
an analysis of current similar designs, and interviews with potential

1 Introduction 3

∗The evaluation of a given design in engi-
neering is often called the analysis. Engi-
neers and computer scientists also refer to
it as simulation.

customers. In the conceptual design phase, various concepts for the
system are generated and considered. Because this phase should be
short, it usually relies on simplified models and human intuition. For
more complicated systems, the various subsystems are identified. In
the preliminary design phase, a chosen concept and subsystems are
refined by using better models to guide changes in the design, and
the performance expectations are set. The detailed design phase seeks
to complete the design down to every detail so that it can finally be
manufactured. All of these phases require iteration within themselves.
When severe issues are identified, it may be necessary to “go back to the
drawing board” and regress to an earlier phase. This is just a high-level
view; in practical design, each phase may require multiple iterative
processes.

Design optimization is a tool that can replace an iterative design
process to accelerate the design cycle and obtain better results. To
understand the role of design optimization, consider a simplified
version of the conventional engineering design process with only one
iterative loop, as shown in Fig. 1.2 (top). In this process, engineers make
decisions at every stage based on intuition and background knowledge.

Each of the steps in the conventional design process includes human
decisions that are either challenging or impossible to program into com-
puter code. Determining the product specifications requires engineers
to define the problem and do background research. The design cycle
must start with an initial design, which can be based on past designs or
a new idea. In the conventional design process, this initial design is
analyzed in some way to evaluate its performance. This could involve
numerical modeling or actual building and testing. Engineers then
evaluate the design and decide whether it is good enough or not based
on the results.∗ If the answer is no—which is likely to be the case for at
least the first few iterations—the engineer changes the design based
on intuition, experience, or trade studies. When the design is finalized
when it is deemed satisfactory.

The design optimization process can be represented using a flow
diagram similar to that for the conventional design process, as shown in
Fig. 1.2 (bottom). The determination of the specifications and the initial
design are no different from the conventional design process. However,
design optimization requires a formal formulation of the optimization
problem that includes the design variables that are to be changed, the
objective to be minimized, and the constraints that need to be satisfied.
The evaluation of the design is strictly based on numerical values for the
objective and constraints. When a rigorous optimization algorithm is
used, the decision to finalize the design is made only when the current

1 Introduction 4

Manual iteration

Optimization

Specifications Initial
design

Evaluate
performance

Is the design
good?

Change
design

manually

Final designYes

No

Specifications

Initial
design

Formulate
optimization
problem

Evaluate
objective and
constraints

Optimality
achieved?

Update
design

variables

Is the design
good? Final designChange initial design or

reformulate problem

Yes

No

YesNo

Fig. 1.2 Conventional (top) versus de-
sign optimization process (bottom).

design satisfies the optimality conditions that ensure that no other
design “close by” is better. The design changes are made automatically
by the optimization algorithm and do not require intervention from
the designer.

This automated process does not usually provide a “push-button”
solution; it requires human intervention and expertise (often more
expertise than in the traditional process). Human decisions are still
needed in the design optimization process. Before running an op-
timization, in addition to determining the specifications and initial
design, engineers need to formulate the design problem. This requires
expertise in both the subject area and numerical optimization. The
designer must decide what the objective is, which parameters can be
changed, and which constraints must be enforced. These decisions
have profound effects on the outcome, so it is crucial that the designer
formulates the optimization problem well.

1 Introduction 5

Design
optimization

Conventional
design processSy

st
em

pe
rf

or
m

an
ce

Increased
performance

C
um

ul
at

iv
e

co
st

Reduced cost

Reduced time

Reduced
uncertainty

Time in design

U
nc

er
ta

in
ty

Fig. 1.3 Compared with the conven-
tional design process, MDO increases
the system performance, decreases
the design time, reduces the total cost,
and reduces theuncertainty at a given
point in time.

After running the optimization, engineers must assess the design
because it is unlikely that thefirst formulationyields avalid andpractical
design. After evaluating the optimal design, engineers might decide
to reformulate the optimization problem by changing the objective
function, adding or removing constraints, or changing the set of design
variables. Engineers might also decide to increase the models’ fidelity if
they fail to consider critical physical phenomena, or they might decide
to decrease the fidelity if the models are too expensive to evaluate in an
optimization iteration.

Post-optimality studies are often performed to interpret the optimal
design and the design trends. This might be done by performing pa-
rameter studies, where design variables or other parameters are varied
to quantify their effect on the objective and constraints. Validation of
the result can be done by evaluating the design with higher-fidelity
simulation tools, by performing experiments, or both. It is also possi-
ble to compute post-optimality sensitivities to evaluate which design
variables are the most influential or which constraints drive the design.
These sensitivities can inform where engineers might best allocate
resources to alleviate the driving constraints in future designs.

Design optimization can be used in any of the design phases shown
in Fig. 1.1, where each phase could involve running one or more design
optimizations. We illustrate several advantages of design optimization
in Fig. 1.3, which shows the notional variations of system performance,
cost, and uncertainty as a function of time in design. When using
optimization, the systemperformance increasesmore rapidly compared
with the conventional process, achieving a better end result in a shorter
total time. As a result, the cost of the design process is lower. Finally,
the uncertainty in the performance reduces more rapidly as well.

Considering multiple disciplines or components using MDO ampli-
fies the advantages illustrated in Fig. 1.3. The central idea of MDO is to
consider the interactions between components using coupled models
while simultaneously optimizing the design variables from the various
components. In contrast, sequential optimization optimizes one com-
ponent at a time. Even when interactions are considered, sequential
optimization might converge to a suboptimal result (see Section 13.1
for more details and examples).

In this book, we tend to frame problems and discussions in the
context of engineering design. However, the optimization methods
are general and are used in other applications that may not be design
problems, such as optimal control, machine learning, and regression.
In other words, we mean “design” in a general sense, where variables
are changed to optimize an objective.

1 Introduction 6

1. Describe the
problem

2. Gather
information

3. Define the
design variables

4. Define the
objective

5. Define the
constraints

Fig. 1.4 Steps in optimization prob-
lem formulation.

∗Some texts call these decision variables or
simply variables.

1.2 Optimization Problem Formulation
The design optimization process requires the designer to translate
their intent to a mathematical statement that can then be solved by
an optimization algorithm. Developing this statement has the added
benefit that it helps the designer better understand the problem. Being
methodical in the formulation of the optimization problem is vital
because the optimizer tends to exploit any weaknesses you might have in your
formulation or model. An inadequate problem formulation can either
cause the optimization to fail or cause it to converge to a mathematical
optimum that is undesirable or unrealistic from an engineering point
of view—the proverbial “right answer to the wrong question”.

To formulate design optimizationproblems,we follow theprocedure
outlined in Fig. 1.4. The first step requires writing a description of the
design problem, including a description of the system, and a statement
of all the goals and requirements. At this point, the description does
not necessarily involve optimization concepts and is often vague.

The next step is to gather as much data and information as possible
about the problem. Some information is already specified in the
problem statement, but more research is usually required to find all the
relevant data on the performance requirements and expectations. Raw
datamight need to beprocessed andorganized to gather the information
required for the design problem. The more familiar practitioners are
with the problem, the better prepared they will be to develop a sound
formulation to identify eventual issues in the solutions.

At this stage, it is also essential to identify the analysis procedure
and gather information on that as well. The analysis might consist of a
simple model or a set of elaborate tools. All the possible inputs and
outputs of the analysis should be identified, and its limitations should
be understood. The computational time for the analysis needs to be
considered because optimization requires repeated analysis.

It is usually impossible to learn everything about the problem before
proceeding to the next steps, wherewedefine the design variables, objec-
tive, and constraints. Therefore, information gathering and refinement
are ongoing processes in problem formulation.

1.2.1 Design Variables
The next step is to identify the variables that describe the system, the
design variables,∗ which we represent by the column vector:

G = [G1 , G2 , . . . , G=G] . (1.1)

1 Introduction 7

†This is not to be confused with the conti-
nuity of the objective and constraint func-
tions, which we discuss in Section 1.3.

This vector defines a given design, so different vectors G correspond
to different designs. The number of variables, =G , determines the
problem’s dimensionality.

The design variables must not depend on each other or any other
parameter, and the optimizer must be free to choose the elements of
G independently. This means that in the analysis of a given design,
the variables must be input parameters that remain fixed throughout
the analysis process. Otherwise, the optimizer does not have absolute
control of the design variables. Another possible pitfall is to define
a design variable that happens to be a linear combination of other
variables, which results in an ill-defined optimization problem with
an infinite number of combinations of design variable values that
correspond to the same design.

The choice of variables is usually not unique. For example, a square
shape can be parametrized by the length of its side or by its area, and
different unit systems can be used. The choice of units affects the
problem’s scaling but not the functional form of the problem.

The choice of design variables can affect the functional form of the
objective and constraints. For example, some nonlinear relationships
can be converted to linear ones through a change of variables. It is also
possible to introduce or eliminate discontinuities through the choice of
design variables.

A given set of design variable values defines the system’s design, but
whether this system satisfies all the requirements is a separate question
that will be addressed with the constraints in a later step. However, it
is possible and advisable to define the space of allowable values for
the design variables based on the design problem’s specifications and
physical limitations.

The first consideration in the definition of the allowable design
variable values is whether the design variables are continuous or discrete.
Continuous design variables are real numbers that are allowed to vary
continuously within a specified range with no gaps, which we write as

G 8 ≤ G8 ≤ G 8 , 8 = 1, . . . , =G , (1.2)

where G and G are lower and upper bounds on the design variables,
respectively. These are also known as bound constraints or side constraints.
Some design variables may be unbounded or bounded on only one
side.

When all the design variables are continuous, the optimization prob-
lem is said to be continuous.† Most of this book focuses on algorithms
that assume continuous design variables.

1 Introduction 8

2

1

Fig. 1.5 Wingspan (1) and chord (2).

When one or more variables are allowed to have discrete values,
whether real or integer, we have a discrete optimization problem. An
example of a discrete design variable is structural sizing, where only
components of specific thicknesses or cross-sectional areas are available.
Integer design variables are a special case of discrete variables where
the values are integers, such as the number of wheels on a vehicle.
Optimization algorithms that handle discrete variables are discussed
in Chapter 8.

We distinguish the design variable bounds from constraints because
the optimizer has direct control over their values, and they benefit from
a different numerical treatment when solving an optimization problem.
When defining these bounds, we must take care not to unnecessarily
constrain the design space, which would prevent the optimizer from
achieving a better design that is realizable. A smaller allowable range
in the design variable values should make the optimization easier.
However, design variable bounds should be based on actual physical
constraints instead of being artificially limited. An example of a
physical constraint is a lower bound on structural thickness in a weight
minimization problem, where otherwise, the optimizer will discover
that negative sizes yield negative weight. Whenever a design variable
converges to the bound at the optimum, the designer should reconsider
the reasoning for that bound and make sure it is valid. This is because
designers sometimes set bounds that limit the optimization from
obtaining a better objective.

At the formulation stage, we should strive to list as many indepen-
dent design variables as possible. However, it is advisable to start with
a small set of variables when solving a problem for the first time and
then gradually expand the set of design variables.

Some optimization algorithms require the user to provide initial
design variable values. This initial point is usually based on the best
guess the user can produce. This might be an already good design that
the optimization refines further by making small changes. Another
possibility is that the initial guess is a bad design or a “blank slate” that
the optimization changes significantly.

Example 1.1 Design variables for wing design
Consider a wing design problem where the wing planform shape is rect-

angular. The planform could be parametrized by the span (1) and the chord
(2), as shown in Fig. 1.5, so that G = [1, 2]. However, this choice is not
unique. Two other variables are often used in aircraft design: wing area (()
and wing aspect ratio (�'), as shown in Fig. 1.6. Because these variables are
not independent ((= 12 and �' = 12/(), we cannot just add them to the set

1 Introduction 9

�
'
=

1

�'
= 3

�' = 7

(
=

5

(
=

15

(
=

25

(= 35

2 4 6 8 10
1

2

3

4

5

1

2

2
=

1.0

2 =
1.5

2 =
2.0

2 = 2.5

1 = 4

1 = 8

1 = 12

5 10 15 20 25
0

2

4

6

8

10

(

�'

Fig. 1.6 Wing design space for two
different sets of design variables, G =
[1, 2] and G = [(, �'].

21

22

23

24

0 0.2 0.4 0.6 0.8 1
0

2

4

Blade fraction

C
ho

rd
[m

]

Fig. 1.7 Parameterizing the chord dis-
tribution of a wing or turbine blade
using a spline reduces the number of
design variables while still allowing
for a wide range of shape changes.

of design variables. Instead, we must pick any two variables out of the four
to parametrize the design because we have four possible variables and two
dependency relationships.

For this wing, the variables must be positive to be physically meaningful,
so we must remember to explicitly bound these variables to be greater than
zero in an optimization. The variables should be bound from below by small
positive values because numerical models are probably not prepared to take
zero values. No upper bound is needed unless the optimization algorithm
requires it.

Tip 1.1 Use splines to parameterize curves
Many problems that involve shapes, functional distributions, and paths

are sometimes implemented with a large number of discrete points. However,
these can be representedmore compactly with splines. This is a commonly used
technique in optimization because reducing the number of design variables
often speeds up an optimization with little if any loss in the model parameteri-
zation fidelity. Figure 1.7 shows an example spline describing the shape of a
turbine blade. In this example, only four design variables are used to represent
the curved shape.

1.2.2 Objective Function
To find the best design, we need an objective function, which is a quantity
that determines if one design is better than another. This function must
be a scalar that is computable for a given design variable vector G. The
objective function can be minimized or maximized, depending on the
problem. For example, a designer might want to minimize the weight
or cost of a given structure. An example of a function to be maximized
could be the range of a vehicle.

1 Introduction 10

‡Inverting the function (1/ 5) is another
way to turn a maximization problem into
aminimizationproblem, but it is generally
less desirable because it alters the scale of
the problem and could introduce a divide-
by-zero problem.

max
[
5 (G)]

G∗
0

min
[− 5 (G)]

Fig. 1.8 Amaximization problem can
be transformed into an equivalent
minimization problem.

Fig. 1.9 A function of two variables
(5 = G2

1+G2
2 in this case) can be visual-

ized by plotting a three-dimensional
surface or contour plot.

The convention adopted in this book is that the objective function, 5 ,
is to beminimized. This convention does not prevent us frommaximizing
a function because we can reformulate it as a minimization problem by
finding the minimum of the negative of 5 and then changing the sign,
as follows:

max[5 (G)] = −min[− 5 (G)] . (1.3)

This transformation is illustrated in Fig. 1.8.‡
The objective function is computed through a numerical model

whose complexity can range from a simple explicit equation to a system
of coupled implicit models (more on this in Chapter 3).

The choice of objective function is crucial for successful design
optimization. If the function does not represent the true intent of the
designer, it does not matter how precisely the function and its optimum
point are computed—the mathematical optimum will be non-optimal
from the engineering point of view. A bad choice for the objective
function is a common mistake in design optimization.

The choice of objective function is not always obvious. For example,
minimizing the weight of a vehicle might sound like a good idea, but
this might result in a vehicle that is too expensive to manufacture. In
this case, manufacturing cost would probably be a better objective.
However, there is a trade-off between manufacturing cost and the
performance of the vehicle. It might not be obvious which of these
objectives is the most appropriate one because this trade-off depends on
customer preferences. This issue motivates multiobjective optimization,
which is the subject of Chapter 9. Multiobjective optimization does
not yield a single design but rather a range of designs that settle for
different trade-offs between the objectives.

Experimenting with different objectives should be part of the design
exploration process (this is represented by the outer loop in the design
optimization process in Fig. 1.2). Results from optimizing the “wrong”
objective can still yield insights into the design trade-offs and trends
for the system at hand.

In Ex. 1.1, we have the luxury of being able to visualize the design
space becausewe have only two variables. Formore than three variables,
it becomes impossible to visualize the design space. We can also
visualize the objective function for two variables, as shown in Fig. 1.9.
In this figure, we plot the function values using the vertical axis, which
results in a three-dimensional surface. Although plotting the surface
might provide intuition about the function, it is not possible to locate
the points accurately when drawing on a two-dimensional surface.

Another possibility is to plot the contours of the function, which
are lines of constant value, as shown in Fig. 1.10. We prefer this type

1 Introduction 11

G∗

−2 −1 0 1 2

−1

0

1

G1

G2

Fig. 1.10 Contour plot of 5 = G2
1 + G2

2 .

§The simple models used in this example
are described in Appendix D.1.6.

of plot and use it extensively throughout this book because we can
locate points accurately and get the correct proportions in the axes
(in Fig. 1.10, the contours are perfect circles, and the location of the
minimum is clear). Our convention is to represent lower function values
with darker lines and higher values with lighter ones. Unless otherwise
stated, the function variation between two adjacent lines is constant,
and therefore, the closer together the contour lines are, the faster the
function is changing. The equivalent of a contour line in =-dimensional
space is a hypersurface of constant value with dimensions of = − 1,
called an isosurface.

Example 1.2 Objective function for wing design
Let us discuss the appropriate objective function for Ex. 1.1 for a small

airplane. A common objective for a wing is to minimize drag. However, this
does not take into account the propulsive efficiency, which is strongly affected
by speed. A better objective might be to minimize the required power, which
balances drag and propulsive efficiency.§

The contours for the required power are shown in Fig. 1.11 for the two
choices of design variable sets discussed in Ex. 1.1. We can locate the minimum
graphically (denoted by the dot). Although the two optimum solutions are
the same, the shapes of the objective function contours are different. In this
case, using the aspect ratio and wing area simplifies the relationship between
the design variables and the objective by aligning the two main curvature
trends with each design variable. Thus, the parameterization can change the
effectiveness of the optimization.

5 15 25 35
0.3

0.6

0.9

1.2

1.5

1

2

5 10 15 20 25

10

30

50

70

(

�'
Fig. 1.11 Required power contours
for two different choices of design
variable sets. The optimal wing is
the same for both cases, but the func-
tional form of the objective is simpli-
fied in the one on the right.

The optimal wing for this problem has an aspect ratio that is much higher
than that typically seen in airplanes or birds. Although the high aspect ratio
increases aerodynamic efficiency, it adversely affects the structural strength,
which we did not consider here. Thus, as in most engineering problems, we
need to add constraints and consider multiple disciplines.

1 Introduction 12

¶A strict inequality, 6(G) < 0, is never
used because then G could be arbitrar-
ily close to the equality. Because the
optimum is at 6 = 0 for an active con-
straint, the exact solution would then be
ill-defined from a mathematical perspec-
tive. Also, the difference is not meaning-
ful when using finite-precision arithmetic
(which is always the case when using a
computer).

We use mostly two-dimensional examples throughout the book
becausewe can visualize them conveniently. Such visualizations should
give you an intuition about the methods and problems. However, keep
in mind that general problems have many more dimensions, and only
mathematics can help you in such cases.

Although we can sometimes visualize the variation of the objective
function in a contour plot as in Ex. 1.2, this is not possible for problems
with more design variables or more computationally demanding func-
tion evaluations. This motivates numerical optimization algorithms,
which aim to find the minimum in a multidimensional design space
using as few function evaluations as possible.

1.2.3 Constraints
The vast majority of practical design optimization problems require the
enforcement of constraints. These are functions of the design variables
that we want to restrict in some way. Like the objective function,
constraints are computed through a model whose complexity can vary
widely. The feasible region is the set of points that satisfy all constraints.
We seek to minimize the objective function within this feasible design
space.

When we restrict a function to being equal to a fixed value, we call
this an equality constraint, denoted by ℎ(G) = 0. When the function is
required to be less than or equal to a certain value, we have an inequality
constraint, denoted by 6(G) ≤ 0.¶ Although we use the “less or equal”
convention, some texts and software programs use “greater or equal”
instead. There is no loss of generality with either convention because
we can always multiply the constraint by −1 to convert between the
two.

Tip 1.2 Check the inequality convention
When using optimization software, do not forget to check the convention

for the inequality constraints (i.e., determine whether it is “less than”, “greater
than”, or “allow two-sided constraints”) and convert your constraints as
needed.

Some texts and papers omit the equality constraints without loss
of generality because an equality constraint can be replaced by two
inequality constraints. More specifically, an equality constraint, ℎ(G) =
0, is equivalent to enforcing two inequality constraints, ℎ(G) ≥ 0 and
ℎ(G) ≤ 0.

1 Introduction 13

Inequality constraints can be active or inactive at the optimum point.
An active inequality constraint means that 6(G∗) = 0, whereas for an
inactive one, 6(G∗) < 0. If a constraint is inactive at the optimum, this
constraint could have been removed from the problem with no change
in its solution, as illustrated in Fig. 1.12. In this case, constraints 62
and 63 can be removed without affecting the solution of the problem.
Furthermore, active constraints (61 in this case) can equivalently be
replaced by equality constraints. However, it is difficult to know in
advance which constraints are active or not at the optimum for a general
problem. Constrained optimization is the subject of Chapter 5.

G∗

61(G) ≤ 0
(active)

62(G) ≤ 0
(inactive)

63(G) ≤ 0
(inactive)

5 (G)

G1

G2

G∗

ℎ1(G) = 0
(active) 5 (G)

G1

G2

Fig. 1.12 Two-dimensional problem
with one active and two inactive
inequality constraints (left). The
shaded area indicates regions that
are infeasible (i.e., the constraints are
violated). If we only had the active
single equality constraint in the for-
mulation, we would obtain the same
result (right).

It is possible to overconstrain the problem such that there is no
solution. This can happen as a result of a programming error but can
also occur at the problem formulation stage. For more complicated
design problems, it might not be possible to satisfy all the specified
constraints, even if they seem to make sense. When this happens,
constraints have to be relaxed or removed.

The problemmust not be overconstrained, or else there is no feasible
region in the design space over which the function can be minimized.
Thus, the number of independent equality constraints must be less than
or equal to the number of design variables (=ℎ ≤ =G). There is no limit
on the number of inequality constraints. However, they must be such
that there is a feasible region, and the number of active constraints plus
the equality constraints must still be less than or equal to the number
of design variables.

The feasible region growswhen constraints are removed and shrinks
when constraints are added (unless these constraints are redundant).
As the feasible region grows, the optimum objective function usually
improves or at least stays the same. Conversely, the optimum worsens
or stays the same when the feasible region shrinks.

1 Introduction 14

5 15 25 35
0.3

0.6

0.9

1.2

1.5

1

2

Fig. 1.13 Minimum-power wing with
a constraint on bending stress com-
pared with the unconstrained case.

One common issue in optimization problem formulation is dis-
tinguishing objectives from constraints. For example, we might be
tempted to minimize the stress in a structure, but this would inevitably
result in an overdesigned, heavy structure. Instead, we might want
minimumweight (or cost) with sufficient safety factors on stress, which
can be enforced by an inequality constraint.

Most engineering problems require constraints—often a large num-
ber of them. Although constraints may at first appear limiting, they
enable the optimizer to find useful solutions.

As previously mentioned, some algorithms require the user to
provide an initial guess for the design variable values. Although it
is easy to assign values within the bounds, it might not be as easy to
ensure that the initial design satisfies the constraints. This is not an
issue for most optimization algorithms, but some require starting with
a feasible design.

Example 1.3 Constraints for wing design
We now add a design constraint for the power minimization problem

of Ex. 1.2. The unconstrained optimal wing had unrealistically high aspect
ratios because we did not include structural considerations. If we add an
inequality constraint on the bending stress at the root of the wing for a fixed
amount of material, we get the curve and feasible region shown in Fig. 1.13.The
unconstrained optimum violates this constraint. The constrained optimum
results in a lower span and higher chord, and the constraint is active.

As previously mentioned, it is generally not possible to visualize
the design space as shown in Ex. 1.2 and obtain the solution graphically.
In addition to the possibility of a large number of design variables
and computationally expensive objective function evaluations, we now
add the possibility of a large number of constraints, which might also
be expensive to evaluate. Again, this is further motivation for the
optimization techniques covered in this book.

1.2.4 Optimization Problem Statement
Now that we have discussed the design variables, the objective function,
and constraints, we canput themall together in an optimizationproblem
statement. In words, this statement is as follows: minimize the objective
function by varying the design variables within their bounds subject to the
constraints.

1 Introduction 15

‖Instead of “by varying”, some textbooks
use “with respect to” or “w.r.t.” as short-
hand.

Optimizer

Analysis

G0 G∗

G 5 , 6, ℎ

Fig. 1.14 The analysis computes the
objective (5) and constraint values (6,
ℎ) for a given set of design variables
(G).

∗∗Optimization software resources in-
clude the optimization toolboxes in
MATLAB, scipy.optimize.minimize in
Python, Optim.jl or Ipopt.jl in Julia,
NLopt for multiple languages, and the
Solver add-in in Microsoft Excel. The
pyOptSparse framework provides a com-
mon Python wrapper for many existing
optimization codes and facilitates the test-
ing of different methods.1 SNOW.jlwraps
a few optimizers and multiple derivative
computation methods in Julia.

1. Wu et al., pyOptSparse: A Python frame-
work for large-scale constrained nonlinear
optimization of sparse systems, 2020.

Mathematically, we write this statement as follows:

minimize 5 (G)
by varying G 8 ≤ G8 ≤ G 8 8 = 1, . . . , =G
subject to 69(G) ≤ 0 9 = 1, . . . , =6

ℎ;(G) = 0 ; = 1, . . . , =ℎ .

(1.4)

This is the standard formulation used in this book; however, other
books and software manuals might differ from this.‖ For example, they
might use different symbols, use “greater than or equal to” for the
inequality constraint, or maximize instead of minimizing. In any case,
it is possible to convert between standard formulations to get equivalent
problems.

All continuous optimization problems with a single-objective can
be written in the standard form shown in Eq. 1.4. Although our target
applications are engineering design problems, many other problems
can be stated in this form, and thus, the methods covered in this book
can be used to solve those problems.

The values of the objective and constraint functions for a given set
of design variables are computed through the analysis, which consists
of one or more numerical models. The analysis must be fully automatic
so that multiple optimization cycles can be completed without human
intervention, as shown in Fig. 1.14. The optimizer usually requires an
initial design G0 and then queries the analysis for a sequence of designs
until it finds the optimum design, G∗.

Tip 1.3 Using an optimization software package
The setup of an optimization problem varies depending on the particular

software package, so read the documentation carefully. Most optimization
software requires you to define the objective and constraints as callback functions.
These are passed to the optimizer, which calls them back as needed during the
optimization process. The functions take the design variable values as inputs
and output the function values, as shown in Fig. 1.14. Study the software
documentation for the details on how to use it.∗∗ To make sure you understand
how to use a given optimization package, test it on simple problems for which
you know the solution first (see Prob. 1.4).

When the optimizer queries the analysis for a given G, for most
methods, the constraints do not have to be feasible. The optimizer is
responsible for changing G so that the constraints are satisfied.

The objective and constraint functions must depend on the design
variables; if a function does not depend on any variable in the whole

https://dx.doi.org/10.21105/joss.02564
https://dx.doi.org/10.21105/joss.02564
https://dx.doi.org/10.21105/joss.02564

1 Introduction 16

domain, it can be ignored and should not appear in the problem
statement.

Ideally, 5 , 6, and ℎ should be computable for all values of G that
make physical sense. Lower and upper design variable bounds should
be set to avoid nonphysical designs as much as possible. Even after
taking this precaution, models in the analysis sometimes fail to provide
a solution. A good optimizer can handle such eventualities gracefully.

There are some mathematical transformations that do not change
the solution of the optimization problem (Eq. 1.4). Multiplying either
the objective or the constraints by a constant does not change the optimal
design; it only changes the optimum objective value. Adding a constant
to the objective does not change the solution, but adding a constant to
any constraint changes the feasible space and can change the optimal
design.

Determining an appropriate set of design variables, objective, and
constraints is a crucial aspect of the outer loop shown in Fig. 1.2,
which requires human expertise in engineering design and numerical
optimization.

Tip 1.4 Ease into the problem
It is tempting to set up the full problem and attempt to solve it right

away. This rarely works, especially for a new problem. Before attempting any
optimization, you should run the analysis models and explore the solution
space manually. Particularly if using gradient-based methods, it helps to plot
the output functions across multiple input sweeps to assess if the numerical
outputs display the expected behavior and smoothness.

Instead of solving the full problem, ease into it by setting up the simplest
subproblem possible. If the function evaluations are costly, consider using
computational models that are less costly (but still representative). It is
advisable to start by solving a subproblem with a small set of variables and
then gradually expand it. The removal of some constraints has to be done more
carefully because it might result in an ill-defined problem. Formultidisciplinary
problems, you should run optimizationswith each component separately before
attempting to solve the coupled problem.

Solving simple problems for which you know the answer (or at least
problems for which you know the trends) helps identify any issues with
the models and problem formulation. Solving a sequence of increasingly
complicated problems gradually builds an understanding of how to solve the
optimization problem and interpret its results.

1 Introduction 17

1.3 Optimization Problem Classification
To choose the most appropriate optimization algorithm for solving a
given optimization problem, we must classify the optimization prob-
lem and know how its attributes affect the efficacy and suitability of
the available optimization algorithms. This is important because no
optimization algorithm is efficient or even appropriate for all types of
problems.

We classify optimization problems based on two main aspects:
the problem formulation and the characteristics of the objective and
constraint functions, as shown in Fig. 1.15.

Optimization
problem

classification

Problem
formulation

Design variables

Continuous

Discrete

Mixed

Objective
Single

Multiobjective

Constraints
Constrained

Unconstrained

Objective and
constraint function

characteristics

Smoothness
Continuous

Discontinuous

Linearity
Linear

Nonlinear

Modality
Unimodal

Multimodal

Convexity
Convex

Nonconvex

Stochasticity
Deterministic

Stochastic

Fig. 1.15 Optimization problems can
be classified by attributes associated
with the different aspects of the prob-
lem. The two main aspects are the
problem formulation and the objec-
tive and constraint function charac-
teristics.

In the problem formulation, the design variables can be either dis-
crete or continuous. Most of this book assumes continuous design
variables, but Chapter 8 provides an introduction to discrete optimiza-
tion. When the design variables include both discrete and continuous
variables, the problem is said to be mixed. Most of the book assumes a
single objective function, but we explain how to solve multiobjective

1 Introduction 18

5 (G)
6(G)
ℎ(G)

G

Fig. 1.16 A model is considered a
black box whenwe only see its inputs
and outputs.

5 (G)

G

5 (G)

G

5 (G)

G

Fig. 1.17 Discontinuous function
(top), �0 continuous function (mid-
dle), and�1 continuous function (bot-
tom).

problems in Chapter 9. Finally, as previously mentioned, unconstrained
problems are rare in engineering design optimization. However, we
explain unconstrained optimization algorithms (Chapter 4) because
they provide the foundation for constrained optimization algorithms
(Chapter 5).

The characteristics of the objective and constraint functions also
determine the type of optimization problem at hand and ultimately
limit the type of optimization algorithm that is appropriate for solving
the optimization problem.

In this section, we will view the function as a “black box”, that is, a
computation for which we only see inputs (including the design vari-
ables) and outputs (including objective and constraints), as illustrated
in Fig. 1.16. When dealing with black-box models, there is limited or no
understanding of the modeling and numerical solution process used
to obtain the function values. We discuss these types of models and
how to solve them in Chapter 3, but here, we can still characterize the
functions based purely on their outputs. The black-box view is common
in real-world applications. This might be because the source code is not
provided, the modeling methods are not described, or simply because
the user does not bother to understand them.

In the remainder of this section, we discuss the attributes of objec-
tives and constraints shown in Fig. 1.15. Strictly speaking, many of these
attributes cannot typically be identified from a black-box model. For
example, although the model may appear smooth, we cannot know that
it is smooth everywhere without a more detailed inspection. However,
for this discussion, we assume that the black box’s outputs can be
exhaustively explored so that these characteristics can be identified.

1.3.1 Smoothness
The degree of function smoothness with respect to variations in the
design variables depends on the continuity of the function values and
their derivatives. When the value of the function varies continuously,
the function is said to be �0 continuous. If the first derivatives also vary
continuously, then the function is �1 continuous, and so on. A function
is smooth when the derivatives of all orders vary continuously every-
where in its domain. Function smoothness with respect to continuous
design variables affects what type of optimization algorithm can be
used. Figure 1.17 shows one-dimensional examples for a discontinuous
function, a �0 function, and a �1 function.

As we will see later, discontinuities in the function value or deriva-
tives limit the type of optimization algorithm that can be used because

1 Introduction 19

G∗

G1

G2

Fig. 1.18Example of a linear optimiza-
tion problem in two dimensions.
∗Historically, optimization problemswere
referred to as programming problems, so
much of the existing literature refers to
linear optimization as linear programming
and similarly for other types of optimiza-
tion.

Global
minimum

Local
minimum

Weak local
minimum

Fig. 1.19 Types of minima.

some algorithms assume �0, �1, and even �2 continuity. In practice,
these algorithms usually still work with functions that have only a few
discontinuities that are located away from the optimum.

1.3.2 Linearity
The functions of interest could be linear or nonlinear. When both the
objective and constraint functions are linear, the optimization problem
is known as a linear optimization problem. These problems are easier
to solve than general nonlinear ones, and there are entire books and
courses dedicated to the subject. The first numerical optimization
algorithms were developed to solve linear optimization problems, and
there are many applications in operations research (see Chapter 2). An
example of a linear optimization problem is shown in Fig. 1.18.

When the objective function is quadratic and the constraints are
linear, we have a quadratic optimization problem, which is another
type of problem for which specialized solution methods exist.∗ Linear
optimization and quadratic optimization are covered in Sections 5.5,
11.2, and 11.3.

Although many problems can be formulated as linear or quadratic
problems, most engineering design problems are nonlinear. However,
it is common to have at least a subset of constraints that are linear, and
some general nonlinear optimization algorithms take advantage of the
techniques used to solve linear and quadratic problems.

1.3.3 Multimodality and Convexity
Functions can be either unimodal or multimodal. Unimodal functions
have a single minimum, whereas multimodal functions have multiple
minima. When we find a minimum without knowledge of whether the
function is unimodal or not, we can only say that it is a local minimum;
that is, this point is better than any point within a small neighborhood.
When we know that a local minimum is the best in the whole domain
(because we somehow know that the function is unimodal), then this
is also the global minimum, as illustrated in Fig. 1.19. Sometimes, the
function might be flat around the minimum, in which case we have a
weak minimum.

For functions involving more complicated numerical models, it is
usually impossible to prove that the function is unimodal. Proving
that such a function is unimodal would require evaluating the function
at every point in the domain, which is computationally prohibitive.
However, it much easier to prove multimodality—all we need to do is
find two distinct local minima.

1 Introduction 20

†For example, Lyu et al.2 and He et al.3
show consistent convergence to the same
optimum in an aerodynamic shape opti-
mization problem.

2. Lyu et al., Aerodynamic Shape Optimiza-
tion Investigations of the Common Research
Model Wing Benchmark, 2015.

3. He et al., Robust aerodynamic shape
optimization—From a circle to an airfoil,
2019.

Unimodal
Convex

Multimodal

Fig. 1.20 Multimodal functions have
multiple minima, whereas unimodal
functions have only one minimum.
All multimodal functions are noncon-
vex, but not all unimodal functions
are convex.

Just because a function is complicated or the design space has many
dimensions, it does not mean that the function is multimodal. By
default, we should not assume that a given function is either unimodal
or multimodal. As we explore the problem and solve it starting from
different points or using different optimizers, there are two main
possibilities.

One possibility is that we find more than one minimum, thus
proving that the function is multimodal. To prove this conclusively, we
must make sure that the minima do indeed satisfy the mathematical
optimality conditions with good enough precision.

The other possibility is that the optimization consistently converges
to the same optimum. In this case, we can become increasingly confi-
dent that the function is unimodal with every new optimization that
converges to the same optimum.†

Often, we need not be too concerned about the possibility ofmultiple
local minima. From an engineering design point of view, achieving a
local optimum that is better than the initial design is already a useful
result.

Convexity is a concept related to multimodality. A function is
convex if all line segments connecting any two points in the function lie
above the function and never intersect it. Convex functions are always
unimodal. Also, all multimodal functions are nonconvex, but not all
unimodal functions are convex (see Fig. 1.20).

Convex optimization seeks to minimize convex functions over con-
vex sets. Like linear optimization, convex optimization is another
subfield of numerical optimization with many applications. When the
objective and constraints are convex functions, we can use specialized
formulations and algorithms that are much more efficient than gen-
eral nonlinear algorithms to find the global optimum, as explained in
Chapter 11.

1.3.4 Deterministic versus Stochastic
Some functions are inherently stochastic. A stochastic model yields
different function values for repeated evaluations with the same input
(Fig. 1.21). For example, the numerical value from a roll of dice is a
stochastic function.

Stochasticity can also arise from deterministic models when the in-
puts are subject to uncertainty. The input variables are then described as
probability distributions, and their uncertainties need to be propagated
through the model. For example, the bending stress in a beam may
follow a deterministic model, but the beam’s geometric properties may

https://dx.doi.org/10.2514/1.J053318
https://dx.doi.org/10.2514/1.J053318
https://dx.doi.org/10.2514/1.J053318
https://dx.doi.org/10.1016/j.ast.2019.01.051
https://dx.doi.org/10.1016/j.ast.2019.01.051

1 Introduction 21

Deterministic

G

5

Stochastic

G

Fig. 1.21 Deterministic functions
yield the same output when evalu-
ated repeatedly for the same input,
whereas stochastic functions do not.

be subject to uncertainty because of manufacturing deviations. For
most of this text, we assume that functions are deterministic, except in
Chapter 12, where we explain how to perform optimization when the
model inputs are uncertain.

1.4 Optimization Algorithms
No single optimization algorithm is effective or even appropriate for
all possible optimization problems. This is why it is important to
understand the problem before deciding which optimization algorithm
to use. By “effective” algorithm, we mean that the algorithm can
solve the problem, and secondly, it does so reliably and efficiently.
Figure 1.22 lists the attributes for the classification of optimization
algorithms, which we cover in more detail in the following discussion.
These attributes are often amalgamated, but they are independent, and
any combination is possible. In this text, we cover a wide variety of
optimization algorithms corresponding to several of these combinations.
However, this overview still does not cover a wide variety of specialized
algorithms designed to solve specific problems where a particular
structure can be exploited.

When multiple models are involved, we also need to consider how
the models are coupled, solved, and integrated with the optimizer.
These considerations lead to different MDO architectures, which may

Optimization
algorithm

classification

Order
Zeroth
First

Second

Search
Local
Global

Algorithm
Mathematical

Heuristic

Function
evaluation

Direct
Surrogate model

Stochasticity
Deterministic
Stochastic

Time dependence
Static

Dynamic

Fig. 1.22 Optimization algorithms
can be classified by using the at-
tributes in the rightmost column. As
in the problem classification step,
these attributes are independent, and
any combination is possible.

1 Introduction 22

Gradient free

Gradient based
10 20 30

1

2

3
·104

Number of design variablesN
um

be
ro

ff
un

ct
io

n
ev

al
ua

tio
ns

Fig. 1.23 Gradient-based algorithms
scale much better with the number
of design variables. In this example,
the gradient-based curve (with ex-
act derivatives) grows from 67 to 206
function calls, but it is overwhelmed
by the gradient-free curve, which
grows from 103 function calls to over
32,000.

involve multiple levels of optimization problems. Coupled models and
MDO architectures are covered in Chapter 13.

1.4.1 Order of Information
At the minimum, an optimization algorithm requires users to provide
the models that compute the objective and constraint values—zeroth-
order information—for any given set of allowed design variables. We
call algorithms that use only these function values gradient-free algo-
rithms (also known as derivative-free or zeroth-order algorithms). We
cover a selection of these algorithms in Chapters 7 and 8. The advantage
of gradient-free algorithms is that the optimization is easier to set up
because they do not need additional computations other than what the
models for the objective and constraints already provide.

Gradient-based algorithms use gradients of both the objective and
constraint functions with respect to the design variables—first-order
information. The gradients provide much richer information about
the function behavior, which the optimizer can use to converge to the
optimum more efficiently. Figure 1.23 shows how the cost of gradient-
based versus gradient-free optimization algorithms typically scales
when the number of design variables increases. The number of function
evaluations required by gradient-free methods increases dramatically,
whereas the number of evaluations required by gradient-basedmethods
does not increase as much and is many orders of magnitude lower for
the larger numbers of design variables.

In addition, gradient-based methods use more rigorous criteria for
optimality. The gradients are used to establish whether the optimizer
converged to a point that satisfies mathematical optimality conditions,
something that is difficult to verify in a rigorous way without gradients.

We first cover gradient-based algorithms for unconstrained prob-
lems in Chapter 4 and then extend them to constrained problems in
Chapter 5. Gradient-based algorithms also include algorithms that
use curvature—second-order information. Curvature is even richer
information that tells us the rate of the change in the gradient, which
provides an idea of where the function might flatten out.

There is a distinction between the order of information provided by
the user and the order of information actually used in the algorithm. For
example, a user might only provide function values to a gradient-based
algorithm and rely on the algorithm to internally estimate gradients.
Optimization algorithms estimate the gradients by requesting addi-
tional function evaluations for finite difference approximations (see
Section 6.4). Gradient-based algorithms can also internally estimate

1 Introduction 23

curvature based on gradient values (see Section 4.4.4).
In theory, gradient-based algorithms require the functions to be

sufficiently smooth (at least �1 continuous). However, in practice, they
can tolerate the occasional discontinuity, as long as this discontinuity is
not near the optimum.

We devote a considerable portion of this book to gradient-based
algorithms because they scale favorably with the number of design
variables, and they have rigorous mathematical criteria for optimality.
We also cover the various approaches for computing gradients in detail
because the accurate and efficient computation of these gradients is
crucial for the efficacy and efficiency of these methods (see Chapter 6).

Current state-of-the-art optimization algorithms also use second-
order information to implement Newton-type methods for second-
order convergence. However, these algorithms tend to build second-
order information based on the provided gradients, as opposed to
requiring users to provide the second-order information directly (see
Section 4.4.4).

Because gradient-based methods require accurate gradients and
smooth enough functions, they require more knowledge about the mod-
els and optimization algorithm than gradient-free methods. Chapters 3
through 6 are devoted to making the power of gradient-based methods
more accessible by providing the necessary theoretical and practical
knowledge.

1.4.2 Local versus Global Search
The many ways to search the design space can be classified as being
local or global. A local search takes a series of steps starting from
a single point to form a sequence of points that hopefully converges
to a local optimum. In spite of the name, local methods can traverse
large portions of the design space and can even step between convex
regions (although this happens by chance). A global search tries to
span the whole design space in the hope of finding the global optimum.
As previously mentioned when discussing multimodality, even when
using a global method, we cannot prove that any optimum found is a
global one except for particular cases.

The classification of local versus global searches often gets con-
flated with the gradient-based versus gradient-free attributes because
gradient-basedmethods usually perform a local search. However, these
should be viewed as independent attributes because it is possible to use
a global search strategy to provide starting points for a gradient-based

1 Introduction 24

algorithm. Similarly, some gradient-free algorithms are based on local
search strategies.

The choice of search type is intrinsically linked to the modality of
the design space. If the design space is unimodal, then a local search
is sufficient because it converges to the global optimum. If the design
space is multimodal, a local search converges to an optimum that might
be local (or global if we are lucky enough). A global search increases
the likelihood that we converge to a global optimum, but this is by no
means guaranteed.

1.4.3 Mathematical versus Heuristic
There is a big divide regarding the extent to which an algorithm is based
on provable mathematical principles versus heuristics. Optimization
algorithms require an iterative process, which determines the sequence
of points evaluated when searching for an optimum, and optimality
criteria, which determine when the iterative process ends. Heuristics
are rules of thumb or commonsense arguments that are not based on a
strict mathematical rationale.

Gradient-based algorithms are usually based on mathematical prin-
ciples, both for the iterative process and for the optimality criteria.
Gradient-free algorithms are more evenly split between the mathe-
matical and heuristic for both the optimality criteria and the itera-
tive procedure. The mathematical gradient-free algorithms are often
called derivative-free optimization algorithms. Heuristic gradient-free
algorithms include a wide variety of nature-inspired algorithms (see
Section 7.2).

Heuristic optimality criteria are an issue because, strictly speaking,
they do not prove that a given point is a local (let alone global) optimum;
they are only expected to find a point that is “close enough”. This
contrastswithmathematical optimality criteria,which areunambiguous
about (local) optimality and converge to the optimum within the limits
of the working precision. This is not to suggest that heuristic methods
are not useful. Finding a better solution is often desirable regardless of
whether or not it is strictly optimal. Not converging tightly to optimality
criteria does, however, make it harder to compare results from different
methods.

Iterative processes based on mathematical principles tend to be
more efficient than those based on heuristics. However, some heuristic
methods are more robust because they tend to make fewer assumptions
about the modality and smoothness of the functions and handle noisy
functions more effectively.

1 Introduction 25

Most algorithms mix mathematical arguments and heuristics to
some degree. Mathematical algorithms often include constants whose
values end up being tuned based on experience. Conversely, algo-
rithms primarily based on heuristics sometimes include steps with
mathematical justification.

1.4.4 Function Evaluation
The optimization problem setup that we described previously assumes
that the function evaluations are obtained by solving numerical models
of the system. We call these direct function evaluations. However, it is
possible to create surrogate models (also known as metamodels) of these
models and use them in the optimization process. These surrogates can
be interpolation-based or projection-based models. Surrogate-based
optimization is discussed in Chapter 10.

1.4.5 Stochasticity
This attribute is independent of the stochasticity of the model that
we mentioned previously, and it is strictly related to whether the
optimization algorithm itself contains steps that are determined at
random or not.

A deterministic optimization algorithm always evaluates the same
points and converges to the same result, given the same initial conditions.
In contrast, a stochastic optimization algorithm evaluates a different set
of points if run multiple times from the same initial conditions, even
if the models for the objective and constraints are deterministic. For
example, most evolutionary algorithms include steps determined by
generating random numbers. Gradient-based algorithms are usually
deterministic, but some exceptions exist, such as stochastic gradient
descent (see Section 10.5).

1.4.6 Time Dependence
In this book, we assume that the optimization problem is static. This
means that we formulate the problem as a single optimization and solve
the complete numericalmodel at eachoptimization iteration. In contrast,
dynamic optimization problems solve a sequence of optimization problems
to make decisions at different time instances based on information that
becomes available as time progresses.

For some problems that involve time dependence, we can perform
time integration to solve for the entire time history of the states and then
compute the objective and constraint function values for an optimization

1 Introduction 26

4. Betts, Survey of numerical methods for
trajectory optimization, 1998.

5. Bryson and Ho, Applied Optimal Con-
trol; Optimization, Estimation, and Control,
1969.
6. Bertsekas, Dynamic Programming and
Optimal Control, 1995.

iteration. This means that every optimization iteration requires solving
for the entire time history. An example of this type of problem is a
trajectory optimization problem where the design variables are the
coordinates representing the path, and the objective is to minimize the
total energy expended to get to a given destination.4 Although such a
problem involves a time dependence, we still classify it as static because
we solve a single optimization problem. As a more specific example,
consider a car going around a racetrack. We could optimize the time
history of the throttle, braking, and steering of a car to get a trajectory
that minimizes the total time in a known racetrack for fixed conditions.
This is an open-loop optimal control problem because the car control is
predetermined and does not react to any disturbances.

For dynamic optimization problems (also known as dynamic program-
ming), the design variables are decisions made in a sequence of time
steps.5,6 The decision at a given time step is influenced by the decisions
and system states from previous steps. Sometimes, the decision at a
given time step also depends on a prediction of the states a few steps
into the future.

The car example that we previously mentioned could also be a
dynamic optimization problem if we optimized the throttle, braking,
or steering of a car at each time instance in response to some measured
output. We could, for example,maximize the instantaneous acceleration
based on real-time acceleration sensor information and thus react to
varying conditions, such as surface traction. This is an example of a
closed-loop (or feedback) optimal control problem, a type of dynamic
optimization problem where a control law is optimized for a dynamical
system over a period of time.

Dynamic optimization is not covered in this book, except in the con-
text of discrete optimization (see Section 8.5). Different approaches are
used in general, but many of the concepts covered here are instrumental
in the numerical solution of dynamic optimization and optimal control
problems.

1.5 Selecting an Optimization Approach
This sectionprovides guidance onhow to select an appropriate approach
for solving a given optimization problem. This process cannot always
be distilled to a simple decision tree; however, it is still helpful to have a
framework as a first guide. Many of these decisions will become more
apparent as you progress through the book and gain experience, so
you may want to revisit this section periodically. Eventually, selecting
an appropriate methodology will become second nature.

https://dx.doi.org/10.2514/2.4231
https://dx.doi.org/10.2514/2.4231
https://https://books.google.com/books/about/Applied_Optimal_Control.html
https://https://books.google.com/books/about/Applied_Optimal_Control.html
https://https://books.google.com/books/about/Dynamic_Programming_and_Optimal_Control.html
https://https://books.google.com/books/about/Dynamic_Programming_and_Optimal_Control.html

1 Introduction 27

Figure 1.24 outlines one approach to algorithm selection and also
serves as an overview of the chapters in this book. The first two char-
acteristics in the decision tree (convex problem and discrete variables)
are not the most common within the broad spectrum of engineering
optimization problems, but we list them first because they are the more
restrictive in terms of usable optimization algorithms.

Convex?
Ch. 11

Linear optimization, quadratic optimization, etc.

Discrete?
Ch. 8 Linear? Markov chain?

Branch and bound

Dynamic programming

SA or GA (bit-encoded)

Differentiable?
Ch. 6 Unconstrained?

BFGS
Ch. 4

SQP or IP
Ch. 5

Multimodal? Multistart

Gradient free
Ch. 7 Multimodal?

DIRECT, GPS, GA, PS, etc.

Nelder–Mead

Yes

No

Yes

Yes

No

Yes

No
No

Yes

Yes

No

Yes

No
Yes

No

Multiple objectives?
Ch. 9

Noisy or expensive?
Ch. 10

Uncertainty?
Ch. 12

Multiple disciplines?
Ch. 13

Fig. 1.24 Decision tree for selecting
an optimization algorithm.

The first node asks about convexity. Although it is often not
immediately apparent if the problem is convex, with some experience,
we can usually discern whether we should attempt to reformulate it as a
convex problem. In most instances, convexity occurs for problems with
simple objectives and constraints (e.g., linear or quadratic), such as in
control applications where the optimization is performed repeatedly. A
convex problem can be solved with general gradient-based or gradient-
free algorithms, but it would be inefficient not to take advantage of the
convex formulation structure if we can do so.

The next node asks about discrete variables. Problems with discrete
design variables are generally much harder to solve, so we might
consider alternatives that avoid using discrete variables when possible.
For example, a wind turbine’s position in a field could be posed as
a discrete variable within a discrete set of options. Alternatively, we
could represent the wind turbine’s position as a continuous variable
with two continuous coordinate variables. That level of flexibility may
or may not be desirable but generally leads to better solutions. Many

1 Introduction 28

(= × 1)

G

G8

G1

G=

Fig. 1.25 An =-vector, G.

(= × <)

�

�8 98

9

�11 �1<

�=1 �=<

Fig. 1.26 An (= × <)matrix, �.

problems are fundamentally discrete, and there is a wide variety of
available methods.

Next, we consider whether the model is continuous and differen-
tiable or can be made smooth through model improvements. If the
problem is high dimensional (more than a few tens of variables as a
rule of thumb), gradient-free algorithms are generally intractable and
gradient-based algorithms are preferable. We would either need to
make the model smooth enough to use a gradient-based algorithm or
reduce the problem dimensionality to use a gradient-free algorithm.
Another alternative if the problem is not readily differentiable is to use
surrogate-based optimization (the box labeled “Noisy or expensive” in
Fig. 1.24). If we go the surrogate-based optimization route, we could
still use a gradient-based approach to optimize the surrogate model
because most such models are differentiable. Finally, for problems with
a relatively small number of design variables, gradient-free methods
can be a good fit. Gradient-free methods have the largest variety of
algorithms, and a combination of experience and testing is needed to
determine an appropriate algorithm for the problem at hand.

The bottom row in Fig. 1.24 lists additional considerations: multiple
objectives, surrogate-based optimization for noisy (nondifferentiable) or
computationally expensive functions, optimization under uncertainty
in the design variables and other model parameters, and MDO.

1.6 Notation
We do not use bold font to represent vectors or matrices. Instead,
we follow the convention of many optimization and numerical linear
algebra books, which try to use Greek letters (e.g.,
 and �) for scalars,
lowercase roman letters (e.g., G and D) for vectors, and capitalized
roman letters (e.g., � and �) for matrices. There are exceptions to this
notation because of the wide variety of topics covered in this book and
a desire not to deviate from the standard conventions used in each
field. We explicitly note these exceptions as needed. For example, the
objective function 5 is a scalar function and the Lagrange multipliers
(� and �) are vectors.

By default, a vector G is a column vector, and thus Gᵀ is a row
vector. We denote the 8th element of the vector as G8 , as shown in
Fig. 1.25. For more compact notation, we may write a column vector
horizontally, with its components separated by commas, for example,
G = [G1 , G2 , . . . , G=]. We refer to a vector with = components as an
=-vector, which is equivalent to writing G ∈ R= .

An (= × <)matrix has = rows and < columns, which is equivalent

1 Introduction 29

to defining � ∈ R=×< . The matrix element �8 9 is the element in the 8th
row of the 9the column, as shown in Fig. 1.26. Occasionally, additional
letters beyond 8 and 9 are needed for indices, but those are explicitly
noted when used.

The subscript : usually refers to iteration number. Thus, G: is the
complete vector G at iteration :. The subscript zero is used for the same
purpose, so G0 would be the complete vector G at the initial iteration.
Other subscripts besides those listed are used for naming. A superscript
star (G∗) refers to a quantity at the optimum.

Tip 1.5 Work out the dimensions of the vectors and matrices
As you read this book, we encourage you to work out the dimensions of

the vectors and matrices in the operations within each equation and verify the
dimensions of the result for consistency. This will enhance your understanding
of the equations.

1.7 Summary
Optimization is compelling, and there are opportunities to apply it
everywhere. Numerical optimization fully automates the design pro-
cess but requires expertise in the problem formulation, optimization
algorithm selection, and the use of that algorithm. Finally, design
expertise is also required to interpret and critically evaluate the results
given by the optimization.

There is no single optimization algorithm that is effective in the
solution of all types of problems. It is crucial to classify the optimization
problem and understand the optimization algorithms’ characteristics
to select the appropriate algorithm to solve the problem.

In seeking amore automateddesignprocess, wemust not dismiss the
value of engineering intuition, which is often difficult (if not impossible)
to convert into a rigid problem formulation and algorithm.

1 Introduction 30

Problems
1.1 Answer true or false and justify your answer.

a. MDO arose from the need to consider multiple design objec-
tives.

b. The preliminary design phase takes place after the concep-
tual design phase.

c. Design optimization is a completely automated process from
which designers can expect to get their final design.

d. The design variables for a problem consist of all the inputs
needed to compute the objective and constraint functions.

e. The design variables must always be independent of each
other.

f. An optimization algorithmdesigned forminimization can be
used to maximize an objective function without modifying
the algorithm.

g. Compared with the global optimum of a given problem,
adding more design variables to that problem results in a
global optimum that is no worse than that of the original
problem.

h. Compared with the global optimum objective value of a
given problem, adding more constraints sometimes results
in a better global optimum.

i. A function is �1 continuous if its derivative varies continu-
ously.

j. All unimodal functions are convex.

k. Global search algorithms always converge to the global
optimum.

l. Gradient-based methods are largely based on mathematical
principles as opposed to heuristics.

m. Solving a problem that involves a stochastic model requires
a stochastic optimization algorithm.

n. If a problem is multimodal, it requires a gradient-free opti-
mization algorithm.

1.2 Plotting a two-dimensional function. Consider the two-dimensional
function

5 (G1 , G2) = G3
1 + 2G1G2

2 − G3
2 − 20G1 .

1 Introduction 31

Plot the function contours and find the approximate location of
the minimum point(s). Is there a global minimum? Exploration:
Plot other functions to get an intuition about their trends and
minima. You can start with simple low-order polynomials and
then add higher-order terms, trying different coefficients. Then
you can also try nonalgebraic functions. This will give you an
intuition about the function trends and minima.

1.3 Standard form. Convert the following problem to the standard
formulation (Eq. 1.4):

maximize 2G2
1 − G4

1G
2
2 − 4G3 + 4−G3 + 12

by varying G1 , G2 , G3

subject to G1 ≥ 1
G2 + G3 ≥ 10
G2

1 + 3G2
2 ≤ 4 .

(1.5)

1.4 Using an unconstrained optimizer. Consider the two-dimensional
function

5 (G1 , G2) = (1 − G1)2 + (1 − G2)2 + 1
2

(
2G2 − G2

1
)2
.

Plot the contours of this function and find the minimum graphi-
cally. Then, use optimization software to find the minimum (see
Tip 1.3). Verify that the optimizer converges to the minimum you
found graphically. Exploration: (1) Try minimizing the function
in Prob. 1.2 starting from different points. (2) Minimize other
functions of your choosing. (3) Study the options provided by the
optimization software and explore different settings.

1.5 Using a constrained optimizer. Now we add constraints to Prob. 1.4.
The objective is the same, but we now have two inequality con-
straints:

G2
1 + G2

2 ≤ 1

G1 − 3G2 + 1
2 ≥ 0 ,

and bound constraints:

G1 ≥ 0, G2 ≥ 0 .

Plot the constraints and identify the feasible region. Find the
constrained minimum graphically. Use optimization software
to solve the constrained minimization problem. Which of the
inequality constraints and bounds are active at the solution?

1 Introduction 32

1.6 Paper review. Select a paper on design optimization that seems
interesting to you, preferably from a peer-reviewed journal.
Write the full optimization problem statement in the standard
form (Eq. 1.4) for the problem solved in the paper. Classify the
problem according to Fig. 1.15 and the optimization algorithm ac-
cording to Fig. 1.22. Use the decision tree in Fig. 1.24 to determine
if the optimization algorithm was chosen appropriately. Write a
critique of the paper, highlighting its strengths and weaknesses.

1.7 Problem formulation. Choose an engineering system that you
are familiar with, and use the process outlined in Fig. 1.4 to
formulate a problem for the design optimization of that system.
Write the statement in the standard form (Eq. 1.4). Critique your
statement by asking the following: Does the objective function
truly capture the design intent? Are there other objectives that
could be considered? Do the design variables provide enough
freedom? Are the design variables bounded such that nonphysical
designs are prevented? Are you sure you have included all the
constraints needed to get a practical design? Can you think of
any loophole that the optimizer can exploit in your statement?

2A Short History of Optimization
This chapter provides helpful historical context for the methods dis-
cussed in this book. Nothing else in the book depends on familiarity
with the material in this chapter, so it can be skipped. However, this
history makes connections between the various topics that will enrich
the big picture of optimization as you become familiar with the material
in the rest of the book, so you might want to revisit this chapter.

Optimization has a long history that startedwith geometry problems
solved by ancient Greek mathematicians. The invention of algebra and
calculus opened the door to many more types of problems, and the
advent of numerical computing increased the range of problems that
could be solved in terms of type and scale.

By the end of this chapter you should be able to:

1. Appreciate a range of historical advances in optimization.

2. Describe current frontiers in optimization.

2.1 The First Problems: Optimizing Length and Area
Ancient Greek and Egyptian mathematicians made numerous contri-
butions to geometry, including solving optimization problems that
involved length and area. They adopted a geometric approach to
solving problems that are now more easily solved using calculus.

Archimedes of Syracuse (287–212 BCE) showed that of all possible
spherical caps of a given surface area, hemispherical caps have the
largest volume. Euclid of Alexandria (325–265 BCE) showed that the
shortest distance betweenapoint anda line is the segmentperpendicular
to that line. He also proved that among rectangles of a given perimeter,
the square has the largest area.

Geometric problems involving perimeter and area had practical
value. The classic example of such practicality is Dido’s problem.
According to the legend, Queen Dido, who had fled to Tunis, purchased

33

2 A Short History of Optimization 34

Carthage

Gulf of
Tunis

Fig. 2.1 Queen Dido intuitively maxi-
mized the area for a given perimeter,
thus acquiring enough land to found
the city of Carthage.

Mirror

�

�

�′

� �

Fig. 2.2 The law of reflection can be
derived by minimizing the length of
the light beam.

7. Kepler, Nova stereometria doliorum
vinariorum (New Solid Geometry of Wine
Barrels), 1615.

Fig. 2.3 Wine barrels were measured
by inserting a ruler in the tap hole
until it hit the corner.

8. Ferguson,Who solved the secretary
problem? 1989.

from a local leader as much land as could be enclosed by an ox’s hide.
The leader agreed because this seemed like a modest amount of land.
To maximize her land area, Queen Dido had the hide cut into narrow
strips to make the longest possible string. Then, she intuitively found
the curve that maximized the area enclosed by the string: a semicircle
with the diameter segment set along the sea coast (see Fig. 2.1). As
a result of the maximization, she acquired enough land to found the
ancient city of Carthage. Later, Zenodorus (200–140 BCE) proved this
optimal solution using geometrical arguments. A rigorous solution to
this problem requires using calculus of variations, which was invented
much later.

Geometric optimization problems are also applicable to the laws of
physics. Hero of Alexandria (10–70 CE) derived the law of reflection
by finding the shortest path for light reflecting from a mirror, which
results in an angle of reflection equal to the angle of incidence (Fig. 2.2).

2.2 Optimization Revolution: Derivatives and Calculus
The scientific revolution generated significant optimization develop-
ments in the seventeenth and eighteenth centuries that intertwined
with other developments in mathematics and physics.

In the early seventeenth century, Johannes Kepler published a book
in which he derived the optimal dimensions of a wine barrel.7 He
became interested in this problem when he bought a barrel of wine,
and the merchant charged him based on a diagonal length (see Fig. 2.3).
This outraged Kepler because he realized that the amount of wine could
vary for the same diagonal length, depending on the barrel proportions.

Incidentally, Kepler also formulated an optimization problem when
looking for his second wife, seeking to maximize the likelihood of satis-
faction. This “marriage problem” later became known as the “secretary
problem”, which is an optimal-stopping problem that has since been
solved using dynamic optimization (mentioned in Section 1.4.6 and
discussed in Section 8.5).8

Willebrord Snell discovered the law of refraction in 1621, a formula
that describes the relationship between the angles of incidence and
refraction when light passes through a boundary between two different
media, such as air, glass, or water. Whereas Hero minimized the length
to derive the law of reflection, Snell minimized time. These laws were
generalized by Fermat in the principle of least time (or Fermat’s principle),
which states that a ray of light going from one point to another follows
the path that takes the least time.

https://https://books.google.com/books/about/Nova_Stereometria_dolorium_vinariorum.html?id=lVGAtwEACAAJ
https://https://books.google.com/books/about/Nova_Stereometria_dolorium_vinariorum.html?id=lVGAtwEACAAJ
https://https://books.google.com/books/about/Nova_Stereometria_dolorium_vinariorum.html?id=lVGAtwEACAAJ
https://dx.doi.org/10.1214/ss/1177012493
https://dx.doi.org/10.1214/ss/1177012493

2 A Short History of Optimization 35

9. Fermat, Methodus ad disquirendam
maximam et minimam (Method for the Study
of Maxima and Minima), 1636.

∗Kepler’s equation describes orbits by �−
4 sin(�) = ", where " is the mean
anomaly, 4 is the eccentricity, and � is the
eccentric anomaly. This equation does not
have a closed-form solution for �.

†For this reason, Kollerstrom10 argues
that the method should be called neither
Newton nor Newton–Raphson.

10. Kollerstrom, Thomas Simpson and
‘Newton’s method of approximation’: an
enduring myth, 1992.

�

�

Fig. 2.4 Suppose that you have a bead
on a wire that goes from � to �. The
brachistochrone curve is the shape
of the wire that minimizes the time
for the bead to slide between the two
points under gravity alone. It is faster
than a straight-line trajectory or a cir-
cular arc.

Pierre de Fermat derived Snell’s law by applying the principle of
least time, and in the process, he devised a mathematical technique for
finding maxima and minima using what amounted to derivatives (he
missed the opportunity to generalize the notion of derivative, which
came later in the development of calculus).9 Today, we learn about
derivatives before learning about optimization, but Fermat did the
reverse.

During this period, optimization was not yet considered an im-
portant area of mathematics, and contributions to optimization were
scattered among other areas. Therefore, most mathematicians did not
appreciate seminal contributions in optimization at the time.

In 1669, Isaac Newton wrote about a numerical technique to find
the roots of polynomials by successively linearizing them, achieving
quadratic convergence. In 1687, he used this technique to find the
roots of a nonpolynomial equation (Kepler’s equation),∗ but only after
using polynomial expansions. In 1690, Joseph Raphson improved on
Newton’s method by keeping all the decimals in each linearization and
making it a fully iterative scheme. Themultivariable “Newton’smethod”
that is widely used today was actually introduced in 1740 by Thomas
Simpson. He generalized the method by using the derivatives (which
allowed for solving nonpolynomial equations without expansions) and
by extending it to a system of two equations and two unknowns.†

In 1685, Newton studied a shape optimization problem where he
sought the shape of a body of revolution that minimizes fluid drag
and even mentioned a possible application to ship design. Although
he used the wrong model for computing the drag, he correctly solved
what amounted to a calculus of variations problem.

In 1696, Johann Bernoulli challenged other mathematicians to find
the path of a body subject to gravity that minimizes the travel time
between two points of different heights. This is now a classic calculus of
variations problem called the brachistochrone problem (Fig. 2.4). Bernoulli
already had a solution that he kept secret. Fivemathematicians respond
with solutions: Newton, Jakob Bernoulli (Johann’s brother), Gottfried
Wilhelm von Leibniz, Ehrenfried Walther von Tschirnhaus, and Guil-
laume de l’Hôpital. Newton reportedly started working on the problem
as soon as he received it and stayed up all night before sending the
solution anonymously to Bernoulli the next day.

Starting in 1736, Leonhard Euler derived the general optimality
conditions for solving calculus of variations problems, but thederivation
included geometric arguments. In 1755, Joseph-Louis Lagrange used a
purely analytic approach to derive the same optimality conditions (he
was 19 years old at the time!). Euler recognized Lagrange’s derivation,

https://science.larouchepac.com/fermat/fermat-maxmin.pdf
https://science.larouchepac.com/fermat/fermat-maxmin.pdf
https://science.larouchepac.com/fermat/fermat-maxmin.pdf
https://https://www.jstor.org/stable/4027257
https://https://www.jstor.org/stable/4027257
https://https://www.jstor.org/stable/4027257

2 A Short History of Optimization 36

11. Lagrange, Mécanique analytique, 1788.

12. Cauchy, Méthode générale pour la réso-
lution des systèmes d’équations simultanées,
1847.

13. Hancock, Theory of Minima and Max-
ima, 1917.

14. Menger, Das botenproblem, 1932.

which uses variations of a function, as a superior approach and adopted
it, calling it “calculus of variations”. This is a second-order partial
differential equation that has become known as the Euler–Lagrange
equation. Lagrange used this equation to develop a reformulation
of classical mechanics in 1788, which became known as Lagrangian
mechanics. When deriving the general equations of equilibrium for
problems with constraints, Lagrange introduced the “method of the
multipliers”.11 Lagrange multipliers eventually became a fundamental
concept in constrained optimization (see Section 5.3).

In 1784, Gaspard Monge developed a geometric method to solve
a transportation problem. Although the method was not entirely
correct, it established combinatorial optimization, a branch of discrete
optimization (Chapter 8).

2.3 The Birth of Optimization Algorithms
Several more theoretical contributions related to optimization occurred
in the nineteenth century and the early twentieth century. However, it
was not until the 1940s that optimization started to gain traction with
the development of algorithms and their use in practical applications,
thanks to the advent of computer hardware.

In 1805, Adrien-Marie Legendre described the method of least
squares, which was used to predict asteroid orbits and for curve fitting.
Friedrich Gauss published a rigorous mathematical foundation for the
method of least squares and claimed he used it to predict the orbit of
the asteroid Ceres in 1801. Legendre and Gauss engaged in a bitter
dispute on who first developed the method.

In one of his 789 papers, Augustin-Louis Cauchy proposed the
steepest-descent method for solving systems of nonlinear equations.12
He did not seem to put much thought into it and promised a “paper
to follow” on the subject, which never happened. He proposed this
method for solving systems of nonlinear equations, but it is directly
applicable to unconstrained optimization (see Section 4.4.1).

In 1902, Gyula Farkas proved a theoremon the solvability of a system
of linear inequalities. This became known as Farkas’ lemma, which is
crucial in the derivation of the optimality conditions for constrained
problems (see Section 5.3.2). In 1917, Harris Hancock published the first
textbook on optimization, which included the optimality conditions for
multivariable unconstrained and constrained problems.13

In 1932, Karl Menger presented “the messenger problem”,14 an
optimization problem that seeks to minimize the shortest travel path
that connects a set of destinations, observing that going to the closest

https://https://books.google.ca/books/about/M%C3%A9canique_analytique.html?id=Q8MKAAAAYAAJ
https://https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiC_IPhnoHxAhXZWc0KHZVICzgQFjAAegQICRAD&url=http%3A%2F%2Fcerebro.xu.edu%2Fmath%2FSources%2FCauchy%2FOrbits%2F1847%2520CR%2520536%2528383%2529.pdf&usg=AOvVaw2OyvHXVbr42-VCI3uIgnMj
https://https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiC_IPhnoHxAhXZWc0KHZVICzgQFjAAegQICRAD&url=http%3A%2F%2Fcerebro.xu.edu%2Fmath%2FSources%2FCauchy%2FOrbits%2F1847%2520CR%2520536%2528383%2529.pdf&usg=AOvVaw2OyvHXVbr42-VCI3uIgnMj
https://https://books.google.com/books/about/Theory_of_Maxima_and_Minima.html?id=DBwPAAAAIAAJ
https://https://books.google.com/books/about/Theory_of_Maxima_and_Minima.html?id=DBwPAAAAIAAJ
https://https://www.google.ca/books/edition/Karl_Menger_Ergebnisse_eines_Mathematisc/oakkBgAAQBAJ

2 A Short History of Optimization 37

15. Karush, Minima of functions of several
variables with inequalities as side constraints,
1939.

16. Dantzig, Linear programming and
extensions, 1998.

17. Krige, A statistical approach to some
mine valuation and allied problems on the
Witwatersrand, 1951.

point each time does not, in general, result in the shortest overall path.
This is a combinatorial optimization problem that later became known
as the traveling salesperson problem, one of the most intensively studied
problems in optimization (Chapter 8).

In 1939, William Karush derived the necessary conditions for in-
equality constrained problems in his master’s thesis. His approach
generalized the method of Lagrange multipliers, which only allowed
for equality constraints. Harold Kuhn and Albert Tucker independently
rediscovered these conditions and published their seminal paper in
1951.15 These became known as the Karush–Kuhn–Tucker (KKT) condi-
tions, which constitute the foundation of gradient-based constrained
optimization algorithms (see Section 5.3).

Leonid Kantorovich developed a technique to solve linear program-
ming problems in 1939 after having been given the task of optimizing
production in the Soviet government’s plywood industry. However,
his contribution was neglected for ideological reasons. In the United
States, Tjalling Koopmans rediscovered linear programming in the
early 1940s when working on ship-transportation problems. In 1947,
GeorgeDantzig published the first complete algorithm for solving linear
programming problems—the simplex algorithm.16 In the same year,
von Neumann developed the theory of duality for linear programming
problems. Kantorovich and Koopmans later shared the 1975 Nobel
Memorial Prize in Economic Sciences “for their contributions to the
theory of optimum allocation of resources”. Dantzig was not included,
presumably because his work was more theoretical. The development
of the simplex algorithm and the widespread practical applications of
linear programming sparked a revolution in optimization. The first
international conference on optimization, the International Symposium
on Mathematical Programming, was held in Chicago in 1949.

In 1951, George Box and Kenneth Wilson developed the response-
surfacemethodology (surrogatemodeling), which enables optimization
of systems based on experimental data (as opposed to a physics-based
model). They developed a method to build a quadratic model where
the number of data points scales linearly with the number of inputs
instead of exponentially, striking a balance between accuracy and ease of
application. In the same year, Danie Krige developed a surrogate model
based on a stochastic process, which is now known as the kriging model.
He developed thismodel in hismaster’s thesis to estimate themost likely
distribution of gold based on a limited number of borehole samples.17
These approaches are foundational in surrogate-based optimization
(Chapter 10).

In 1952, Harry Markowitz published a paper on portfolio theory

https://https://catalog.lib.uchicago.edu/vufind/Record/4111654
https://https://catalog.lib.uchicago.edu/vufind/Record/4111654
https://books.google.com/books?vid=ISBN0691059136
https://books.google.com/books?vid=ISBN0691059136
https://https://books.google.com/books/about/A_Statistical_Approach_to_Some_Mine_Valu.html?id=M6jASgAACAAJ
https://https://books.google.com/books/about/A_Statistical_Approach_to_Some_Mine_Valu.html?id=M6jASgAACAAJ
https://https://books.google.com/books/about/A_Statistical_Approach_to_Some_Mine_Valu.html?id=M6jASgAACAAJ

2 A Short History of Optimization 38

18. Markowitz, Portfolio selection, 1952.

19. Bellman, Dynamic Programming, 1957.

20. Davidon, Variable metric method for
minimization, 1991.

21. Fletcher and Powell, A rapidly con-
vergent descent method for minimization,
1963.

22. Wolfe, Convergence conditions for
ascent methods, 1969.

23. Wilson, A simplicial algorithm for
concave programming, 1963.

24. Han, Superlinearly convergent variable
metric algorithms for general nonlinear
programming problems, 1976.

25. Powell, Algorithms for nonlinear con-
straints that use Lagrangian functions, 1978.

that formalized the idea of investment diversification, marking the birth
of modern financial economics.18 The theory is based on a quadratic
optimization problem. He received the 1990 Nobel Memorial Prize in
Economic Sciences for developing this theory.

In 1955, Lester Ford and Delbert Fulkerson created the first known
algorithm to solve the maximum-flow problem, which has applications
in transportation, electrical circuits, and data transmission. Although
the problem could already be solved with the simplex algorithm, they
proposed a more efficient algorithm for this specialized problem.

In 1957, Richard Bellman derived the necessary optimality condi-
tions for dynamic programming problems.19 These are expressed in
what became known as the Bellman equation (Section 8.5), which was
first applied to engineering control theory and subsequently became a
core principle in economic theory.

In 1959, William Davidon developed the first quasi-Newton method
for solving nonlinear optimization problems that rely on approxi-
mations of the curvature based on gradient information. He was
motivated by his work at Argonne National Laboratory, where he
used a coordinate-descent method to perform an optimization that
kept crashing the computer before converging. Although Davidon’s
approach was a breakthrough in nonlinear optimization, his original
paper was rejected. It was eventually published more than 30 years
later in the first issue of the SIAM Journal on Optimization.20 Fortunately,
his valuable insight had been recognized well before that by Roger
Fletcher and Michael Powell, who further developed the method.21 The
method became known as the Davidon–Fletcher–Powell (DFP) method
(Section 4.4.4).

Another quasi-Newton approximation method was independently
proposed in 1970 by Charles Broyden, Roger Fletcher, Donald Goldfarb,
and David Shanno, now called the Broyden–Fletcher–Goldfarb–Shanno
(BFGS)method. LarryArmĳo, A. Goldstein, and PhilipWolfe developed
the conditions for the line search that ensure convergence in gradient-
based methods (see Section 4.3.2).22

Leveraging the developments in unconstrained optimization, re-
searchers sought methods for solving constrained problems. Penalty
and barrier methods were developed but fell out of favor because
of numerical issues (see Section 5.4). In another effort to solve non-
linear constrained problems, Robert Wilson proposed the sequential
quadratic programming (SQP) method in his PhD thesis.23 SQP consists
of applying the Newton method to solve the KKT conditions (see Sec-
tion 5.5). Shih-Ping Han reinvented SQP in 1976,24 and Michael Powell
popularized this method in a series of papers starting from 1977.25

https://dx.doi.org/10.2307/2975974
https://books.google.com/books?vid=ISBN9780691146683
https://dx.doi.org/10.1137/0801001
https://dx.doi.org/10.1137/0801001
https://dx.doi.org/10.1093/comjnl/6.2.163
https://dx.doi.org/10.1093/comjnl/6.2.163
https://dx.doi.org/10.1137/1011036
https://dx.doi.org/10.1137/1011036
https://https://books.google.com/books/about/A_Simplicial_Algorithm_for_Concave_Progr.html?id=Ec4oYAAACAAJ
https://https://books.google.com/books/about/A_Simplicial_Algorithm_for_Concave_Progr.html?id=Ec4oYAAACAAJ
https://dx.doi.org/10.1007/BF01580395
https://dx.doi.org/10.1007/BF01580395
https://dx.doi.org/10.1007/BF01580395
https://dx.doi.org/10.1007/bf01588967
https://dx.doi.org/10.1007/bf01588967

2 A Short History of Optimization 39

26. Holland, Adaptation in Natural and
Artificial Systems, 1975.

27. Hooke and Jeeves, ‘Direct search’ so-
lution of numerical and statistical problems,
1961.
28. Nelder and Mead, A simplex method
for function minimization, 1965.
∗The Nelder–Mead algorithm has no con-
nection to the simplex algorithm for linear
programming problems mentioned ear-
lier.

29. Karmarkar, A new polynomial-time
algorithm for linear programming, 1984.

30. Pontryagin et al., The Mathematical
Theory of Optimal Processes, 1961.

31. Bryson Jr, Optimal control—1950 to
1985, 1996.

There were attempts to model the natural process of evolution
starting in the 1950s. In 1975, JohnHolland proposed genetic algorithms
(GAs) to solve optimization problems (Section 7.6).26 Research in GAs
increased dramatically after that, thanks in part to the exponential
increase in computing power.

Hooke and Jeeves27 proposed a gradient-free method called coor-
dinate search. In 1965, Nelder and Mead28 developed the nonlinear
simplex method, another gradient-free nonlinear optimization based
on heuristics (Section 7.3).∗

The Mathematical Programming Society was founded in 1973, an
international association for researchers active in optimization. It was
renamed the Mathematical Optimization Society in 2010 to reflect the
more modern name for the field.

Narendra Karmarkar presented a revolutionary new method in
1984 to solve large-scale linear optimization problems as much as a
hundred times faster than the simplex method.29 The New York Times
published a related news item on the front page with the headline
“Breakthrough in Problem Solving”. This heralded the age of interior-
point methods, which are related to the barrier methods dismissed in
the 1960s. Interior-point methods were eventually adapted to solve
nonlinear problems (see Section 5.6) and contributed to the unification
of linear and nonlinear optimization.

2.4 The Last Decades
The relentless exponential increase in computer power throughout
the 1980s and beyond has made it possible to perform engineering
design optimization with increasingly sophisticated models, including
multidisciplinary models. The increased computer power has also
been contributing to the gain in popularity of heuristic optimization
algorithms. Computer power has also enabled large-scale deep neural
networks (see Section 10.5), which have been instrumental in the
explosive rise of artificial intelligence (AI).

The field of optimal control flourished after Bellman’s contribution
to dynamic programming. Another important optimality principle for
control, the maximum principle, was derived by Pontryagin et al.30 This
principle makes it possible to transform a calculus of variations problem
into a nonlinear optimization problem. Gradient-based nonlinear
optimization algorithms were then used to numerically solve for the
optimal trajectories of rockets and aircraft, with an adjoint method
to compute the gradients of the objective with respect to the control
histories.31 The adjoint method efficiently computes gradients with

https://https://mitpress.mit.edu/books/adaptation-natural-and-artificial-systems
https://https://mitpress.mit.edu/books/adaptation-natural-and-artificial-systems
https://dx.doi.org/10.1145/321062.321069
https://dx.doi.org/10.1145/321062.321069
https://dx.doi.org/10.1093/comjnl/7.4.308
https://dx.doi.org/10.1093/comjnl/7.4.308
https://dx.doi.org/10.1145/800057.808695
https://dx.doi.org/10.1145/800057.808695
https://https://www.google.ca/books/dfdfedition/Mathematical_Theory_of_Optimal_Processes/l3dZDwAAQBAJ
https://https://www.google.ca/books/dfdfedition/Mathematical_Theory_of_Optimal_Processes/l3dZDwAAQBAJ
https://dx.doi.org/10.1109/37.506395
https://dx.doi.org/10.1109/37.506395

2 A Short History of Optimization 40

32. Schmit, Structural design by systematic
synthesis, 1960.

33. Schmit and Thornton, Synthesis of an
airfoil at supersonic Mach number, 1965.

34. Fox, Constraint surface normals for
structural synthesis techniques, 1965.

35. Arora and Haug, Methods of design
sensitivity analysis in structural optimiza-
tion, 1979.

36. Haftka and Grandhi, Structural shape
optimization—A survey, 1986.

37. Eschenauer and Olhoff, Topology
optimization of continuum structures: A
review, 2001.

38. Pironneau, On optimum design in fluid
mechanics, 1974.

39. Jameson, Aerodynamic design via
control theory, 1988.

40. Sobieszczanski–Sobieski and Haftka,
Multidisciplinary aerospace design opti-
mization: Survey of recent developments,
1997.
41. Martins and Lambe, Multidisciplinary
design optimization: A survey of architec-
tures, 2013.

42. Sobieszczanski–Sobieski, Sensitivity of
complex, internally coupled systems, 1990.

respect to large numbers of variables and has proven to be useful in other
disciplines. Optimal control then expanded to include the optimization
of feedback control laws that guarantee closed-loop stability. Optimal
control approaches include model predictive control, which is widely
used today.

In 1960, Schmit32 proposed coupling numerical optimization with
structural computational models to perform structural design, establish-
ing the field of structural optimization. Five years later, he presented
applications, including aerodynamics and structures, representing
the first known multidisciplinary design optimization (MDO) appli-
cation.33 The direct method for computing gradients for structural
computational models was developed shortly after that,34 eventually
followed by the adjoint method (Section 6.7).35 In this early work, the
design variables were the cross-sectional areas of themembers of a truss
structure. Researchers then added joint positions to the set of design
variables. Structural optimization was generalized further with shape
optimization, which optimizes the shape of arbitrary three-dimensional
structural parts.36 Another significant development was topology op-
timization, where a structural layout emerges from a solid block of
material.37 It tookmany years of further development in algorithms and
computer hardware for structural optimization to be widely adopted
by industry, but this capability has now made its way to commercial
software.

Aerodynamic shape optimization began when Pironneau38 used
optimal control techniques to minimize the drag of a body by varying
its shape (the “control” variables). Jameson39 extended the adjoint
method with more sophisticated computational fluid dynamics (CFD)
models and applied it to aircraft wing design. CFD-based optimization
applications spread beyond aircraft wing design to the shape optimiza-
tion of wind turbines, hydrofoils, ship hulls, and automobiles. The
adjoint method was then generalized for any discretized system of
equations (see Section 6.7).

MDO developed rapidly in the 1980s following the application
of numerical optimization techniques to structural design. The first
conference in MDO, the Multidisciplinary Analysis and Optimization
Conference, took place in 1985. The earliest MDO applications focused
on coupling the aerodynamics and structures in wing design, and
other early applications integrated structures and controls.40 The de-
velopment of MDO methods included efforts toward decomposing the
problem into optimization subproblems, leading to distributed MDO
architectures.41 Sobieszczanski–Sobieski42 proposed a formulation for
computing the derivatives for coupled systems, which is necessary

https://https://www.google.ca/books/edition/Synthesis_of_an_Airfoil_at_Supersonic_Ma/_pT8uiFwbpsC
https://https://www.google.ca/books/edition/Synthesis_of_an_Airfoil_at_Supersonic_Ma/_pT8uiFwbpsC
https://dx.doi.org/10.2514/3.3182
https://dx.doi.org/10.2514/3.3182
https://dx.doi.org/10.2514/3.61260
https://dx.doi.org/10.2514/3.61260
https://dx.doi.org/10.2514/3.61260
https://dx.doi.org/10.1016/0045-7825(86)90072-1
https://dx.doi.org/10.1016/0045-7825(86)90072-1
https://dx.doi.org/10.1115/1.1388075
https://dx.doi.org/10.1115/1.1388075
https://dx.doi.org/10.1115/1.1388075
https://dx.doi.org/10.1017/S0022112074002023
https://dx.doi.org/10.1017/S0022112074002023
https://dx.doi.org/10.1007/BF01061285
https://dx.doi.org/10.1007/BF01061285
https://dx.doi.org/10.1007/BF011
https://dx.doi.org/10.1007/BF011
https://dx.doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/3.10366
https://dx.doi.org/10.2514/3.10366

2 A Short History of Optimization 41

43. Martins et al., A coupled-adjoint sen-
sitivity analysis method for high-fidelity
aero-structural design, 2005.

44. Hwang and Martins, A computational
architecture for coupling heterogeneous
numerical models and computing coupled
derivatives, 2018.

45. Wright, The interior-point revolution in
optimization: history, recent developments,
and lasting consequences, 2005.

∗The field of operations research was es-
tablished inWorldWar II to aid inmaking
better strategical decisions.

46. Grant et al., Disciplined convex pro-
gramming, 2006.

47. Wengert, A simple automatic derivative
evaluation program, 1964.

48. Speelpenning, Compiling fast partial
derivatives of functions given by algorithms,
1980.

when performing MDO with gradient-based optimizers. This concept
was later combined with the adjoint method for the efficient computa-
tion of coupled derivatives.43 More recently, efficient computation of
coupled derivatives and hierarchical solvers have made it possible to
solve large-scale MDO problems44 (Chapter 13). Engineering design
has been focusing on achieving improvements made possible by con-
sidering the interaction of all relevant disciplines. MDO applications
have extended beyond aircraft to the design of bridges, buildings,
automobiles, ships, wind turbines, and spacecraft.

In continuous nonlinear optimization, SQP has remained the state-
of-the-art approach since its popularization in the late 1970s. However,
the interior-point approach, which, as mentioned previously, revolu-
tionized linear optimization, was successfully adapted for the solution
of nonlinear problems and has made great strides since the 1990s.45
Today, both SQP and interior-point methods are considered to be state
of the art.

Interior-point methods have contributed to the connection between
linear and nonlinear optimization, which were treated as entirely
separate fields before 1984. Today, state-of-the-art linear optimization
software packages have options for both the simplex and interior-point
approaches because the best approach depends on the problem.

Convex optimization emerged as a generalization of linear optimiza-
tion (Chapter 11). Like linear optimization, it was initially mostly used
in operations research applications,∗ such as transportation, manufac-
turing, supply-chainmanagement, and revenuemanagement, and there
were only a few applications in engineering. Since the 1990s, convex
optimization has increasingly been used in engineering applications,
including optimal control, signal processing, communications, and
circuit design. A disciplined convex programming methodology facili-
tated this expansion to construct convex problems and convert them to
a solvable form.46 New classes of convex optimization problems have
also been developed, such as geometric programming (see Section 11.6),
semidefinite programming, and second-order cone programming.

As mathematical models became increasingly complex computer
programs, and given the need to differentiate those models when per-
forming gradient-based optimization, new methods were developed
to compute derivatives. Wengert47 was among the first to propose the
automatic differentiation of computer programs (or algorithmic differ-
entiation). The reverse mode of algorithmic differentiation, which is
equivalent to the adjoint method, was proposed later (see Section 6.6).48
This field has evolved immensely since then, with techniques to handle
more functions and increase efficiency. Algorithmic differentiation tools

https://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
https://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
https://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
https://dx.doi.org/10.1145/3182393
https://dx.doi.org/10.1145/3182393
https://dx.doi.org/10.1145/3182393
https://dx.doi.org/10.1145/3182393
https://dx.doi.org/10.1007/978-1-4613-3279-4_23
https://dx.doi.org/10.1007/978-1-4613-3279-4_23
https://dx.doi.org/10.1007/978-1-4613-3279-4_23
https://dx.doi.org/10.1007/0-387-30528-9_7
https://dx.doi.org/10.1007/0-387-30528-9_7
https://dx.doi.org/10.1145/355586.364791
https://dx.doi.org/10.1145/355586.364791
https://dx.doi.org/10.2172/5254402
https://dx.doi.org/10.2172/5254402

2 A Short History of Optimization 42

49. Squire and Trapp, Using complex vari-
ables to estimate derivatives of real functions,
1998.

50. Martins et al., The complex-step deriva-
tive approximation, 2003.

51. Torczon, On the convergence of pattern
search algorithms, 1997.

52. Jones et al., Lipschitzian optimization
without the Lipschitz constant, 1993.

53. Jones and Martins, The DIRECT
algorithm—25 years later, 2021.

54. Kirkpatrick et al., Optimization by
simulated annealing, 1983.

55. Kennedy and Eberhart, Particle swarm
optimization, 1995.

56. Forrester and Keane, Recent advances
in surrogate-based optimization, 2009.

have been developed for an increasing number of programming lan-
guages. One of the more recently developed programming languages,
Julia, features prominent support for algorithmic differentiation. At
the same time, algorithmic differentiation has spread to a wide range
of applications.

Another technique to compute derivatives numerically, the complex-
step derivative approximation, was proposed by Squire and Trapp.49
Soon after, this technique was generalized to computer programs,
applied to CFD, and found to be related to algorithmic differentiation
(see Section 6.5).50

The pattern-search algorithms that Hooke and Jeeves and Nelder
and Meade developed were disparaged by applied mathematicians,
who preferred the rigor and efficiency of the gradient-based methods
developed soon after that. Nevertheless, they were further developed
and remain popular with engineering practitioners because of their sim-
plicity. Pattern-search methods experienced a renaissance in the 1990s
with the development of convergence proofs that added mathematical
rigor and the availability of more powerful parallel computers.51 Today,
pattern-search methods (Section 7.4) remain a useful option, sometimes
one of the only options, for certain types of optimization problems.

Global optimization algorithms also experienced further develop-
ments. Jones et al.52 developed the DIRECT algorithm, which uses
a rigorous approach to find the global optimum (Section 7.5). This
seminal development was followed by various extensions and improve-
ments.53

The first genetic algorithms started the development of the broader
class of evolutionary optimization algorithms inspired by natural and
societal processes. Optimization by simulated annealing (Section 8.6)
represents one of the early examples of this broader perspective.54
Another example is particle swarm optimization (Section 7.7).55 Since
then, there has been an explosion in the number of evolutionary
algorithms, inspired by any process imaginable (see the sidenote at
the end of Section 7.2 for a partial list). Evolutionary algorithms
have remained heuristic and have not experienced the mathematical
treatment applied to pattern-search methods.

There has been a sustained interest in surrogate models (also known
as metamodels) since the seminal contributions in the 1950s. Kriging
surrogate models are still used and have been the focus of many
improvements, but new techniques, such as radial-basis functions, have
also emerged.56 Surrogate-based optimization is now an area of active
research (Chapter 10).

AI has experienced a revolution in the last decade and is connected

https://dx.doi.org/10.1137/S003614459631241X
https://dx.doi.org/10.1137/S003614459631241X
https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1137/S1052623493250780
https://dx.doi.org/10.1137/S1052623493250780
https://dx.doi.org/10.1007/BF00941892
https://dx.doi.org/10.1007/BF00941892
https://dx.doi.org/10.1007/s10898-020-00952-6
https://dx.doi.org/10.1007/s10898-020-00952-6
https://dx.doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1007/978-0-387-30164-8_630
https://dx.doi.org/10.1007/978-0-387-30164-8_630
https://dx.doi.org/10.1016/j.paerosci.2008.11.001
https://dx.doi.org/10.1016/j.paerosci.2008.11.001

2 A Short History of Optimization 43

57. Bottou et al., Optimization methods for
large-scale machine learning, 2018.

58. Baydin et al., Automatic differentiation
in machine learning: A survey, 2018.

59. Gerdes, On mathematics in the history
of sub-Saharan Africa, 1994.

60. Closs, Native American Mathematics,
1986.

61. Shen et al., The Nine Chapters on
the Mathematical Art: Companion and
Commentary, 1999.

62. Hodgkin, A History of Mathematics:
From Mesopotamia to Modernity, 2005.

63. Joseph, The Crest of the Peacock: Non-
European Roots of Mathematics, 2010.

to optimization in several ways. The early AI efforts focused on solving
problems that could be described formally using logic and decision
trees. A design optimization problem statement can be viewed as an
example of a formal logic description. Since the 1980s, AI has focused
on machine learning, which uses algorithms and statistics to learn from
data. In the 2010s, machine learning rose explosively owing to the
development of deep learning neural networks, the availability of large
data sets for training the neural networks, and increased computer
power. Today, machine learning solves problems that are difficult to
describe formally, such as face and speech recognition. Deep learning
neural networks learn to map a set of inputs to a set of outputs based
on training data and can be viewed as a type of surrogate model
(see Section 10.5). These networks are trained using optimization
algorithms that minimize the loss function (analogous to model error),
but they require specialized optimization algorithms such as stochastic
gradient descent. 57 The gradients for such problems are efficiently
computed with backpropagation, a specialization of the reverse mode
of algorithmic differentiation (AD) (see Section 6.6).58

2.5 Toward a Diverse Future
In the history of optimization, there is a glaring lack of diversity in ge-
ography, culture, gender, and race. Many contributions to mathematics
have more diverse origins. This section is just a brief comment on this
diversity and is not meant to be comprehensive. For a deeper analysis
of the topics mentioned here, please see the cited references and other
specialized bibliographies.

One of the oldest known mathematical objects is the Ishango bone,
which originates from Africa and shows the construction of a numeral
system.59 Ancient Egyptians and Babylonians had a profound influence
on ancient Greek mathematics. The Mayan civilization developed a
sophisticated counting system that included zero and made precise as-
tronomical observations to measure the solar year’s length accurately.60
In China, a textbook called Nine Chapters on the Mathematical Art, the
compilation of which started in 200 BCE, includes a guide on solving
equations using a matrix-based method. 61 The word algebra derives
from a book entitled Al-jabr wa’l muqabalah by the Persian mathemati-
cian al-Khwarizmi in the ninth century, the title of which originated
the term algorithm.62 Finally, some of the basic components of calculus
were discovered in India 250 years before Newton’s breakthroughs.63

We also must recognize that there has been, and still is, a gender
gap in science, engineering, and mathematics that has prevented

https://dx.doi.org/10.1137/16M1080173
https://dx.doi.org/10.1137/16M1080173
https://dx.doi.org/10.5555/3122009.3242010
https://dx.doi.org/10.5555/3122009.3242010
https://dx.doi.org/10.1006/hmat.1994.1029
https://dx.doi.org/10.1006/hmat.1994.1029
https://https://www.google.ca/books/edition/Native_American_Mathematics/YFlfAgAAQBAJ
https://https://www.google.ca/books/edition/The_Nine_Chapters_on_the_Mathematical_Ar/eiTJHRGTG6YC
https://https://www.google.ca/books/edition/The_Nine_Chapters_on_the_Mathematical_Ar/eiTJHRGTG6YC
https://https://www.google.ca/books/edition/The_Nine_Chapters_on_the_Mathematical_Ar/eiTJHRGTG6YC
https://https://www.google.ca/books/edition/A_History_of_Mathematics/nSO5iMujRUYC
https://https://www.google.ca/books/edition/A_History_of_Mathematics/nSO5iMujRUYC
https://https://www.google.ca/books/edition/The_Crest_of_the_Peacock/c-xT0KNJp0cC
https://https://www.google.ca/books/edition/The_Crest_of_the_Peacock/c-xT0KNJp0cC

2 A Short History of Optimization 44

64. Hollings et al., Ada Lovelace: The
Making of a Computer Scientist, 2014.

65. Osen,Women in Mathematics, 1974.

66. Hodges, Alan Turing: The Enigma,
2014.

67. Lipsitz, How Racism Takes Place, 2011.

68. Rothstein, The Color of Law: A For-
gotten History of How Our Government
Segregated America, 2017.

69. King,More than slaves: Black founders,
Benjamin Banneker, and critical intellectual
agency, 2014.

women from having the same opportunities as men. The first known
female mathematician, Hypatia, lived in Alexandria (Egypt) in the
fourth century and was brutally murdered for political motives. In
the eighteenth century, Sophie Germain corresponded with famous
mathematicians under a male pseudonym to avoid gender bias. She
could not get a university degree because she was female but was
nevertheless a pioneer in elasticity theory. Ada Lovelace famously
wrote the first computer program in the nineteenth century.64 In the late
nineteenth century, SofiaKovalevskayabecame thefirstwoman toobtain
a doctorate in mathematics but had to be tutored privately because
she was not allowed to attend lectures. Similarly, Emmy Noether, who
made many fundamental contributions to abstract algebra in the early
twentieth century, had to overcome rules that prevented women from
enrolling in universities and being employed as faculty.65

In more recent history, many women made crucial contributions in
computer science. Grace Hopper invented the first compiler and influ-
enced the development of the first high-level programming language
(COBOL). Lois Haibt was part of a small team at IBM that developed
Fortran, an extremely successful programming language that is still
used today. Frances Allen was a pioneer in optimizing compilers (an
altogether different type of optimization from the topic in this book)
and was the first woman to win the Turing Award. Finally, Margaret
Hamilton was the director of a laboratory that developed the flight
software for NASA’s Apollo program and coined the term software
engineering.

Many other researchers have made key contributions despite facing
discrimination. One of the most famous examples is that of mathe-
matician and computer scientist Alan Turing, who was prosecuted in
1952 for having a relationship with another man. His punishment was
chemical castration, which he endured for a time but ultimately led
him to commit suicide at the age of 41.66

Some races and ethnicities have been historically underrepresented
in science, engineering, and mathematics. One of the most apparent
disparities has been the lack of representation of African Americans in
the United States in these fields. This underrepresentation is a direct
result of slavery and, among other factors, segregation, redlining, and
anti-black racism.67,68 In the eighteenth-centuryUnited States, Benjamin
Banneker, a freeAfricanAmericanwhowas a self-taughtmathematician
and astronomer, corresponded directly with Thomas Jefferson and
successfully challenged the morality of the U.S. government’s views on
race and humanity.69 Historically black colleges and universities were
established in the United States after the American Civil War because

https://https://www.google.ca/books/edition/Ada_Lovelace/TVkQtAEACAAJ
https://https://www.google.ca/books/edition/Ada_Lovelace/TVkQtAEACAAJ
https://https://www.google.ca/books/edition/Women_in_Mathematics/81kQ9VtTal4C
https://books.google.com/books?vid=ISBN9780691164724
https://https://www.google.ca/books/edition/How_Racism_Takes_Place/lv0musrlBGYC
https://https://www.google.ca/books/edition/The_Color_of_Law_A_Forgotten_History_of/SdtDDQAAQBAJ
https://https://www.google.ca/books/edition/The_Color_of_Law_A_Forgotten_History_of/SdtDDQAAQBAJ
https://https://www.google.ca/books/edition/The_Color_of_Law_A_Forgotten_History_of/SdtDDQAAQBAJ

2 A Short History of Optimization 45

70. Shetterly, Hidden Figures: The Ameri-
can Dream and the Untold Story of the Black
Women Who Helped Win the Space Race,
2016.
∗Variations of this quote abound; this one
is attributed to social entrepreneur Leila
Janah.
†A rephrasing of Martin Luther King Jr.’s
quote: “The arc of the moral universe is
long, but it bends toward justice.”

African Americans were denied admission to traditional institutions.
In 1925, Elbert Frank Cox was the first black man to get a PhD in
mathematics, and he then became a professor at Howard University.
Katherine Johnson and fellow femaleAfricanAmericanmathematicians
Dorothy Vaughan and Mary Jackson played a crucial role in the U.S.
space program despite the open prejudice they had to overcome.70

“Talent is equally distributed, opportunity is not.”∗ The arc of
recent history has bent toward more diversity and equity,† but it takes
concerted action to bend it. We have much more work to do before
everyone has the same opportunity to contribute to our scientific
progress. Only when that is achieved can we unleash the true potential
of humankind.

2.6 Summary
The history of optimization is as old as human civilization and has had
many twists and turns. Ancient geometric optimization problems that
were correctly solved by intuition required mathematical developments
that were only realized much later. The discovery of calculus laid the
foundations for optimization. Computer hardware and algorithms then
enabled the development and deployment of numerical optimization.

Numerical optimization was first motivated by operations research
problems but eventually made its way into engineering design. Soon
after numericalmodelsweredeveloped to simulate engineering systems,
the idea arose to couple those models to optimization algorithms in
an automated cycle to optimize the design of such systems. The
first application was in structural design, but many other engineering
design applications followed, including applications coupling multiple
disciplines, establishing MDO. Whenever a new numerical model
becomes fast enough and sufficiently robust, there is an opportunity to
integrate it with numerical optimization to go beyond simulation and
perform design optimization.

Many insightful connections have been made in the history of
optimization, and the trend has been to unify the theory and methods.
There are no doubt more connections and contributions to be made—
hopefully from a more diverse research community.

https://https://www.google.ca/books/edition/Hidden_Figures/lHNtjwEACAAJ
https://https://www.google.ca/books/edition/Hidden_Figures/lHNtjwEACAAJ
https://https://www.google.ca/books/edition/Hidden_Figures/lHNtjwEACAAJ

3Numerical Models and Solvers
In the introductory chapter, we discussed function characteristics from
the point of view of the function’s output—the black-box view shown in
Fig. 1.16. Here, we discuss how the function is modeled and computed.
The better your understanding of the model and the more access you
have to its details, the more effectively you can solve the optimization
problem. We explain the errors involved in the modeling process so
that we can interpret optimization results correctly.

By the end of this chapter you should be able to:

1. Identify different types of numerical errors andunderstand
the limitations of finite-precision arithmetic.

2. Estimate an algorithm’s rate of convergence.

3. Use Newton’s method to solve systems of equations.

3.1 Model Development for Analysis versus Optimization
A good understanding of numerical models and solvers is essential
because numerical optimization demands more from the models and
solvers than does pure analysis. In an analysis or a parametric study, we
may cycle through a range of plausible designs. However, optimization
algorithms seek to explore the design space, and therefore, intermediate
evaluations may use atypical design variables combinations. The
mathematical model, numerical model, and solver must be robust
enough to handle these design variable combinations.

A related issue is that an optimizer exploits errors in ways an engi-
neer would not do in analysis. For example, consider the aerodynamic
analysis of a car. In a parametric study, we might try a dozen designs,
compare the drag, and choose the best one. If we passed this procedure
to an optimizer, it might flatten the car to zero height (the minimum
drag solution) if there are no explicit constraints on interior volume
or structural integrity. Thus, we often need to develop additional

47

3 Numerical Models and Solvers 48

models for optimization. A designer often considers some of these
requirements implicitly and approximately, but we need to model these
requirements explicitly and pose them as constraints in optimization.

Another consideration that affects both the mathematical and the
numerical model is the overall computational cost of optimization. An
analysis might only be run dozens of times, whereas an optimization
often runs the analysis thousands of times. This computational cost
can affect the level of fidelity or discretization we can afford to use.

The level of precision desirable for analysis is often insufficient
for optimization. In an analysis, a few digits of precision may be
sufficient. However, using fewer significant digits limits the types
of optimization algorithms we can employ effectively. Convergence
failures can cause premature termination of algorithms. Noisy outputs
can mislead or terminate an optimization prematurely. A common
source of these errors involves programs that work through input
and output files (see Tip 6.1). Even though the underlying code may
use double-precision arithmetic, output files rarely include all the
significant digits (another separate issue is that reading and writing
files at every iteration considerably slows down the analysis).

Another common source of errors involves converging systems of
equations, as discussed later in this chapter. Optimization generally
requires tighter tolerances than are used for analysis. Sometimes this
is as easy as changing a default tolerance, but other times we need to
rethink the solvers.

3.2 Modeling Process and Types of Errors
Design optimization problems usually involve modeling a physical
system to compute the objective and constraint function values for a
given design. Figure 3.1 shows the steps in the modeling process. Each
of these steps in the modeling process introduces errors.

The physical system represents the reality thatwewant tomodel. The
mathematical model can range from simple mathematical expressions
to continuous differential or integral equations for which closed-form
solutions over an arbitrary domain are not possible. Modeling errors
are introduced in the idealizations and approximations performed in
the derivation of the mathematical model. The errors involved in the
rest of the process are numerical errors, which we detail in Section 3.5.
In Section 3.3, we discuss mathematical models in more detail and
establish the notation for representing them.

When a mathematical model is given by differential or integral
equations, we must discretize the continuous equations to obtain the

3 Numerical Models and Solvers 49

Physical
system

Experiment

Mathematical
model

Numerical
model

Solver

Finite-precision
states

Observe

Model

Discretize

Program

Compute

Fig. 3.1 Physical problems are mod-
eled and then solved numerically to
produce function values.

71. Box, Science and statistics, 1976.

Fig. 3.2 Timber roof truss and ideal-
ized model.

numerical model. Section 3.4 provides a brief overview of the dis-
cretization process, and Section 3.5.2 defines the associated errors.

The numerical model must then be programmed using a computer
language to develop a numerical solver. Because this process is suscep-
tible to human error, we discuss strategies for addressing such errors in
Section 3.5.4.

Finally, the solver computes the system state variables using finite-
precision arithmetic,which introduces roundofferrors (see Section 3.5.1).
Section 3.6 includes a brief overview of solvers, and we dedicate a sep-
arate section to Newton-based solvers in Section 3.8 because they are
used later in this book.

The total error in the modeling process is the sum of the modeling
errors and numerical errors. Validation and verification processes
quantify and reduce these errors. Verification ensures that the model
and solver are correctly implemented so that there are no errors in
the code. It also ensures that the errors introduced by discretization
and numerical computations are acceptable. Validation compares
the numerical results with experimental observations of the physical
system, which are themselves subject to experimental errors. Bymaking
these comparisons, we can validate the modeling step of the process
and ensure that the mathematical model idealizations and assumptions
are acceptable.

Modeling and numerical errors relate directly to the concepts of
precision and accuracy. An accurate solution compares well with the
actual physical system (validation), whereas a precise solution means
that the model is programmed and solved correctly (verification).

It is often said that “all models are wrong, but some are useful”.71
Because there are always errors involved, we must prioritize which
aspects of a given model should be improved to reduce the overall
error. When developing a newmodel, we should start with the simplest
model that includes the system’s dominant behavior. Then, we might
selectively addmore detail as needed. One common pitfall in numerical
modeling is to confuse precision with accuracy. Increasing precision by
reducing the numerical errors is usually desirable. However, when we
look at the bigger picture, the model might have limited utility if the
modeling errors are more significant than the numerical errors.

Example 3.1 Modeling a structure
As an example of a physical system, consider the timber roof truss structure

shown in Fig. 3.2. A typical mathematical model of such a structure idealizes
the wood as a homogeneous material and the joints as pinned. It is also
common to assume that the loads are applied only at the joints and that the

https://dx.doi.org/10.2307/2286841

3 Numerical Models and Solvers 50

Solver

A(D)
D

D

A

Fig. 3.3 Numerical models use a
solver to find the state variables D
that satisfy the governing equations,
such that A(D) = 0.

structure’s weight does not contribute to the loading. Finally, the displacements
are assumed to be small relative to the dimensions of the truss members.
The structure is discretized by pinned bar elements. The discrete governing
equations for any truss structure can be derived using the finite-elementmethod.
This leads to the linear system

 D = @ ,

where is the stiffness matrix, @ is the vector of applied loads, and D represents
the displacements that wewant to compute. At each joint, there are two degrees
of freedom (horizontal and vertical) that describe the displacement and applied
force. Because there are 9 joints, each with 2 degrees of freedom, the size of
this linear system is 18.

3.3 Numerical Models as Residual Equations
Mathematical models vary significantly in complexity and scale. In
the simplest case, a model can be represented by one or more explicit
functions, which are easily coded and computed. Many examples in
this book use explicit functions for simplicity. In practice, however,
many numerical models are defined by implicit equations.

Implicit equations can be written in the residual form as

A8(D1 , . . . , D=) = 0, 8 = 1, . . . , = , (3.1)

where A is a vector of residuals that has the same size as the vector of
state variables D. The equations defining the residuals could be any
expression that can be coded in a computer program. No matter how
complex the mathematical model, it can always be written as a set of
equations in this form, which we write more compactly as A(D) = 0.

Finding the state variables that satisfy this set of equations requires
a solver, as illustrated in Fig. 3.3. We review the various types of solvers
in Section 3.6. Solving a set of implicit equations is more costly than
computing explicit functions, and it is typically the most expensive step
in the optimization cycle.

Mathematical models are often referred to as governing equations,
which determine the state (D) of a given physical system at specific
conditions. Many governing equations consist of differential equations,
which require discretization. The discretization process yields implicit
equations that can be solved numerically (see Section 3.4). After
discretization, the governing equations can always be written as a set
of residuals, A(D) = 0.

3 Numerical Models and Solvers 51

Solver

AA(DA)
5 (DA) D 5

DA
DA

AA

Fig. 3.4 A model with implicit and
explicit functions.

Solver

AA(DA)
5 (DA) − D 5

DA
D 5

D

A

Fig. 3.5 Explicit functions can be writ-
ten in residual form and added to the
solver.

Example 3.2 Implicit and explicit equations in structural analysis
The linear system fromEx. 3.1 is an example of a systemof implicit equations,

which we can write as a set of residuals by moving the right-hand-side vector
to the left to obtain

A(D) = D − @ = 0 ,

where D represents the state variables. Although the solution for D could be
written as an explicit function, D = −1 5 , this is usually not done because it
is computationally inefficient and intractable for large-scale systems. Instead,
we use a linear solver that does not explicitly form the inverse of the stiffness
matrix (see Appendix B).

In addition to computing the displacements, wemight alsowant to compute
the axial stress (�) in each of the 15 truss members.This is an explicit function
of the displacements, which is given by the linear relationship

� = (D ,

where (is a (15 × 18)matrix.

We can still use the residual notation to represent explicit functions
to write all the functions in a model (implicit and explicit) as A(D) = 0
without loss of generality. Suppose we have an implicit system of
equations, AA(DA) = 0, followed by a set of explicit functions whose
output is a vector D 5 = 5 (DA), as illustrated in Fig. 3.4. We can rewrite
the explicit function as a residual by moving all the terms to one side to
get A 5 (DA , D 5) = 5 (DA) − D 5 = 0. Then, we can concatenate the residuals
and variables for the implicit and explicit equations as

A(D) ≡
[

AA(DA)
5 (DA) − D 5

]
= 0 , where D ≡

[
DA
D 5

]
. (3.2)

The solver arrangement would then be as shown in Fig. 3.5.
Even though it is more natural to just evaluate explicit functions

instead of adding them to a solver, in some cases, it is helpful to use
the residual to represent the entire model with the compact notation,
A(D) = 0. This will be helpful in later chapters when we compute
derivatives (Chapter 6) and solve systems that mix multiple implicit
and explicit sets of equations (Chapter 13).

Example 3.3 Expressing an explicit function as an implicit equation
Suppose we have the following mathematical model:

D2
1 + 2D2 − 1 = 0

D1 + cos(D1) − D2 = 0
5 (D1 , D2) = D1 + D2 .

3 Numerical Models and Solvers 52

The first two equations are written in implicit form, and the third equation is
given as an explicit function. The first equation could be manipulated to obtain
an explicit function of either D1 or D2. The second equation does not have a
closed-form solution and cannot be written as an explicit function for D1. The
third equation is an explicit function of D1 and D2. In this case, we could solve
the first two equations for D1 and D2 using a nonlinear solver and then evaluate
5 (D1 , D2). Alternatively, we can write the whole system as implicit residual
equations by defining the value of 5 (D1 , D2) as D3,

A1(D1 , D2) = D2
1 + 2D2 − 1 = 0

A2(D1 , D2) = D1 + cos(D1) − D2 = 0
A3(D1 , D2 , D3) = D1 + D2 − D3 = 0 .

Then we can use the same nonlinear solver to solve for all three equations
simultaneously.

3.4 Discretization of Differential Equations
Many physical systems are modeled by differential equations defined
over a domain. The domain can be spatial (one or more dimensions),
temporal, or both. When time is considered, then we have a dynamic
model. When a differential equation is defined in a domain with one
degree of freedom (one-dimensional in space or time), then we have an
ordinary differential equation (ODE), whereas any domain defined by
more than one variable results in a partial differential equation (PDE).

Differential equations need to be discretized over the domain to be
solved numerically. There are three main methods for the discretization
of differential equations: the finite-difference method, the finite-volume
method, and the finite-element method. The finite-difference method
approximates the derivatives in the differential equations by the value
of the relevant quantities at a discrete number of points in a mesh (see
Fig. 3.6). The finite-volume method is based on the integral form of the
PDEs. It divides the domain into control volumes called cells (which
also form amesh), and the integral is evaluated for each cell. The values
of the relevant quantities can be defined either at the centroids of the
cells or at the cell vertices. The finite-element model divides the domain
into elements (which are similar to cells) over which the quantities are
interpolated using predefined shape functions. The states are computed
at specific points in the element that are not necessarily at the element
boundaries. Governing equations can also include integrals, which can
be discretized with quadrature rules.

3 Numerical Models and Solvers 53

Finite difference

D1 D2
D3

D4

D5

Mesh point I

D

Finite volume

D1 D2

D3

D4

Cell I

D

Finite element

D1 D2 D3 D4
D5

D6

D7
D8 D9

Element I

D

Fig. 3.6Discretizationmethods in one
spatial dimension.

PDE

D(I, C)

I

C

ODE
D4(C)

I1 I2 I3 I4 I5

I

C

Fully discretized

D4(C3)

I1 I2 I3 I4 I5

I

C

Fig. 3.7 PDEs in space and time are
often discretized in space first to yield
an ODE in time.

With any of these discretization methods, the final result is a
set of algebraic equations that we can write as A(D) = 0 and solve
for the state variables D. This is a potentially large set of equations
depending on the domain and discretization (e.g., it is common to
have millions of equations in three-dimensional computational fluid
dynamics problems). The number of state variables of the discretized
model is equal to the number of equations for a complete and well-
defined model. In the most general case, the set of equations could be
implicit and nonlinear.

When a problem involves both space and time, the prevailing ap-
proach is to decouple the discretization in space from the discretization
in time—called the method of lines (see Fig. 3.7). The discretization in
space is performed first, yielding an ODE in time. The time derivative
can then be approximated as a finite difference, leading to a time-
integration scheme.

The discretization process usually yields implicit algebraic equations
that require a solver to obtain the solution. However, discretization
in some cases yields explicit equations, in which case a solver is not
required.

3.5 Numerical Errors
Numerical errors (or computation errors) can be categorized into three
main types: roundoff errors, truncation errors, and errors due to coding.
Numerical errors are involved with each of the modeling steps between
the mathematical model and the states (see Fig. 3.1). The error involved
in the discretization step is a type of truncation error. The errors
introduced in the coding step are not usually discussed as numerical
errors, but we include themhere because they are a likely source of error
in practice. The errors in the computation step involve both roundoff
and truncation errors. The following subsections describe each of these
error sources.

An absolute error is themagnitude of the difference between the exact
value (G∗) and the computed value (G), which we can write as |G − G∗ |.

3 Numerical Models and Solvers 54

∗Some programming languages, such as
Python, have arbitrary precision integers
andarenot subject to this issue, albeitwith
some performance trade-offs.

The relative error is a more intrinsic error measure and is defined as

� =
|G − G∗ |
|G∗ | . (3.3)

This is the more useful error measure in most cases. When the exact
value G∗ is close to zero, however, this definition breaks down. To
address this, we avoid the division by zero by using

� =
|G − G∗ |
1 + |G∗ | . (3.4)

This error metric combines the properties of absolute and relative errors.
When |G∗ | � 1, this metric is similar to the relative error, but when
|G∗ | � 1, it becomes similar to the absolute error.

3.5.1 Roundoff Errors
Roundoff errors stem from the fact that a computer cannot represent
all real numbers with exact precision. Errors in the representation of
each number lead to errors in each arithmetic operation, which in turn
might accumulate throughout a program.

There is an infinite number of real numbers, but not all numbers can
be represented in a computer. When a number cannot be represented
exactly, it is rounded. In addition, a number might be too small or too
large to be represented.

Computers use bits to represent numbers, where each bit is either
0 or 1. Most computers use the Institute of Electrical and Electronics
Engineers (IEEE) standard for representing numbers and performing
finite-precision arithmetic. A typical representation uses 32 bits for
integers and 64 bits for real numbers.

Basic operations that only involve integers and whose result is an
integer do not incur numerical errors. However, there is a limit on the
range of integers that can be represented. When using 32-bit integers,
1 bit is used for the sign, and the remaining 31 bits can be used for
the digits, which results in a range from −231 = −2, 147, 483, 648 to
231 − 1 = 2, 147, 483, 647. Any operation outside this range would result
in integer overflow.∗

Real numbers are represented using scientific notation in base 2:

G = significand × 2exponent . (3.5)

The 64-bit representation is known as the double-precision floating-point
format, where some digits store the significand and others store the
exponent. The greatest positive and negative real numbers that can

3 Numerical Models and Solvers 55

be represented using the IEEE double-precision representation are
approximately 10308 and −10308. Operations that result in numbers
outside this range result in overflow, which is a fatal error in most
computers and interrupts the program execution.

There is also a limit on how close a number can come to zero,
approximately 10−324 when using double precision. Numbers smaller
than this result in underflow. The computer sets such numbers to
zero by default, and the program usually proceeds with no harmful
consequences.

One important number to consider in roundoff error analysis is the
machine precision, �ℳ , which represents the precision of the computa-
tions. This is the smallest positive number � such that

1 + � > 1 (3.6)

when calculated using a computer. This number is also known as
machine zero. Typically, the double precision 64-bit representation uses
1 bit for the sign, 11 bits for the exponent, and 52 bits for the significand.
Thus, when using double precision, �ℳ = 2−52 ≈ 2.2 × 10−16. A
double-precision number has about 16 digits of precision, and a relative
representation error of up to �ℳ may occur.

Example 3.4 Machine precision
Suppose that three decimal digits are available to represent a number (and

that we use base 10 for simplicity). Then, �ℳ = 0.005 because any number
smaller than this results in 1 + � = 1 when rounded to three digits. For
example, 1.00 + 0.00499 = 1.00499, which rounds to 1.00. On the other hand,
1.00 + 0.005 = 1.005, which rounds to 1.01 and satisfies Eq. 3.6.

Example 3.5 Relative representation error
If we try to store 24.11 using three digits, we get 24.1. The relative error is

24.11 − 24.1
24.11 ≈ 0.0004 ,

which is lower than the maximum possible representation error of �ℳ = 0.005
established in Ex. 3.4.

When operating with numbers that contain errors, the result is
subject to a propagated error. For multiplication and division, the relative
propagated error is approximately the sum of the relative errors of the
respective two operands.

3 Numerical Models and Solvers 56

For addition and subtraction, an error can occur even when the
two operands are represented exactly. Before addition and subtraction,
the computer must convert the two numbers to the same exponent.
When adding numbers with different exponents, several digits from
the small number vanish (see Fig. 3.8). If the difference in the two
exponents is greater than the magnitude of the exponent of �ℳ , the
small number vanishes completely—a consequence of Eq. 3.6. The
relative error incurred in addition is still �ℳ .

0 0.

1± 0. 0 0 0 0 0 0 0 0 0 0

2 0.

Difference in exponent Lost digits from 1

Digits from 0 Affected digits

Fig. 3.8 Adding or subtracting num-
bers of differing exponents results in
a loss in the number of digits cor-
responding to the difference in the
exponents. The gray boxes indicate
digits that are identical between the
two numbers.

On the other hand, subtraction can incur much greater relative
errors when subtracting two numbers that have the same exponent and
are close to each other. In this case, the digits that match between the
two numbers cancel each other and reduce the number of significant
digits. When the relative difference between two numbers is less than
machine precision, all digits match, and the subtraction result is zero
(see Fig. 3.9). This is called subtractive cancellation and is a serious issue
when approximating derivatives via finite differences (see Section 6.4).

0 0.

1− 0.

2 0. 0 0 0 0 0 0 0 0 0 0 0

Common digits

Common digits are lost Remaining digits

Fig. 3.9 Subtracting two numbers that
are close to each other results in a loss
of the digits that match.

Sometimes, minor roundoff errors can propagate and result in
much more significant errors. This can happen when a problem is ill-
conditioned orwhen the algorithmused to solve the problem is unstable.
In both cases, small changes in the inputs cause large changes in the
output. Ill-conditioning is not a consequence of the finite-precision
computations but is a characteristic of the model itself. Stability is a
property of the algorithm used to solve the problem. When a problem

3 Numerical Models and Solvers 57

2 − 5 · 10−8 2.0 2 + 5 · 10−8
0

1·
10−15

2·
10−15

G

5

Fig. 3.10 With double precision, the
minimum of this quadratic function
is in an interval much larger than
machine zero.

†Roundoff error, discussed in the previ-
ous section, is sometimes also referred to
as truncation error because digits are trun-
cated. However, we avoid this confusing
naming and only use truncation error to
refer to a truncation in the number of op-
erations.

is ill-conditioned, it is challenging to solve it in a stable way. When a
problem is well conditioned, there is a stable algorithm to solve it.

Example 3.6 Effect of roundoff error on function representation
Let us examine the function 5 (G) = G2 − 4G + 4 near its minimum, at G = 2.

If we use double precision and plot many points in a small interval, we can see
that the function exhibits the step pattern shown in Fig. 3.10. The numerical
minimum of this function is anywhere in the interval around G = 2 where the
numerical value is zero. This interval is much larger than the machine precision
(�ℳ = 2.2× 10−16). An additional error is incurred in the function computation
around G = 2 as a result of subtractive cancellation. This illustrates the fact that
all functions are discontinuous when using finite-precision arithmetic.

3.5.2 Truncation Errors
In the most general sense, truncation errors arise from performing a
finite number of operations where an infinite number of operations
would be required to get an exact result.† Truncation errors would
arise even if we could do the arithmetic with infinite precision.

When discretizing a mathematical model with partial derivatives as
described in Section 3.4, these are approximated by truncated Taylor
series expansions that ignore higher-order terms. When the model
includes integrals, they are approximated as finite sums. In either case,
a mesh of points where the relevant states and functions are evaluated
is required. Discretization errors generally decrease as the spacing
between the points decreases.

Tip 3.1 Perform a mesh refinement study
When using a model that depends on a mesh, perform a mesh refinement

study. This involves solving the model for increasingly finer meshes to check if
the metrics of interest converge in a stable way and verify that the convergence
rate is as expected for the chosen numerical discretization scheme. A mesh
refinement study is also useful for finding the mesh that provides the best
compromise between computational time and accuracy. This is especially
important in optimization because the model is solved many times.

3.5.3 Iterative Solver Tolerance Error
Many methods for solving numerical models involve an iterative proce-
dure that starts with a guess for the states D and then improves that

3 Numerical Models and Solvers 58

0 200 400 600
10−10

10−7

10−4

10−1

102

105

:

| |A | |

Fig. 3.11Normof residuals versus the
number of iterations for an iterative
solver.

guess at each iteration until reaching a specified convergence tolerance.
The convergence is usually measured by a norm of the residuals, ‖A(D)‖,
whichwewant to drive to zero. Iterative linear solvers andNewton-type
solvers are examples of iterative methods (see Section 3.6).

A typical convergence history for an iterative solver is shown in
Fig. 3.11. The norm of the residuals decreases gradually until a limit
is reached (near 10−10 in this case). This limit represents the lowest
error achieved with the iterative solver and is determined by other
sources of error, such as roundoff and truncation errors. If we terminate
before reaching the limit (either by setting a convergence tolerance to a
value higher than 10−10 or setting an iteration limit to lower than 400
iterations), we incur an additional error. However, it might be desirable
to trade off a less precise solution for a lower computational effort.

Tip 3.2 Find the level of the numerical noise in your model
It is crucial to know the error level in your model because this limits the

type of optimizer you can use and how well you can optimize. In Ex. 3.6, we
saw that if we plot a function at a small enough scale, we can see discrete steps
in the function due to roundoff errors. When accumulating all sources of error
in a more elaborate model (roundoff, truncation, and iterative), we no longer
have a neat step pattern. Instead, we get numerical noise, as shown in Fig. 3.12.
The noise level can be estimated by the amplitude of the oscillations and gives
us the order of magnitude of the total numerical error.

0 1 2 3 4
0.5

0.52

0.54

0.56

0.58

G

5 ∼ 10−8

2 − 1 · 10−6 2.0 2 + 1 · 10−6

0.5369
−2 · 10−8

0.5369

0.5369
+2 · 10−8

G

5

Fig. 3.12Tofind the level of numerical
noise of a function of interest with re-
spect to an input parameter (left), we
magnify both axes by several orders
of magnitude and evaluate the func-
tion at points that are closely spaced
(right).

3.5.4 Programming Errors
Most of the literature on numerical methods is too optimistic and does
not explicitly discuss programming errors, commonly known as bugs.
Most programmers, especially beginners, underestimate the likelihood
that their code has bugs.

3 Numerical Models and Solvers 59

72. Wilson et al., Best practices for scientific
computing, 2014.

‡The term debuggingwas used in engineer-
ing prior to computers, but Grace Hop-
per popularized this term in the program-
ming context after a glitch in the Harvard
Mark II computer was found to be caused
by a moth.

It is helpful to adopt sound programming practices, such as writing
clear, modular code. Clear code has consistent formatting, meaningful
naming of variable functions, and helpful comments. Modular code
reuses and generalizes functions asmuch as possible and avoids copying
and pasting sections of code.72 Modular code allows for more flexible
usage. Breaking up programs into smaller functions with well-defined
inputs and outputs makes debugging much more manageable.‡

There are different types of bugs relevant to numerical models:
generic programming errors, incorrect memory handling, and algorith-
mic or logical errors. Programming errors are the most frequent and
include typos, type errors, copy-and-paste errors, faulty initializations,
missing logic, and default values. In theory, careful programming and
code inspection can avoid these errors, but you must always test your
code in practice. This testing involves comparing your result with a
case where you know the solution—the reference result. You should
start with the simplest representative problem and then build up from
that. Interactive debuggers are helpful because let you step through
the code and check intermediate variable values.

Tip 3.3 Debugging is a skill that takes practice
The overall attitude toward programming should be that all code has bugs

until it is verified through testing. Programmers who are skilled at debugging
are not necessarily any better at spotting errors by reading code or by stepping
through a debugger than average programmers. Instead, effective programmers
use a systematic approach to narrow down where the problem is occurring.

Beginners often try to debug by running the entire program. Even experi-
enced programmers have a hard time debugging at that level. One primary
strategy discussed in this section is to write modular code. It is much easier
to test and debug small functions. Reliable complex programs are built up
through a series of well-tested modular functions. Sometimes we need to
simplify or break up functions even further to narrow down the problem. We
might need to streamline and remove pieces, make sure a simple case works,
then slowly rebuild the complexity.

You should also become comfortable reading and understanding the error
messages and stack traces produced by the program. These messages seem
obscure at first, but through practice and researching what the error messages
mean, they become valuable information sources.

Of course, you should carefully reread the code, looking for errors, but
reading through it again and again is unlikely to yield new insights. Instead,
it can be helpful to step away from the code and hypothesize the most likely
ways the function could fail. You can then test and eliminate hypotheses to
narrow down the problem.

https://dx.doi.org/10.1371/journal.pbio.1001745
https://dx.doi.org/10.1371/journal.pbio.1001745

3 Numerical Models and Solvers 60

§See Grotker et al.73 for more details on
how to debug and profile code.

73. Grotker et al., The Developer’s Guide to
Debugging, 2012.

Memory handling issues are much less frequent than programming
errors, but they are usually more challenging to track. These issues
include memory leaks (a failure to free unused memory), incorrect use
of memory management, buffer overruns (e.g., array bound violations),
and reading uninitialized memory. Memory issues are challenging to
track because they can result in strange behavior in parts of the code that
are far from the source of the error. In addition, they might manifest
themselves in specific conditions that are hard to reproduce consistently.
Memory debuggers are essential tools for addressing memory issues.
They perform detailed bookkeeping of all allocation, deallocation, and
memory access to detect and locate any irregularities.§

Whereas programming errors are due to a mismatch between the
programmer’s intent and what is coded, the root cause of algorithmic
or logical errors is in the programmer’s intent itself. Again, testing is
the key to finding these errors, but you must be sure that the reference
result is correct.

Tip 3.4 Use sound code testing practices
Automated testing takes effort to implement but ultimately saves time,

especially for larger, long-term projects. Unit tests check for the internal
consistency of a small piece (a “unit”) of code and should be implemented as
each piece of code is developed. Integration tests are designed to demonstrate
that different code components work together as expected. Regression testing
consists of running all the tests (usually automatically) anytime the code has
changed to ensure that the changes have not introduced bugs. It is usually
impossible to test for all potential issues, but the more you can test, the more
coverage you have. Whenever a bug has been found, a test should be developed
to catch that same type of bug in the future.

Running the analysis within an optimization loop can reveal bugs
that do not manifest themselves in a single analysis. Therefore, you
should only run an optimization test case after you have tested the
analysis code in isolation.

As previously mentioned, there is a higher incentive to reduce the
computational cost of an analysis when it runs in an optimization loop
because it will run many times. When you first write your code, you
should prioritize clarity and correctness as opposed to speed. Once the
code is verified through testing, you should identify any bottlenecks
using a performance profiling tool. Memory performance issues can
also arise from running the analysis in an optimization loop instead
of running a single case. In addition to running a memory debugger,

https://https://www.google.ca/books/edition/The_Developer_s_Guide_to_Debugging/OlHMSAAACAAJ
https://https://www.google.ca/books/edition/The_Developer_s_Guide_to_Debugging/OlHMSAAACAAJ

3 Numerical Models and Solvers 61

∗Ascher and Greif74 provide a more de-
tailed introduction to the numerical meth-
ods mentioned in this chapter.

74. Ascher and Greif, A First Course in
Numerical Methods, 2011.

you can also run a memory profiling tool to identify opportunities to
reduce memory usage.

3.6 Overview of Solvers
There are several methods available for solving the discretized gov-
erning equations (Eq. 3.1). We want to solve the governing equations
for a fixed set of design variables, so G will not appear in the solution
algorithms. Our objective is to find the state variables D such that
A(D) = 0.

This is not a book about solvers, but it is essential to understand the
characteristics of these solvers because they affect the cost and precision
of the function evaluations in the overall optimization process. Thus,
we provide an overview and some of the most relevant details in this
section.∗ In addition, the solution of coupled systems builds on these
solvers, as we will see in Section 13.2. Finally, some of the optimization
algorithms detailed in later chapters use these solvers.

There are two main types of solvers, depending on whether the
equations to be solved are linear or nonlinear (Fig. 3.13). Linear solution
methods solve systems of the form A(D) = �D − 1 = 0, where the matrix
� and vector 1 are not dependent on D. Nonlinear methods can handle
any algebraic system of equations that can be written as A(D) = 0.

Solver

Linear

Direct
LU factorization Cholesky factorization

QR factorization

Iterative Fixed point

Jacobi

Gauss–Seidel

SOR

Krylov subspace
CG

GMRESNonlinear

Newton
+ linear solver

Nonlinear
variants of
fixed point

Fig. 3.13 Overview of solution meth-
ods for linear and nonlinear systems.

Linear systems can be solved directly or iteratively. Direct meth-
ods are based on the concept of Gaussian elimination, which can be
expressed in matrix form as a factorization into lower and upper tri-
angular matrices that are easier to solve (LU factorization). Cholesky
factorization is a more efficient variant of LU factorization that applies
only to symmetric positive-definite matrices.

Whereas direct solvers obtain the solution D at the end of a process,
iterative solvers start with a guess for D and successively improve it

https://https://www.google.ca/books/edition/A_First_Course_in_Numerical_Methods/eGDMSIqPYdYC
https://https://www.google.ca/books/edition/A_First_Course_in_Numerical_Methods/eGDMSIqPYdYC

3 Numerical Models and Solvers 62

†See Saad75 for more details on iterative
methods in the context of large-scale nu-
merical models.
75. Saad, Iterative Methods for Sparse
Linear Systems, 2003.

DirectIterative

O (
=3)

�ℳ

Effort

Re
si
du

al

Fig. 3.14 Whereas direct methods
only yield the solution at the end
of the process, iterative methods pro-
duce approximate intermediate re-
sults.

with each iteration, as illustrated in Fig. 3.14. Iterative methods can
be fixed-point iterations, such as Jacobi, Gauss–Seidel, and successive
over-relaxation (SOR), or Krylov subspace methods. Krylov subspace
methods include the conjugate gradient (CG) and generalizedminimum
residual (GMRES) methods.† Direct solvers are well established and
are included in the standard libraries for most programming languages.
Iterative solvers are less widespread in standard libraries, but they are
becoming more commonplace. Appendix B describes linear solvers in
more detail.

Direct methods are the right choice for many problems because
they are generally robust. Also, the solution is guaranteed for a fixed
number of operations, O(=3) in this case. However, for large systems
where � is sparse, the cost of direct methods can become prohibitive,
whereas iterative methods remain viable. Iterative methods have other
advantages, such as being able to trade between computational cost
and precision. They can also be restarted from a good guess (see
Appendix B.4).

Tip 3.5 Do not compute the inverse of �
Because some numerical libraries have functions to compute �−1, you

might be tempted to do this and then multiply by a vector to compute D = �−11.
This is a bad idea because finding the inverse is computationally expensive.
Instead, use LU factorization or another method from Fig. 3.13.

When it comes to nonlinear solvers, the most efficient methods are
based on Newton’s method, which we explain later in this chapter
(Section 3.8). Newton’s method solves a sequence of problems that
are linearizations of the nonlinear problem about the current iterate.
The linear problem at each Newton iteration can be solved using any
linear solver, as indicated by the incoming arrow in Fig. 3.13. Although
efficient, Newton’s method is not robust in that it does not always
converge. Therefore, it requires modifications so that it can converge
reliably.

Finally, it is possible to adapt linear fixed-point iteration methods to
solve nonlinear equations as well. However, unlike the linear case, it
might not be possible to derive explicit expressions for the iterations in
the nonlinear case. For this reason, fixed-point iteration methods are
often not the best choice for solving a system of nonlinear equations.
However, as we will see in Section 13.2.5, these methods are useful for
solving systems of coupled nonlinear equations.

https://https://www.google.ca/books/edition/Iterative_Methods_for_Sparse_Linear_Syst/qtzmkzzqFmcC
https://https://www.google.ca/books/edition/Iterative_Methods_for_Sparse_Linear_Syst/qtzmkzzqFmcC

3 Numerical Models and Solvers 63

∗Some authors refer to ? as the rate of
convergence. Here, we characterize the
rate of convergence by two metrics: order
and error constant.

For time-dependent problems, we require a way to solve for the
time history of the states, D(C). As mentioned in Section 3.3, the most
popular approach is to decouple the temporal discretization from the
spatial one. By discretizing a PDE in space first, this method formulates
an ODE in time of the following form:

dD
dC = −A(D, C) , (3.7)

which is called the semi-discrete form. A time-integration scheme is
then used to solve for the time history. The integration scheme can be
either explicit or implicit, depending on whether it involves evaluating
explicit expressions or solving implicit equations. If a system under a
certain condition has a steady state, these techniques can be used to
solve the steady state (dD/dC = 0).

3.7 Rate of Convergence
Iterative solvers compute a sequence of approximate solutions that hope-
fully converge to the exact solution. When characterizing convergence,
we need to first establish if the algorithm converges and, if so, how
fast it converges. The first characteristic relates to the stability of the
algorithm. Here, we focus on the second characteristic quantified
through the rate of convergence.

The cost of iterative algorithms is often measured by counting the
number of iterations required to achieve the solution. Iterative algo-
rithms often require an infinite number of iterations to converge to the
exact solution. In practice, we want to converge to an approximate solu-
tion close enough to the exact one. Determining the rate of convergence
arises from the need to quantify how fast the approximate solution is
approaching the exact one.

In the following, we assume that we have a sequence of points,
G0 , G1 , . . . , G: , . . ., that represent approximate solutions in the form of
vectors in any dimension and converge to a solution G∗. Then,

lim
:→∞
‖G: − G∗‖ = 0 , (3.8)

which means that the norm of the error tends to zero as the number of
iterations tends to infinity.

The rate of convergence of a sequence is of order ? with asymptotic
error constant � when ? is the largest number that satisfies∗

0 ≤ lim
:→∞
‖G:+1 − G∗‖
‖G: − G∗‖?

= � < ∞ . (3.9)

3 Numerical Models and Solvers 64

Asymptotic here refers to the fact that this is the behavior in the limit,
when we are close to the solution. There is no guarantee that the initial
and intermediate iterations satisfy this condition.

To avoid dealing with limits, let us consider the condition expressed
in Eq. 3.9 at all iterations. We can relate the error from one iteration to
the next by

‖G:+1 − G∗‖ = �: ‖G: − G∗‖? . (3.10)

When ? = 1, we have linear order of convergence; when ? = 2, we have
quadratic order of convergence. Quadratic convergence is a highly
valued characteristic for an iterative algorithm, and in practice, orders of
convergence greater than ? = 2 are usually not worthwhile to consider.

When we have linear convergence, then

‖G:+1 − G∗‖ = �: ‖G: − G∗‖ , (3.11)

where �: converges to a constant but varies from iteration to iteration.
In this case, the convergence is highly dependent on the value of the
asymptotic error constant �. If �: > 1, then the sequence diverges—a
situation to be avoided. If 0 < �: < 1 for every :, then the norm of the
error decreases by a constant factor for every iteration. Suppose that
� = 0.1 for all iterations. Starting with an initial error norm of 0.1, we
get the sequence

10−1 , 10−2 , 10−3 , 10−4 , 10−5 , 10−6 , 10−7 , (3.12)

Thus, after six iterations, we get six-digit precision. Now suppose that
� = 0.9. Then we would have

10−1 , 9.0 × 10−2 , 8.1 × 10−2 , 7.3 × 10−2 , 6.6 × 10−2 ,

5.9 × 10−2 , 5.3 × 10−2 , (3.13)

This corresponds to only one-digit precision after six iterations. It
would take 131 iterations to achieve six-digit precision.

When we have quadratic convergence, then

‖G:+1 − G∗‖ = �: ‖G: − G∗‖2 . (3.14)

If � = 1, then the error norm sequence with a starting error norm of 0.1
would be

10−1 , 10−2 , 10−4 , 10−8 , (3.15)

This yields more than six digits of precision in just three iterations!
In this case, the number of correct digits doubles at every iteration.
When � > 1, the convergence will not be as fast, but the series will still
converge.

3 Numerical Models and Solvers 65

If ? ≥ 1 and lim:→∞ �: = 0, we have superlinear convergence,
which includes quadratic and higher rates of convergence. There is a
special case of superlinear convergence that is relevant for optimization
algorithms, which is when ? = 1 and � → 0. This case is desirable
because in practice, it behaves similarly to quadratic convergence and
can be achieved by gradient-based algorithms that use first derivatives
(as opposed to second derivatives). In this case, we can write

‖G:+1 − G∗‖ = �: ‖G: − G∗‖ , (3.16)

where lim:→∞ �: = 0. Now we need to consider a sequence of values
for � that tends to zero. For example, if �: = 1/(: + 1), starting with an
error norm of 0.1, we get

10−1 , 5 × 10−1 , 1.7 × 10−1 , 4.2 × 10−2 , 8.3 × 10−4 ,

1.4 × 10−4 , 2.0 × 10−5 , (3.17)

Thus, we achieve four-digit precision after six iterations. This special
case of superlinear convergence is not quite as good as quadratic
convergence, but it is much better than either of the previous linear
convergence examples.

We plot these sequences in Fig. 3.15. Because the points are just
scalars and the exact solution is zero, the error norm is just G: . The
first plot uses a linear scale, so we cannot see any differences beyond
two digits. To examine the differences more carefully, we need to use a
logarithmic axis for the sequence values, as shown in the plot on the
right. In this scale, each decrease in order of magnitude represents one
more digit of precision.

0 2 4 6
0

0.02

0.04

0.06

0.08

0.1

:

G

Linear
? = 1
� = 0.1

Linear
? = 1, � = 0.9

Quadratic
? = 2

Superlinear
? = 1
�→ 0

0 2 4 6

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

:

G

Fig. 3.15 Sample sequences for lin-
ear, superlinear, and quadratic cases
plotted on a linear scale (left) and a
logarithmic scale (right).

The linear convergence sequences show up as straight lines in
Fig. 3.15 (right), but the slope of the lines varies widely, depending
on the value of the asymptotic error constant. Quadratic convergence
exhibits an increasing slope, reflecting the doubling of digits for each

3 Numerical Models and Solvers 66

iteration. The superlinear sequence exhibits poorer convergence than
the best linear one, but we can see that the slope of the superlinear curve
is increasing, which means that for a large enough :, it will converge at
a higher rate than the linear one.

Tip 3.6 Use a logarithmic scale when plotting convergence
When using a linear scale plot, you can only see differences in two significant

digits. To reveal changes beyond three digits, you should use a logarithmic
scale. This need frequently occurs in plotting the convergence behavior of
optimization algorithms.

When solving numerical models iteratively, we can monitor the
norm of the residual. Because we know that the residuals should be
zero for an exact solution, we have

‖A:+1‖ = �: ‖A: ‖? . (3.18)

If we monitor another quantity, we do not usually know the exact
solution. In these cases, we can use the ratio of the step lengths of each
iteration: ‖G:+1 − G∗‖

‖G: − G∗‖ ≈
‖G:+1 − G: ‖
‖G: − G:−1‖ . (3.19)

The order of convergence can be estimated numerically with the values
of the last available four iterates using

? ≈
log10

‖G:+1−G: ‖
‖G:−G:−1‖

log10
‖G: − G:−1‖
‖G:−1 − G:−2‖

. (3.20)

Finally, we can also monitor any quantity (function values, state
variables, or design variables) by normalizing the step length in the
same way as Eq. 3.4,

‖G:+1 − G: ‖
1 + ‖G: ‖ . (3.21)

3.8 Newton-Based Solvers
As mentioned in Section 3.6, Newton’s method is the basis for many
nonlinear equation solvers. Newton’s method is also at the core of the
most efficient gradient-based optimization algorithms, so we explain it
here in more detail. We start with the single-variable case for simplicity
and then generalize it to the =-dimensional case.

3 Numerical Models and Solvers 67

We want to find D∗ such that A(D∗) = 0, where, for now, A and D
are scalars. Newton’s method for root finding estimates a solution
at each iteration : by approximating A (D:) to be a linear function.
The linearization is done by taking a Taylor series of A about D: and
truncating it to obtain the approximation

A (D: + ΔD) ≈ A (D:) + ΔDA′ (D:) , (3.22)

where A′ = dA/dD. For conciseness, we define A: = A (D:). Now we can
find the step ΔD that makes this approximate residual zero,

A: + ΔDA′: = 0 ⇒ ΔD = − A:
A′:
, (3.23)

where we need to assume that A′: ≠ 0.
Thus, the update for each step in Newton’s algorithm is

D:+1 = D: − A:A′:
. (3.24)

If A′: = 0, the algorithm will not converge because it yields a step to
infinity. Small enough values of A′: also cause an issue with large steps,
but the algorithm might still converge.

One useful modification of Newton’smethod is to replace the deriva-
tive with a forward finite-difference approximation (see Section 6.4)
based on the residual values of the current and last iterations,

A′: ≈
A:+1 − A:
D:+1 − D: . (3.25)

Then, the update is given by

D:+1 = D: − A:
(
D:+1 − D:
A:+1 − A:

)
. (3.26)

This is the secant method, which is useful when the derivative is not
available. The convergence rate is not quadratic like Newton’s method,
but it is superlinear.

Example 3.7 Newton’s method and the secant method for a single variable
Suppose wewant to solve the equation A(D) = 2D3+4D2+D−2 = 0. Because

A′(D) = 6D2 + 8D + 1, the Newton iteration is

D:+1 = D: −
2D3

: + 4D2
: + D: − 2

6D2
: + 8D: + 1

.

When we start with the guess D0 = 1.5 (left plot in Fig. 3.16), the iterations
are well behaved, and the method converges quadratically. We can see the

3 Numerical Models and Solvers 68

D0D∗
0.54 1.5

0

D

A

D0 D∗
0.54

0
−0.5 0

A

Fig. 3.16 Newton iterations starting
from different starting points.

D0D1D∗
0.54 1.3 1.5

0

D

A

Fig. 3.17 Secant method applied to a
one-dimensional function.

geometric interpretation of Newton’s method: For each iteration, it takes the
tangent to the curve and finds the intersection with A = 0.

When we start with D0 = −0.5 (right plot in Fig. 3.16), the first step goes in
the wrong direction but recovers in the second iteration. The third iteration is
close to the point with the zero derivative and takes a large step. In this case,
the iterations recover and then converge normally. However, we can easily
envision a case where an iteration is much closer to the point with the zero
derivative, causing an arbitrarily long step.

We can also use the secant method (Eq. 3.26) for this problem, which gives
the following update:

D:+1 = D: −

(
2D3

: + 4D2
: + D: − 2

)
(D:+1 − D:)

2D3
:+1 + 4D2

:+1 + D:+1 − 2D3
: − 4D2

: − D:
.

The iterations for the secant method are shown in Fig. 3.17, where we can see
the successive secant lines replacing the exact tangent lines used in Newton’s
method.

Newton’s method converges quadratically as it approaches the
solution with a convergence constant of

� =

���� A′′(D∗)2A′(D∗)
���� . (3.27)

This means that if the derivative is close to zero or the curvature tends
to a large number at the solution, Newton’s method will not converge
as well or not at all.

Now we consider the general case where we have = nonlinear
equations of = unknowns, expressed as A(D) = 0. Similar to the single-
variable case, we derive the Newton step from a truncated Taylor
series. However, the Taylor series needs to be multidimensional in
both the independent variable and the function. Consider first the
multidimensionality of the independent variable, D, for a component
of the residuals, A8(D). The first two terms of the Taylor series about
D: for a step ΔD (which is now a vector with arbitrary direction and

3 Numerical Models and Solvers 69

magnitude) are

A8 (D: + ΔD) ≈ A8 (D:) +
=∑
9=1
ΔD9

%A8
%D9

���
D=D:

. (3.28)

Because we have = residuals, 8 = 1, . . . , =, we can write the second
term in matrix form as �ΔD, where � is an (= × =) square matrix whose
elements are

�8 9 =
%A8
%D9

. (3.29)

This matrix is called the Jacobian.
Similar to the single-variable case, we want to find the step that

makes the two terms zero, which yields the linear system

�:ΔD: = −A: . (3.30)

After solving this linear system, we can update the solution to

D:+1 = D: + ΔD: . (3.31)

Thus, Newton’s method involves solving a sequence of linear systems
given by Eq. 3.30. The linear system can be solved using any of the linear
solvers mentioned in Section 3.6. One popular option for solving the
Newton step is the Krylovmethod, which results in the Newton–Krylov
method for solving nonlinear systems. Because the Krylov method only
requires matrix-vector products of the form �E, we can avoid computing
and storing the Jacobian by computing this product directly (using
finite differences or other methods from Chapter 6). In Section 4.4.3 we
adapt Newton’s method to perform function minimization instead of
solving nonlinear equations.

The multivariable version of Newton’s method is subject to the same
issues we uncovered for the single-variable case: it only converges
if the starting point is within a specific region, and it can be subject
to ill-conditioning. To increase the likelihood of convergence from
any starting point, Newton’s method requires a globalization strategy
(see Section 4.2). The ill-conditioning issue has to do with the linear
system (Eq. 3.30) and can be quantified by the condition number of
the Jacobian matrix. Ill-conditioning can be addressed by scaling and
preconditioning.

There is an analog of the secant method for = dimensions, which is
called Broyden’s method. This method is much more involved than its
one-dimensional counterpart because it needs to create an approximate
Jacobian based on directional finite-difference derivatives. Broyden’s

3 Numerical Models and Solvers 70

D0

D∗

0 1 2 3
0

1

2

3

4

5

D1

D2

Fig. 3.18 Newton iterations.

0 2 4 6

100

10−3

10−6

10−9

10−12

10−15

:

| |A | |

Fig. 3.19 The norm of the residual
exhibits quadratic convergence.

∗As previously mentioned, the process of
solving a model is also known as the anal-
ysis or simulation.

method is described inAppendix C.1 and is related to the quasi-Newton
optimization methods of Section 4.4.4.

Example 3.8 Newton’s method applied to two nonlinear equations
Suppose we have the following nonlinear system of two equations:

D2 =
1
D1
, D2 =

√
D1 .

This corresponds to the two lines shown in Fig. 3.18, where the solution is at
their intersection, D = (1, 1). (In this example, the two equations are explicit,
and we could solve them by substitution, but they could have been implicit.)

To solve this using Newton’s method, we need to write these as residuals:

A1 = D2 − 1
D1

= 0

A2 = D2 −
√
D1 = 0 .

The Jacobian can be derived analytically, and the Newton step is given by the
linear system [1

D2
1

1

− 1
2
√
D1

1

] [
ΔD1
ΔD2

]
= −

[
D2 − 1

D1
D2 − √D1

]
.

Starting from D = (2, 3) yields the iterations shown in the following table, with
the quadratic convergence shown in Fig. 3.19.

D1 D2 ‖D − D∗‖ ‖A‖
2.000 000 3.000 000 2.24 2.96
0.485 281 0.878 680 5.29 × 10−1 1.20
0.760 064 0.893 846 2.62 × 10−1 4.22 × 10−1

0.952 668 0.982 278 5.05 × 10−2 6.77 × 10−2

0.998 289 0.999 417 1.81 × 10−3 2.31 × 10−3

0.999 998 0.999 999 2.32 × 10−6 2.95 × 10−6

1.000 000 1.000 000 3.82 × 10−12 4.87 × 10−12

1.000 000 1.000 000 0.0 0.0

3.9 Models and the Optimization Problem
When performing design optimization, we must compute the values
of the objective and constraint functions in the optimization problem
(Eq. 1.4). Computing these functions usually requires solving a model
for the given design G at one or more specific conditions.∗ The model
often includes governing equations that define the state variables D as

3 Numerical Models and Solvers 71

Solver

A(D; G)
G D

D

A

Fig. 3.20For ageneralmodel, the state
variables D are implicit functions of
the design variables G through the
solution of the governing equations.

Optimizer

Solve
A(D; G) = 0

5 (G, D)
6(G, D)
ℎ(G, D)

G

D

5 , 6, ℎ

Fig. 3.21 Computing the objective (5)
and constraint functions (6,ℎ) for a
given set of design variables (G) usu-
ally involves the solution of a numeri-
cal model (A = 0) by varying the state
variables (D).

an implicit function of G. In other words, for a given G, there is a D
that solves A(D; G) = 0, as illustrated in Fig. 3.20. Here, the semicolon
in A(D; G) indicates that G is fixed when the governing equations are
solved for D.

The objective and constraints are typically explicit functions of the
state and design variables, as illustrated in Fig. 3.21 (this is a more
detailed version of Fig. 1.14). There is also an implicit dependence of
the objective and constraint functions on G through D. Therefore, the
objective and constraint functions are ultimately fully determined by
the design variables. In design optimization applications, solving the
governing equations is usually the most computationally intensive part
of the overall optimization process.

Whenwe first introduced the general optimization problem (Eq. 1.4),
the governing equations were not included because they were assumed
to be part of the computation of the objective and constraints for a
given G. However, we can include them in the problem statement for
completeness as follows:

minimize 5 (G; D)
by varying G8 8 = 1, . . . , =G
subject to 69(G; D) ≤ 0 9 = 1, . . . , =6

ℎ:(G; D) = 0 : = 1, . . . , =ℎ
G 8 ≤ G8 ≤ G 8 8 = 1, . . . , =G

while solving A;(D; G) = 0 ; = 1, . . . , =D
by varying D; ; = 1, . . . , =D .

(3.32)

Here, “while solving” means that the governing equations are solved
at each optimization iteration to find a valid D for each value of G.
The semicolon in 5 (G; D) indicates that D is fixed while the optimizer
determines the next value of G.

Example 3.9 Structural sizing optimization
Recalling the truss problem of Ex. 3.2, suppose we want to minimize the

mass of the structure (<) by varying the cross-sectional areas of the truss
members (0), subject to stress constraints.

The structural mass is an explicit function that can be written as

< =
15∑
8=1

�08 ;8 ,

where � is the material density, 08 is the cross-sectional area of each member 8,
and ;8 is the member length. This function depends on the design variables
directly and does not depend on the displacements.

3 Numerical Models and Solvers 72

Optimizer

A(G, D)

5 (G, D)
6(G, D)
ℎ(G, D)

G, D

A

5 , 6, ℎ

Fig. 3.22 In the full-space approach,
the governing equations are solved
by the optimizer by varying the state
variables.

We can write the optimization problem statement as follows:

minimize <(0)
by varying 08 ≥ 0min 8 = 1, . . . , 15
subject to |�9(0, D)| − �max ≤ 0 9 = 1, . . . , 15

while solving D − @ = 0 (system of 18 equations)
by varying D; ; = 1, . . . , 18 .

The governing equations are a linear set of equationswhose solution determines
the displacements (D) of a given design (0) for a load condition (@). We
mentioned previously that the objective and constraint functions are usually
explicit functions of the state variables, design variables, or both. As we saw in
Ex. 3.2, the mass is an explicit function of the cross-sectional areas. In this case,
it does not even depend on the state variables. The constraint function is also
explicit, but in this case, it is just a function of the state variables. This example
illustrates a common situation where the solution of the state variables requires
the solution of implicit equations (structural solver), whereas the constraints
(stresses) and objective (weight) are explicit functions of the states and design
variables.

From a mathematical perspective, the model governing equations
A(G, D) = 0 can be considered equality constraints in an optimization
problem. Some specialized optimization approaches add these equa-
tions to the optimization problem and let the optimization algorithm
solve both the governing equations and optimization simultaneously.
This is called a full-space approach and is also known as simultaneous
analysis and design (SAND) or one-shot optimization. The approach is
illustrated in Fig. 3.22 and stated as follows:

minimize 5 (G, D)
by varying G8 8 = 1, . . . , =G

D; ; = 1, . . . , =D
subject to 69(G, D) ≤ 0 9 = 1, . . . , =6

ℎ:(G, D) = 0 : = 1, . . . , =ℎ
G 8 ≤ G8 ≤ G 8 8 = 1, . . . , =G
A;(G, D) = 0 ; = 1, . . . , =D .

(3.33)

This approach is described in more detail in Section 13.4.3.
More generally, the optimization constraints and equations in a

model are interchangeable. Suppose a set of equations in a model can
be satisfied byvarying a corresponding set of state variables. In that case,
these equations and variables can bemoved to the optimization problem
statement as equality constraints and design variables, respectively.

3 Numerical Models and Solvers 73

Unless otherwise stated, we assume that the optimizationmodel gov-
erning equations are solved by a dedicated solver for each optimization
iteration, as stated in Eq. 3.32.

Example 3.10 Structural sizing optimization using a full-space approach
To solve the structural sizing problem (Ex. 3.9) using a full-space approach,

we forgo the linear solver by adding D to the set of design variables and letting
the optimizer enforce the governing equations. This results in the following
problem:

minimize <(0)
by varying 08 ≥ 0min 8 = 1, . . . , 15

D; ; = 1, . . . , 18
subject to |�9(0, D)| − �max ≤ 0 9 = 1, . . . , 15

 D − @ = 0 (system of 18 equations) .

Tip 3.7 Test your analysis before you attempt optimization
Before you optimize, you should be familiar with the analysis (model and

solver) that computes the objective and constraints. If possible, make several
parameter sweeps to seewhat the functions look like—whether they are smooth,
whether they seem unimodal or not, what the trends are, and the range of
values. You should also get an idea of the computational effort required and if
that varies significantly. Finally, you should test the robustness of the analysis
to different inputs because the optimization is likely to ask for extreme values.

3.10 Summary
It is essential to understand the models that compute the objective and
constraint functions because they directly affect the performance and
effectiveness of the optimization process.

The modeling process introduces several types of numerical errors
associated with each step of the process (discretization, programming,
computation), limiting the achievable precision of the optimization.
Knowing the level of numerical error is necessary to establish what
precision can be achieved in the optimization. Understanding the
types of errors involved helps us find ways to reduce those errors.
Programming errors—“bugs”—are often underestimated; thorough
testing is required to verify that the numerical model is coded correctly.

3 Numerical Models and Solvers 74

A lack of understanding of a given model’s numerical errors is often the
cause of a failure in optimization, especially when using gradient-based
algorithms.

Modeling errors arise from discrepancies between the mathematical
model and the actual physical system. Although they do not affect
the optimization process’s performance and precision, modeling errors
affect the accuracy and determine how valid the result is in the real
world. Therefore, model validation and an understanding of modeling
error are also critical.

In engineering design optimization problems, the models usually
involve solving large sets of nonlinear implicit equations. The compu-
tational time required to solve these equations dominates the overall
optimization time, and therefore, solver efficiency is crucial. Solver
robustness is also vital because optimization often asks for designs that
are very different from what a human designer would ask for, which
tests the limits of the model and the solver.

We presented an overview of the various types of solvers available
for linear and nonlinear equations. Newton-type methods are highly
desirable for solving nonlinear equations because they exhibit second-
order convergence. Because Newton-type methods involve solving a
linear system at each iteration, a linear solver is always required. These
solvers are also at the core of several of the optimization algorithms in
later chapters.

3 Numerical Models and Solvers 75

Problems
3.1 Answer true or false and justify your answer.

a. A model developed to perform well for analysis will always
do well in a numerical optimization process.

b. Modeling errors have nothing to do with computations.

c. Explicit and implicit equations can always be written in
residual form.

d. Subtractive cancellation is a type of roundoff error.

e. Programming errors can always be eliminated by carefully
reading the code.

f. Quadratic convergence is only better than linear convergence
if the asymptotic convergence error constant is less than or
equal to one.

g. Logarithmic scales are desirable when plotting convergence
because they show errors of all magnitudes.

h. Newton solvers always require a linear solver.

i. Some linear iterative solvers can be used to solve nonlinear
problems.

j. Direct methods allow us to trade between computational
cost and precision, whereas iterative methods do not.

k. Newton’s method requires the derivatives of all the state
variables with respect to the residuals.

l. In the full-space optimization approach, the state variables
become design variables, and the governing equations be-
come constraints.

3.2 Choose an engineering system that you are familiar with and
describe each of the components illustrated in Fig. 3.1 for that
system. List all the options for the mathematical and numerical
models that you can think of, and describe the assumptions for
each model. What type of solver is usually used for each model
(see Section 3.6)? What are the state variables for each model?

3.3 Consider the following mathematical model:

D2
1

4 + D
2
2 = 1

4D1D2 = �

5 = 4(D1 + D2) .

3 Numerical Models and Solvers 76

Solve this model by hand. Write these equations in residual form
and use a numerical solver to obtain the same solution.

3.4 Reproduce a plot similar to the one shown in Fig. 3.10 for

5 (G) = cos(G) + 1

in the neighborhood of G = � .

3.5 Consider the residual equation

A(D) = D3 − 6D2 + 12D − 8 = 0 .

a. Find the solution using your own implementation of New-
ton’s method.

b. Tabulate the residual for each iteration number.
c. What is the lowest error you can achieve?
d. Plot the residual versus the iteration number using a linear

axis. How many digits can you discern in this plot?
e. Make the same plot using a logarithmic axis for the residual

and estimate the rate of convergence. Discuss whether the
rate is as expected or not.

f. Exploration: Try different starting points. Can you find a
predictable trend and explain it?

3.6 Kepler’s equation, which we mentioned in Section 2.2, defines the
relationship between a planet’s polar coordinates and the time
elapsed from a given initial point and is stated as follows:

� − 4 sin(�) = ",

where " is the mean anomaly (a parameterization of time), � is
the eccentric anomaly (a parameterization of polar angle), and 4
is the eccentricity of the elliptical orbit.

a. Use Newton’s method to find � when 4 = 0.7 and " = �/2.
b. Devise a fixed-point iteration to solve the same problem.
c. Compare the number of iterations and rate of convergence.
d. Exploration: Plot � versus " in the interval [0, 2�] for 4 =
[0, 0.1, 0.5, 0.9] and interpret your results physically.

3.7 Consider the equation from Prob. 3.5 where we replace one of the
coefficients with a parameter 0 as follows:

A(D) = 0D3 − 6D2 + 12D − 8 = 0 .

3 Numerical Models and Solvers 77

a. Produce a plot similar to Fig. 3.12 by perturbing 0 in the
neighborhood of 0 = 1.2using a solver convergence tolerance
of |A | ≤ 10−6.

b. Exploration: Try smaller tolerances and see how much you
can decrease the numerical noise.

3.8 Reproduce the solution of Ex. 3.8 and then try different initial
guesses. Can you define a distinct region from where Newton’s
method converges?

3.9 Choose a problem that you are familiar with and find the magni-
tude of numerical noise in one or more outputs of interest with
respect to one or more inputs of interest. What means do you
have to decrease the numerical noise? What is the lowest possible
level of noise you can achieve?

G0

G∗

G1

G2

Fig. 4.1 Gradient-based optimization
starts with a guess, G0, and takes a
sequence of steps in =-dimensional
space that converge to an optimum,
G∗.

4Unconstrained Gradient-Based Optimization
In this chapter we focus on unconstrained optimization problems with
continuous design variables, which we can write as

minimize
G

5 (G) , (4.1)

where G = [G1 , . . . , G=] is composed of the design variables that the
optimization algorithm can change.

We solve these problems using gradient information to determine a
series of steps from a starting guess (or initial design) to the optimum, as
shown in Fig. 4.1. We assume the objective function to be nonlinear, �2

continuous, and deterministic. We do not assume unimodality or multi-
modality, and there is no guarantee that the algorithm finds the global
optimum. Referring to the attributes that classify an optimization prob-
lem (Fig. 1.22), the optimization algorithms discussed in this chapter
range from first to second order, perform a local search, and evaluate the
function directly. The algorithms are based on mathematical principles
rather than heuristics.

Although most engineering design problems are constrained, the
constrained optimization algorithms in Chapter 5 build on the methods
explained in the current chapter.

By the end of this chapter you should be able to:

1. Understand the significance of gradients, Hessians, and
directional derivatives.

2. Mathematically define the optimality conditions for an
unconstrained problem.

3. Describe, implement, and use line-search-based methods.

4. Explain the pros and cons of the various search direction
methods.

5. Understand the trust-region approach and how it contrasts
with the line search approach.

79

4 Unconstrained Gradient-Based Optimization 80

4.1 Fundamentals
To determine the step directions shown in Fig. 4.1, gradient-based
methods need the gradient (first-order information). Some methods
also use curvature (second-order information). Gradients and curvature
are required to build a second-order Taylor series, a fundamental
building block in establishing optimality and developing gradient-
based optimization algorithms.

4.1.1 Derivatives and Gradients
Recall that we are considering a scalar objective function 5 (G), where
G is the vector of design variables, G = [G1 , G2 , . . . , G=]. The gradient of
this function, ∇ 5 (G), is a column vector of first-order partial derivatives
of the function with respect to each design variable:

∇ 5 (G) =
[
% 5
%G1

,
% 5
%G2

, . . . ,
% 5
%G=

]
, (4.2)

where each partial derivative is defined as the following limit:

% 5
%G8

= lim
�→0

5 (G1 , . . . , G8 + �, . . . , G=) − 5 (G1 , . . . , G8 , . . . , G=)
�

. (4.3)

Each component in the gradient vector quantifies the function’s local
rate of change with respect to the corresponding design variable, as
shown in Fig. 4.2 for the two-dimensional case. In other words, these
components represent the slope of the function along each coordinate
direction. The gradient is a vector pointing in the direction of the
greatest function increase from the current point.

∇ 5

% 5
%G1

% 5
%G2

G1

G2

∇ 5
% 5
%G1% 5

%G2

% 5
%G1% 5

%G2

G1

G2

5

Fig. 4.2 Components of the gradient
vector in the two-dimensional case.

The gradient vectors are normal to the surfaces of constant 5 in
=-dimensional space (isosurfaces). In the two-dimensional case, gradient

4 Unconstrained Gradient-Based Optimization 81

∗In this book, most of the illustrations and
examples are based on two-dimensional
problems because they are easy to visual-
ize. However, the principles andmethods
apply to = dimensions.

vectors are perpendicular to the function contour lines, as shown in
Fig. 4.2.∗

Example 4.1 Gradient of a polynomial function
Consider the following function of two variables:

5 (G1 , G2) = G3
1 + 2G1G

2
2 − G3

2 − 20G1 .

The gradient can be obtained using symbolic differentiation, yielding

∇ 5 (G1 , G2) =
[
3G2

1 + 2G2
2 − 20

4G1G2 − 3G2
2

]
.

This defines the vector field plotted in Fig. 4.3, where each vector points in the
direction of the steepest local increase.

Minimum

Maximum

Saddle point

Saddle point

−4 −2 0 2 4
−4

−2

0

2

4

G1

G2

MinimumMaximum

−4
−2

0
2

4

−2

0

2

−150

−100

−50

0

50

G1

G2

Fig. 4.3 Gradient vector field shows
how gradients point toward maxima
and away from minima.If a function is simple, we can use symbolic differentiation as we

did in Ex. 4.1. However, symbolic differentiation has limited utility
for general engineering models because most models are far more
complicated; they may include loops, conditionals, nested functions,
and implicit equations. Fortunately, there are several methods for com-
puting derivatives numerically; we cover these methods in Chapter 6.

Each gradient component has units that correspond to the units
of the function divided by the units of the corresponding variable.
Because the variables might represent different physical quantities,
each gradient component might have different units.

From an engineering design perspective, it might be helpful to think
about relative changes, where the derivative is given as the percentage

4 Unconstrained Gradient-Based Optimization 82

change in the function for a 1 percent increase in the variable. This
relative derivative can be computed by nondimensionalizing both the
function and the variable, that is,

% 5
%G

G
5
, (4.4)

where 5 and G are the values of the function and variable, respectively,
at the point where the derivative is computed.

Example 4.2 Interpretation of derivatives for wing design problem
Consider thewing design problem fromEx. 1.1, where the objective function

is the required power (%). For the derivative of power with respect to span
(%%/%1), the units are watts per meter (W/m). For a wing with 2 = 1 m and
1 = 12 m, we have % = 1087.85 W and %%/%1 = −41.65 W/m. This means that
for an increase in span of 1 m, the linear approximation predicts a decrease in
power of 41.65 W (to % = 1046.20). However, the actual power at 1 = 13 < is
1059.77Wbecause the function is nonlinear (see Fig. 4.4). The relative derivative
for this same design can be computed as (%%/%1)(1/%) = −0.459, which means
that for a 1 percent increase in span, the linear approximation predicts a 0.459
percent decrease in power. The actual decrease is 0.310 percent.

%%
%1

(12, 1)

5 15 25 35
0.3

0.6

0.9

1.2

1.5

1

2

1046.20
1059.77

%%
%1

11 12 13 14 15 16

1,075

1,100

1,125

1,150

1

%

Fig. 4.4 Power versus span and the
corresponding derivative.

The gradient components quantify the function’s rate of change in
each coordinate direction (G8), but sometimes we are interested in the
rate of change in a direction that is not a coordinate direction. The rate
of change in a direction ? is quantified by a directional derivative, defined
as

∇? 5 (G) = lim
�→0

5 (G + �?) − 5 (G)
�

. (4.5)

We can find this derivative by projecting the gradient onto the desired
direction ? using the dot product

∇? 5 (G) = ∇ 5 ᵀ? . (4.6)

4 Unconstrained Gradient-Based Optimization 83

When ? is a unit vector aligned with one of the Cartesian coordinates 8,
this dot product yields the corresponding partial derivative % 5 /%G8 . A
two-dimensional example of this projection is shown in Fig. 4.5.

∇ 5

?

∇ 5 ᵀ?

G1

G2

∇ 5
? ∇ 5 ᵀ?

∇ 5 ᵀ?

G1

G2

5

Fig. 4.5 Projection of the gradient in
an arbitrary unit direction ?.

From the gradient projection, we can see why the gradient is the
direction of the steepest increase. If we use this definition of the dot
product,

∇? 5 (G) = ∇ 5 ᵀ? =

∇ 5

?

 cos� , (4.7)

where � is the angle between the two vectors, we can see that this is
maximized when � = 0◦. That is, the directional derivative is largest
when ? points in the same direction as ∇ 5 .

If � is in the interval (−90, 90)◦, the directional derivative is positive
and is thus in a direction of increase, as shown in Fig. 4.6. If � is in the
interval (90, 180]◦, the directional derivative is negative, and ? points
in a descent direction. Finally, if � = ±90◦, the directional derivative
is 0, and thus the function value does not change for small steps; it
is locally flat in that direction. This condition occurs when ∇ 5 and ?
are orthogonal; therefore, the gradient is orthogonal to the function
isosurfaces.

Negative directional
derivative (∇ 5 ᵀ? < 0)

Positive directional
derivative (∇ 5 ᵀ? > 0)

Contour line tangent
(∇ 5 ᵀ? = 0)

∇ 5

?
�

Fig. 4.6 The gradient ∇ 5 is always
orthogonal to contour lines (surfaces),
and the directional derivative in the
direction ? is given by ∇ 5 ᵀ?.

4 Unconstrained Gradient-Based Optimization 84

To get the correct slope in the original units of G, the direction should
be normalized as ?̂ = ?/

?

. However, in some of the gradient-based
algorithms of this chapter, ? is not normalized because the length
contains useful information. If ? is not normalized, the slopes and
variable axis are scaled by a constant.

Example 4.3 Directional derivative of a quadratic function
Consider the following function of two variables:

5 (G1 , G2) = G2
1 + 2G2

2 − G1G2 .

The gradient can be obtained using symbolic differentiation, yielding

∇ 5 (G1 , G2) =
[
2G1 − G2
4G2 − G1

]
.

At point G = [−1, 1], the gradient is

∇ 5 (−1, 1) =
[−3

5

]
.

Taking the derivative in the normalized direction ? = [2/√5,−1/√5], we obtain

∇ 5 ᵀ? = [−3, 5]
[

2/√5
−1/√5

]
= − 11√

5
,

which we show in Fig. 4.7 (left). We use a ? with unit length to get the slope of
the function in the original units.

∇ 5

G +
?

G
?

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

G1

G2

G

∇ 5 ᵀ?
0

2

4

6

8

10

5 (1,0)

(1,1)

(0,1)

(-1,1)

(-1,0)

(-1,-1)

(0,-1)

(1,-1)

−6 −3 0 3 6

‖∇ 5 ‖

∇ 5 ᵀ?

Fig. 4.7 Function contours and direc-
tion ? (left), one-dimensional slice
along ? (middle), directional deriva-
tive for all directions on polar plot
(right).

A projection of the function in the ? direction can be obtained by plotting
5 along the line defined by G +
?, where
 is the independent variable, as
shown in Fig. 4.7 (middle). The projected slope of the function in that direction
corresponds to the slope of this single-variable function. The polar plot in
Fig. 4.7 (right) shows how the directional derivative changes with the direction
of ?. The directional derivative has a maximum in the direction of the gradient,
has the largest negative magnitude in the opposite direction, and has zero
values in the directions orthogonal to the gradient.

4 Unconstrained Gradient-Based Optimization 85

†Thediscovery andproof of the symmetry
of second derivatives property has a long
history.76

76. Higgins, A note on the history of mixed
partial derivatives, 1940.

4.1.2 Curvature and Hessians
The rate of change of the gradient—the curvature—is also useful infor-
mation because it tells us if a function’s slope is increasing (positive
curvature), decreasing (negative curvature), or stationary (zero curva-
ture).

In one dimension, the gradient reduces to a scalar (the slope), and
the curvature is also a scalar that can be calculated by taking the second
derivative of the function. To quantify curvature in = dimensions, we
need to take the partial derivative of each gradient component 9 with
respect to each coordinate direction 8, yielding

%2 5
%G8%G 9

. (4.8)

If the function 5 has continuous second partial derivatives, the order of
differentiation does not matter, and the mixed partial derivatives are
equal; thus

%2 5
%G8%G 9

=
%2 5

%G 9%G8
. (4.9)

This property is known as the symmetry of second derivatives or equality
of mixed partials.†

Considering all gradient components and their derivatives with
respect to all coordinate directions results in a second-order tensor. This
tensor can be represented as a square (= × =)matrix of second-order
partial derivatives called the Hessian:

� 5 (G) =



%2 5

%G2
1

%2 5
%G1%G2

· · · %2 5
%G1%G=

%2 5
%G2%G1

%2 5

%G2
2

· · · %2 5
%G2%G=

...
...

. . .
...

%2 5
%G=%G1

%2 5
%G=%G2

· · · %2 5

%G2
=



. (4.10)

The Hessian is expressed in index notation as:

� 5 8 9 =
%2 5

%G8%G 9
. (4.11)

Because of the symmetry of second derivatives, the Hessian is a sym-
metric matrix with =(= + 1)/2 independent elements.

4 Unconstrained Gradient-Based Optimization 86

Each row 8 of the Hessian is a vector that quantifies the rate of
change of all components 9 of the gradient vector with respect to the
direction 8. On the other hand, each column 9 of the matrix quantifies
the rate of change of component 9 of the gradient vector with respect to
all coordinate directions 8. Because the Hessian is symmetric, the rows
and columns are transposes of each other, and these two interpretations
are equivalent.

We can find the rate of change of the gradient in an arbitrary
normalized direction ? by taking the product �?. This yields an =-
vector that quantifies the rate of change of the gradient in the direction
?, where each component of the vector is the rate of the change of the
corresponding partial derivative with respect to a movement along ?.
Therefore, this product is defined as follows:

�? = ∇?
(∇ 5 (G)) = lim

�→0

∇ 5 (G + �?) − ∇ 5 (G)
�

. (4.12)

Because of the symmetry of second derivatives, we can also interpret
this as the rate of change in the directional derivative of the function
along ? with respect to each of the components of ?.

To find the curvature of the one-dimensional function along a
direction ?, we need to project �? onto direction ? as

∇?
(∇? 5 (G)) = ?ᵀ�? , (4.13)

which yields a scalar quantity. Again, if we want to get the curvature in
the original units of G, ? should be normalized.

For an =-dimensional Hessian, it is possible to find directions E8
(where 8 = 1, . . . , =) along which the projected curvature aligns with
that direction, that is,

�E = �E . (4.14)

This is an eigenvalue problemwhose eigenvectors represent the principal
curvature directions, and the eigenvalues � quantify the corresponding
curvatures. If each eigenvector is normalized as Ê = E/‖E‖, then the
corresponding � is the curvature in the original units.

Example 4.4 Hessian and principal curvature directions of a quadratic
Consider the following quadratic function of two variables:

5 (G1 , G2) = G2
1 + 2G2

2 − G1G2 ,

whose contours are shown in Fig. 4.8 (left). These contours are ellipses that
have the same center. The Hessian of this quadratic is

� =

[
2 −1
−1 4

]
,

4 Unconstrained Gradient-Based Optimization 87

which is constant. To find the curvature in the direction ? = [−1/2,−√3/2], we
compute

?ᵀ�? =
[
−1
2

−√3
2

] [
2 −1
−1 4

] [−1
2
−√3

2

]
=

7 − √3
2 .

The principal curvature directions can be computed by solving the eigenvalue
problem (Eq. 4.14). This yields two eigenvalues and two corresponding
eigenvectors,

�� = 3 +
√

2, E� =

[
1 − √2

1

]
, and �� = 3 −

√
2, E� =

[
1 + √2

1

]
.

By plotting the principal curvature directions superimposed on the function
contours (Fig. 4.8, left), we can see that they are aligned with the ellipses’ major
and minor axes. To see how the curvature varies as a function of the direction,
we make a polar plot of the curvature ?ᵀ�?, where ? is normalized (Fig. 4.8,
right). The maximum curvature aligns with the first principal curvature
direction, as expected, and the minimum curvature corresponds to the second
principal curvature direction.

�1Ê1

�2Ê2

?

−1 0 1

−1

0

1

G1

G2 (1,0)

(1,1)

(0,1)

(-1,1)

(-1,0)

(-1,-1)

(0,-1)

(1,-1)

0 2 4 6

�1

�2

?ᵀ�?

Fig. 4.8 Contours of 5 for Ex. 4.4 and
the two principal curvature direc-
tions in red. The polar plot shows
the curvature, with the eigenvectors
pointing at the directions of principal
curvature; all other directions have
curvature values in between.

Example 4.5 Hessian of two-variable polynomial
Consider the same polynomial from Ex. 4.1. Differentiating the gradient

we obtained previously yields the Hessian:

�(G1 , G2) =
[
6G1 4G2
4G2 4G1 − 6G2

]
.

Wecan visualize the variation of theHessian by plotting the principal curvatures
at different points (Fig. 4.9).

4 Unconstrained Gradient-Based Optimization 88

MinimumMaximum

Saddle point

Saddle point

−4 −2 0 2 4
−4

−2

0

2

4

G1

G2

Minimum

Maximum

−4

−2

0

2

4

−4−2
0

2
4

−200

−150

−100

−50

0

50

100

G1

G2

Fig. 4.9 Principal curvature direc-
tion and magnitude variation. Solid
lines correspond to positive curva-
ture, whereas dashed lines are for
negative curvature.

‡For a more extensive introduction to the
Taylor series, see Appendix A.1.

4.1.3 Taylor Series
The Taylor series provides a local approximation to a function and is
the foundation for gradient-based optimization algorithms.

For an =-dimensional function, the Taylor series can predict the
function along any direction ?. This is done by projecting the gradient
and Hessian onto the desired direction ? to get an approximation of
the function at any nearby point G + ?:‡

5 (G + ?) = 5 (G) + ∇ 5 (G)ᵀ? + 1
2 ?

ᵀ�(G)? + O
(

?

3

)
. (4.15)

We use a second-order Taylor series (ignoring the cubic term)
because it results in a quadratic, the lowest-order Taylor series that
can have a minimum. For a function that is �2 continuous, this
approximation can be made arbitrarily accurate by making

?

 small
enough.

Example 4.6 Second-order Taylor series expansion of two-variable function
Using the gradient and Hessian of the two-variable polynomial from Ex. 4.1

and Ex. 4.5, we can use Eq. 4.15 to construct a second-order Taylor expansion
about G0,

5̃ (?) = 5 (G0) +
[
3G2

1 + 2G2
2 − 20

4G1G2 − 3G2
2

]ᵀ
? + ?ᵀ

[
6G1 4G2
4G2 4G1 − 6G2

]
? .

Figure 4.10 shows the resulting Taylor series expansions about different points.
We perform three expansions, each about three critical points: the minimum
(left), the maximum (middle), and the saddle point (right). The expansion
about the minimum yields a convex quadratic that is a good approximation of
the original function near the minimum but becomes worse as we step farther

4 Unconstrained Gradient-Based Optimization 89

away. The expansion about the maximum shows a similar trend except that the
approximation is a concave quadratic. Finally, the expansion about the saddle
point yields a saddle function.

Minimum

−4 −2 0 2 4
−4

−2

0

2

4

G1

G2

−4 −2 0 2 4

−30

0

30

G1

5

Maximum

−4 −2 0 2 4
−4

−2

0

2

4

G1

G2

−4 −2 0 2 4

−30

0

30

G1

5

Saddle point

−4 −2 0 2 4
−4

−2

0

2

4

G1

G2

−4 −2 0 2 4

−30

0

30

G1

5

Fig. 4.10 The second-order Taylor
series expansion uses the function
value, gradient, and Hessian at a
point to construct a quadratic model
about that point. The model can vary
drastically, depending on the func-
tion and the point location. The one-
dimensional slices are in the G1 direc-
tion and at G2 values corresponding
to the critical points.

4.1.4 Optimality Conditions
Tofind theminimumof a function, wemust determine themathematical
conditions that identify a given point G as a minimum. There is only a
limited set of problems for which we can prove global optimality, so
in general, we are only interested in local optimality. A point G∗ is a
local minimum if 5 (G∗) ≤ 5 (G) for all G in the neighborhood of G∗. In
other words, there must be no descent direction starting from the local
minimum.

A second-order Taylor series expansion about G∗ for small steps of
size ? yields

5 (G∗ + ?) = 5 (G∗) + ∇ 5 (G∗)ᵀ? + 1
2 ?

ᵀ�(G∗)? + (4.16)

For G∗ to be an optimal point, we must have 5 (G∗ + ?) ≥ 5 (G∗) for all ?.
This implies that the first- and second-order terms in the Taylor series
have to be nonnegative, that is,

∇ 5 (G∗)ᵀ? + 1
2 ?

ᵀ�(G∗)? ≥ 0 for all ? . (4.17)

4 Unconstrained Gradient-Based Optimization 90

§For other approaches to determine if
a matrix is positive definite, see Ap-
pendix A.6.

Because the magnitude of ? is small, we can always find a ? such
that the first term dominates. Therefore, we require that

∇ 5 (G∗)ᵀ? ≥ 0 for all ? . (4.18)

Because ? can be in any arbitrary direction, the only way this inequality
can be satisfied is if all the elements of the gradient are zero (refer to
Fig. 4.6),

∇ 5 (G∗) = 0 . (4.19)

This is the first-order necessary optimality condition for an unconstrained
problem. This is necessary because if any element of ? is nonzero, there
are descent directions (e.g., ? = −∇ 5) for which the inequality would
not be satisfied.

Because the gradient term has to be zero, we must now satisfy the
remaining term in the inequality (Eq. 4.17), that is,

?ᵀ�(G∗)? ≥ 0 for all ? . (4.20)

From Eq. 4.13, we know that this term represents the curvature in
direction ?, so this means that the function curvature must be positive
or zero when projected in any direction. You may recognize this
inequality as the definition of a positive-semidefinite matrix. In other
words, the Hessian �(G∗)must be positive semidefinite.

For a matrix to be positive semidefinite, its eigenvalues must all
be greater than or equal to zero. Recall that the eigenvalues of the
Hessian quantify the principal curvatures, so as long as all the principal
curvatures are greater than or equal to zero, the curvature along an
arbitrary direction is also greater than or equal to zero.

These conditions on the gradient and curvature are necessary condi-
tions for a local minimum but are not sufficient. They are not sufficient
because if the curvature is zero in some direction ? (i.e., ?ᵀ�(G∗)? = 0),
we have no way of knowing if it is a minimum unless we check the
third-order term. In that case, even if it is a minimum, it is a weak
minimum.

The sufficient conditions for optimality require the curvature to be
positive in any direction, in which case we have a strong minimum.
Mathematically, this means that ?ᵀ�(G∗)? > 0 for all nonzero ?, which
is the definition of a positive-definitematrix. If � is a positive-definite
matrix, every eigenvalue of � is positive.§

Figure 4.11 shows some examples of quadratic functions that are
positive definite (all positive eigenvalues), positive semidefinite (non-
negative eigenvalues), indefinite (mixed eigenvalues), and negative
definite (all negative eigenvalues).

4 Unconstrained Gradient-Based Optimization 91

Positive definite

Minimum

Positive semidefinite

Weak minima
line

Indefinite

Saddle point

Negative definite

Maximum

Fig. 4.11 Quadratic functions with
different types of Hessians.

In summary, the necessary optimality conditions for an unconstrained
optimization problem are

∇ 5 (G∗) = 0
�(G∗) is positive semidefinite .

(4.21)

The sufficient optimality conditions are

∇ 5 (G∗) = 0
�(G∗) is positive definite . (4.22)

Example 4.7 Finding minima analytically
Consider the following function of two variables:

5 = 0.5G4
1 + 2G3

1 + 1.5G2
1 + G2

2 − 2G1G2 .

We can find the minima of this function by solving for the optimality conditions
analytically.

To find the critical points of this function, we solve for the points at which
the gradient is equal to zero,

∇ 5 =


% 5
%G1
% 5
%G2


=


2G3

1 + 6G2
1 + 3G1 − 2G2

2G2 − 2G1


=


0

0


.

From the second equation, we have that G2 = G1. Substituting this into the first
equation yields

G1
(
2G2

1 + 6G1 + 1
)
= 0 .

The solution of this equation yields three points:

G� =


0

0


, G� =


−3

2 −
√

7
2

−3
2 −
√

7
2


, G� =



√
7

2 −
3
2√

7
2 −

3
2


.

4 Unconstrained Gradient-Based Optimization 92

To classify these points, we need to compute the Hessian matrix. Differentiating
the gradient, we get

�(G1 , G2) =



%2 5

%G2
1

%2 5
%G1%G2

%2 5
%G2%G1

%2 5

%G2
2


=


6G2

1 + 12G1 + 3 −2

−2 2


.

The Hessian at the first point is

� (G�) =
[

3 −2
−2 2

]
,

whose eigenvalues are �1 ≈ 0.438 and �2 ≈ 4.561. Because both eigenvalues
are positive, this point is a local minimum. For the second point,

� (G�) =
[
3
(
3 + √7

)
−2

−2 2

]
.

The eigenvalues are �1 ≈ 1.737 and �2 ≈ 17.200, so this point is another local
minimum. For the third point,

� (G�) =
[
9 − 3
√

7 −2
−2 2

]
.

The eigenvalues for this Hessian are �1 ≈ −0.523 and �2 ≈ 3.586, so this point
is a saddle point.

Figure 4.12 shows these three critical points. To find out which of the two
local minima is the global one, we evaluate the function at each of these points.
Because 5 (G�) < 5 (G�), G� is the global minimum.

G�: local minimum

G�: global minimum

G� : saddle point

−4 −3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2

G1

G2

Fig. 4.12 Minima and saddle point
locations.

We may be able to solve the optimality conditions analytically for
simple problems, as we did in Ex. 4.7. However, this is not possible

4 Unconstrained Gradient-Based Optimization 93

in general because the resulting equations might not be solvable in
closed form. Therefore, we need numerical methods that solve for these
conditions.

When using a numerical approach, we seek points where∇ 5 (G∗) = 0,
but the entries in ∇ 5 do not converge to exactly zero because of finite-
precision arithmetic. Instead, we define convergence for the first
criterion based on the maximum component of the gradient, such that

∇ 5

∞ ≤ � , (4.23)

where � is some tolerance. A typical absolute tolerance is � = 10−6

or a six-order magnitude reduction in gradient when using a relative
tolerance. Absolute and relative criteria are often combined in a metric
such as the following:

∇ 5

∞ ≤ �
(
1 +

∇ 50

∞

)
, (4.24)

where ∇ 50 is the gradient at the starting point.
The second optimality condition (that � must be positive semidefi-

nite) is not usually checked explicitly. If we satisfy the first condition,
then all we know is that we have reached a stationary point, which
could be a maximum, a minimum, or a saddle point. However, as
shown in Section 4.4, the search directions for the algorithms of this
chapter are always descent directions, and therefore in practice, they
should converge to a local minimum.

For a practical algorithm, other exit conditions are often used besides
the reduction in the norm of the gradient. A function might be poorly
scaled, be noisy, or have other numerical issues that prevent it from
ever satisfying this optimality condition (Eq. 4.24). To prevent the
algorithm from running indefinitely, it is common to set a limit on
the computational budget, such as the number of function calls, the
number of major iterations, or the clock time. Additionally, to detect a
case where the optimizer is not making significant progress and not
likely to improve much further, we might set criteria on the minimum
step size and the minimum change in the objective. Similar to the
conditions on the gradient, the minimum change in step size could be
limited as follows:

‖G: − G:−1‖∞ < �G (1 + ‖G:−1‖∞) . (4.25)

The absolute and relative conditions on the objective are of the same
form, although they only use an absolute value rather than a norm
because the objective is scalar.

4 Unconstrained Gradient-Based Optimization 94

Tip 4.1 Check the exit message when using an optimizer
Optimizers usually include an exit message when returning a result. Inex-

perienced users often take whatever solution the optimizer returns without
checking this message. However, as discussed previously, the optimizer may
terminate without satisfying first-order optimality (Eq. 4.24). Check the exit
message and study the optimizer’s documentation tomake sure you understand
the result. If the message indicates that this is not a definite optimum, you
should investigate further.

You might have to increase the limit on the number of iterations if the
optimization reached this limit. When terminating due to small step sizes
or function changes, you might need to improve your numerical model by
reducing the noise (see Tip 3.2) or by smoothing it (Tip 4.7). Another likely
culprit is scaling (Tip 4.4). Finally, you might want to explore the design space
around the point where the optimizer is stuck (Tip 4.2) and more specifically,
see what is happening with the line search (Tip 4.3).

4.2 Two Overall Approaches to Finding an Optimum
Although the optimality conditions derived in the previous section
can be solved analytically to find the function minima, this analytic
approach is not possible for functions that result fromnumericalmodels.
Instead, we need iterative numerical methods to find minima based
only on the function values and gradients.

In Chapter 3, we reviewed methods for solving simultaneous sys-
tems of nonlinear equations, which we wrote as A(D) = 0. Because
the first-order optimality condition (∇ 5 = 0) can be written in this
residual form (where A = ∇ 5 and D = G), we could try to use the solvers
from Chapter 3 directly to solve unconstrained optimization problems.
Although several components of general solvers for A(D) = 0 are used
in optimization algorithms, these solvers are not the most effective
approaches in their original form. Furthermore, solving ∇ 5 = 0 is not
necessarily sufficient—it finds a stationary point but not necessarily a
minimum. Optimization algorithms require additional considerations
to ensure convergence to a minimum.

Like the iterative solvers from Chapter 3, gradient-based algorithms
start with a guess, G0, and generate a series of points, G1 , G2 , . . . , G: , . . .
that converge to a local optimum, G∗, as previously illustrated in Fig. 4.1.
At each iteration, some form of the Taylor series about the current point
is used to find the next point.

A truncated Taylor series is, in general, only a good model within a
small neighborhood, as shown in Fig. 4.13, which shows three quadratic

4 Unconstrained Gradient-Based Optimization 95

G∗G:

G1

G2

G∗

G:

G1

G2

G∗

G:

G1

G2

Fig. 4.13 Taylor series quadratic mod-
els are only guaranteed to be accurate
near the point about which the series
is expanded (G:).

Search
direction

Line search

Is G a
minimum?

Update G

G0

G∗

Yes

No

Fig. 4.14 Line search approach.

Create model

Minimize
model

Is G a
minimum?

Update G

Update trust-
region size, Δ

G0

G∗

Yes

No

Fig. 4.15 Trust-region approach.

models of the same function based on three different points. All
quadratic approximations match the local gradient and curvature at
the respective points. However, the Taylor series quadratic about the
first point (left plot) yields a quadratic without a minimum (the only
critical point is a saddle point). The second point (middle plot) yields
a quadratic whose minimum is closer to the true minimum. Finally,
the Taylor series about the actual minimum point (right plot) yields a
quadratic with the same minimum, as expected, but we can see how
the quadratic model worsens the farther we are from the point.

Because the Taylor series is only guaranteed to be a good model
locally, we need a globalization strategy to ensure convergence to an
optimum. Globalization here means making the algorithm robust
enough that it can converge to a local minimum when starting from
any point in the domain. This should not be confused with finding the
global minimum, which is a separate issue (see Tip 4.8). There are two
main globalization strategies: line search and trust region.

The line search approach consists of three main steps for every
iteration (Fig. 4.14):

1. Choose a suitable search direction from the current point. The
choice of search direction is based on a Taylor series approxima-
tion.

2. Determine how far to move in that direction by performing a line
search.

3. Move to the new point and update all values.

The two first steps can be seen as two separate subproblems. We
address the line search subproblem in Section 4.3 and the search
direction subproblem in Section 4.4.

Trust-region methods also consist of three steps (Fig. 4.15):

1. Create a model about the current point. This model can be based
on a Taylor series approximation or another type of surrogate
model.

4 Unconstrained Gradient-Based Optimization 96

∗This algorithm, and others in this section,
use a basic convergence check for simplic-
ity. See the end of Section 4.1.4 for better
alternatives and additional exit criteria.

2. Minimize the model within a trust region around the current point
to find the step.

3. Move to the new point, update values, and adapt the size of the
trust region.

We introduce the trust-region approach in Section 4.5. However, we
devote more attention to algorithms that use the line search approach
because they are more common in general nonlinear optimization.

Both line search and trust-region approaches use iterative processes
that must be repeated until some convergence criterion is satisfied. The
first step in both approaches is usually referred to as a major iteration,
whereas the second step might require more function evaluations
corresponding to minor iterations.

Tip 4.2 Before optimizing, explore the design space
Before coupling your model solver with an optimizer, it is a good idea to

explore the design space. Ensure that the solver is robust and can handle a wide
variety of inputs within your provided bounds without errors. Plotting the
multidimensional design space is generally impossible, but you can perform a
series of one-dimensional sweeps. From the starting point, plot the objective
with all design variables fixed except one. Vary that design variable across
a range, and repeat that process for several design variables. These one-
dimensional plots can identify issues such as analysis failures, noisy outputs,
and discontinuous outputs, which you can then fix. These issues should
be addressed before attempting to optimize. This same technique can be
helpful when an optimizer becomes stuck; you can plot the behavior in a small
neighborhood around the point of failure (see Tip 4.3).

4.3 Line Search
Gradient-based unconstrained optimization algorithms that use a line
search follow Alg. 4.1. We start with a guess G0 and provide a con-
vergence tolerance � for the optimality condition.∗ The final output is
an optimal point G∗ and the corresponding function value 5 (G∗). As
mentioned in the previous section, there are two main subproblems
in line search gradient-based optimization algorithms: choosing the
search direction and determining how far to step in that direction. In
the next section, we introduce several methods for choosing the search
direction. The line search method determines how far to step in the
chosen direction and is usually independent of the method for choosing
the search direction. Therefore, line search methods can be combined

4 Unconstrained Gradient-Based Optimization 97

G: +
?:

?:

 = 0

 = 1

 = 2

G:

Fig. 4.16 The line search starts from
a given point G: and searches solely
along direction ?: .

with any method for finding the search direction. However, the search
direction method determines the name of the overall optimization
algorithm, as we will see in the next section.

Algorithm 4.1 Gradient-based unconstrained optimization using a linesearch
Inputs:
G0: Starting point
�: Convergence tolerance

Outputs:
G∗: Optimal point
5 (G∗): Minimum function value

: = 0 Initialize iteration counter
while

∇ 5

∞ > � do Optimality condition
Determine search direction, ?: Use any of the methods from Section 4.4
Determine step length,
: Use a line search algorithm
G:+1 = G: +
:?: Update design variables
: = : + 1 Increment iteration index

end while

For the line search subproblem, we assume that we are given a
starting location at G: and a suitable search direction ?: along which to
search (Fig. 4.16). The line search then operates solely on points along
direction ?: starting from G: , which can be written as

G:+1 = G: +
?: , (4.26)

where the scalar
 is always positive and represents how far we go in
the direction ?: . This equation produces a one-dimensional slice of
=-dimensional space, as illustrated in Fig. 4.17.

G: +
?:

?:
G:

G:+1

G1

G2

G: G:+1 = G: +
:?:

5

Fig. 4.17 The line search projects
the =-dimensional problem onto one
dimension, where the independent
variable is
.

The line search determines the magnitude of the scalar
: , which in
turn determines the next point in the iteration sequence. Even though

4 Unconstrained Gradient-Based Optimization 98

∇ 5

?:

Fig. 4.18 The line search direction
must be a descent direction.

G:

?:

G1

G2

Fig. 4.19 The descent direction does
not necessarily point toward the min-
imum, in which case it would be
wasteful to do an exact line search.

)′(0) < 0

)′(
)

 = 0

)

Fig. 4.20 For the line search, we de-
note the function as)(
) with the
same value as 5 . The slope)′(
) is
the gradient of 5 projected onto the
search direction.

G: and ?: are =-dimensional, the line search is a one-dimensional
problem with the goal of selecting
: .

Line search methods require that the search direction ?: be a descent
direction so that ∇ 5:ᵀ?: < 0 (see Fig. 4.18). This guarantees that 5 can be
reduced by stepping some distance along this direction with a positive

.

The goal of the line search is not to find the value of
 that min-
imizes 5

(
G: +
?:

)
but to find a point that is “good enough” using

as few function evaluations as possible. This is because finding the
exact minimum along the line would require too many evaluations of
the objective function and possibly its gradient. Because the overall
optimization needs to find a point in =-dimensional space, the search
direction might change drastically between line searches, so spending
too many iterations on each line search is generally not worthwhile.

Consider the bean function whose contours are shown in Fig. 4.19.
At point G: , the direction ?: is a descent direction. However, it would
be wasteful to spend a lot of effort determining the exact minimum in
the ?: direction because it would not take us any closer to the minimum
of the overall function (the dot on the right side of the plot). Instead,
we should find a point that is good enough and then update the search
direction.

To simplify the notation for the line search, we define the single-
variable function

)(
) = 5
(
G: +
?:

)
, (4.27)

where
 = 0 corresponds to the start of the line search (G: in Fig. 4.17),
and thus)(0) = 5 (G:). Then, using G = G: +
?: , the slope of the
single-variable function is

)′(
) = %
(
5 (G))
%

=
=∑
8=1

% 5
%G8

%G8
%

. (4.28)

Substituting into the derivatives results in

)′(
) = ∇ 5 (
G: +
?:

)ᵀ ?: , (4.29)

which is the directional derivative along the search direction. The slope
at the start of a given line search is

)′(0) = ∇ 5:ᵀ?: . (4.30)

Because ?: must be a descent direction,)′(0) is always negative. Fig-
ure 4.20 is a version of the one-dimensional slice from Fig. 4.17 in this
notation. The
 axis and the slopes scale with the magnitude of ?: .

4 Unconstrained Gradient-Based Optimization 99

†This condition can be problematic near
a local minimum because)(0) and)(
)
are so similar that their subtraction is inac-
curate. Hager and Zhang77 introduced a
condition with improved accuracy, along
with an efficient line search based on a se-
cant method.
77. Hager and Zhang, A new conjugate
gradient method with guaranteed descent and
an efficient line search, 2005.

Expected decrease

)′(0)

Sufficient
decrease

�1)′(0))(0)

 = 0

)

Fig. 4.21 The sufficient decrease line
has a slope that is a small fraction
of the slope at the start of the line
search.

4.3.1 Sufficient Decrease and Backtracking
The simplest line search algorithm to find a “good enough” point relies
on the sufficient decrease condition combined with a backtracking algorithm.
The sufficient decrease condition, also known as the Armĳo condition, is
given by the inequality

)(
) ≤)(0) + �1
)
′(0) , (4.31)

where �1 is a constant such that 0 < �1 ≤ 1.† The quantity
)′(0)
represents the expected decrease of the function, assuming the function
continued at the same slope. The multiplier �1 states that Eq. 4.31 will
be satisfied as long we achieve even a small fraction of the expected
decrease, as shown in Fig. 4.21. In practice, this constant is several
orders of magnitude smaller than 1, typically �1 = 10−4. Because ?:
is a descent direction, and thus)′(0) = ∇ 5:ᵀ?: < 0, there is always a
positive
 that satisfies this condition for a smooth function.

The concept is illustrated in Fig. 4.22, which shows a function with
a negative slope at
 = 0 and a sufficient decrease line whose slope is
a fraction of that initial slope. When starting a line search, we know
the function value and slope at
 = 0, so we do not really know how
the function varies until we evaluate it. Because we do not want to
evaluate the function too many times, the first point whose value is
below the sufficient decrease line is deemed acceptable. The sufficient
decrease line slope in Fig. 4.22 is exaggerated for illustration purposes;
for typical values of �1, the line is indistinguishable from horizontal
when plotted.

Sufficient
decrease line

�1)′(0)

 = 0

)(
)

)′(0)
)(0)

Acceptable range Acceptable range

Fig. 4.22 Sufficient decrease condi-
tion.

Line search algorithms require a first guess for
. As we will see
later, some methods for finding the search direction also provide good
guesses for the step length. However, in many cases, we have no idea
of the scale of function, so our initial guess may not be suitable. Even if

https://dx.doi.org/10.1137/030601880
https://dx.doi.org/10.1137/030601880
https://dx.doi.org/10.1137/030601880

4 Unconstrained Gradient-Based Optimization 100

we do have an educated guess for
, it is only a guess, and the first step
might not satisfy the sufficient decrease condition.

A straightforward algorithm that is guaranteed to find a step that
satisfies the sufficient decrease condition is backtracking (Alg. 4.2).
This algorithm starts with a maximum step and successively reduces
the step by a constant ratio � until it satisfies the sufficient decrease
condition (a typical value is � = 0.5). Because the search direction is a
descent direction, we know that we will achieve an acceptable decrease
in function value if we backtrack enough.

Algorithm 4.2 Backtracking line search algorithm
Inputs:

init > 0: Initial step length
0 < �1 < 1: Sufficient decrease factor (typically small, e.g., �1 = 10−4)
0 < � < 1: Backtracking factor (e.g., � = 0.5)

Outputs:

∗: Step size satisfying sufficient decrease condition

 =
init
while)(
) >)(0) + �1
)′(0) do Function value is above sufficient decrease line

 = �
 Backtrack
end while

Although backtracking is guaranteed to find a point that satisfies
sufficient decrease, there are two undesirable scenarios where this
algorithm performs poorly. The first scenario is that the guess for the
initial step is far too large, and the step sizes that satisfy sufficient de-
crease are smaller than the starting step by several orders of magnitude.
Depending on the value of �, this scenario requires a large number of
backtracking evaluations.

The other undesirable scenario is where our initial guess immedi-
ately satisfies sufficient decrease. However, the function’s slope is still
highly negative, and we could have decreased the function value by
much more if we had taken a larger step. In this case, our guess for the
initial step is far too small.

Even if our original step size is not too far from an acceptable step
size, the basic backtracking algorithm ignores any information we have
about the function values and gradients. It blindly takes a reduced step
based on a preselected ratio �. We can make more intelligent estimates
of where an acceptable step is based on the evaluated function values
(and gradients, if available). The next section introduces a more

4 Unconstrained Gradient-Based Optimization 101

G:

?

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

G1

G2

Fig. 4.23 A line search direction for
an example problem.

sophisticated line search algorithm that deals with these scenarios
much more efficiently.

Example 4.8 Backtracking line search
Consider the following function:

5 (G1 , G2) = 0.1G6
1 − 1.5G4

1 + 5G2
1 + 0.1G4

2 + 3G2
2 − 9G2 + 0.5G1G2 .

Suppose we do a line search starting from G = [−1.25, 1.25] in the direction
? = [4, 0.75], as shown in Fig. 4.23. Applying the backtracking algorithm with
�1 = 10−4 and � = 0.7 produces the iterations shown in Fig. 4.24. The sufficient
decrease line appears to be horizontal, but that is because the small negative
slope cannot be discerned in a plot for typical values of �1. Using a large initial
step of
init = 1.2 (Fig. 4.24, left), several iterations are required. For a small
initial step of
init = 0.05 (Fig. 4.24, right), the algorithm satisfies sufficient
decrease at the first iteration but misses the opportunity for further reductions.

init
∗
0 0.2 0.4 0.6 0.8 1 1.2

−10

0

10

20

30

5

∗ =
init
0 0.2 0.4 0.6 0.8 1 1.2

−10

0

10

20

30

5

Fig. 4.24 Backtracking using different
initial steps.

4.3.2 Strong Wolfe Conditions
Onemajorweakness of the sufficient decrease condition is that it accepts
small steps that marginally decrease the objective function because �1
in Eq. 4.31 is typically small. We could increase �1 (i.e., tilt the red
line downward in Fig. 4.22) to prevent these small steps; however, that
would prevent us from taking large steps that still result in a reasonable
decrease. A large step that provides a reasonable decrease is desirable
because large steps generally lead to faster convergence. Therefore, we
want to prevent overly small steps while not making it more difficult
to accept reasonable large steps. We can accomplish this by adding a
second condition to construct a more efficient line search algorithm.

Just like guessing the step size, it is difficult to know in advance how
much of a function value decrease to expect. However, if we compare

4 Unconstrained Gradient-Based Optimization 102

)′(0)

+�2)′(0) −�2)′(0)

)(0)

 = 0

)

Fig. 4.25 The sufficient curvature con-
dition requires the function slope
magnitude to be a fraction of the ini-
tial slope.

the slope of the function at the candidate point with the slope at the
start of the line search, we can get an idea if the function is “bottoming
out”, or flattening, using the sufficient curvature condition:

|)′(
)| ≤ �2 |)′(0)| . (4.32)

This condition requires that the magnitude of the slope at the new
point be lower than the magnitude of the slope at the start of the line
search by a factor of �2, as shown in Fig. 4.25. This requirement is called
the sufficient curvature condition because by comparing the two slopes,
we quantify the function’s rate of change in the slope—the curvature.
Typical values of �2 range from 0.1 to 0.9, and the best value depends
on the method for determining the search direction and is also problem
dependent. As �2 tends to zero, enforcing the sufficient curvature
condition tends toward a point where)′(
) = 0, which would yield an
exact line search.

The sign of the slope at a point satisfying this condition is not
relevant; all that matters is that the function slope be shallow enough.
The idea is that if the slope)′(
) is still negative with a magnitude
similar to the slope at the start of the line search, then the step is too
small, and we expect the function to decrease even further by taking
a larger step. If the slope)′(
) is positive with a magnitude similar
to that at the start of the line search, then the step is too large, and we
expect to decrease the function further by taking a smaller step. On
the other hand, when the slope is shallow enough (either positive or
negative), we assume that the candidate point is near a local minimum,
and additional effort yields only incremental benefits that are wasteful
in the context of the larger problem.

The sufficient decrease and sufficient curvature conditions are
collectively known as the strong Wolfe conditions. Figure 4.26 shows
acceptable intervals that satisfy the strong Wolfe conditions, which are
more restrictive than the sufficient decrease condition (Fig. 4.22).

Sufficient
decrease line

�1)′(0)

�2)′(0)

 = 0

)(
)

)′(0)
)(0)

Acceptable range Acceptable range

Fig. 4.26 Steps that satisfy the strong
Wolfe conditions.

4 Unconstrained Gradient-Based Optimization 103

)′(0)
�1)′(0)

�2)′(0)

)(0)

 = 0

)

Fig. 4.27 If �2 < �1, theremight be no
point that satisfies the strong Wolfe
conditions.

78. Moré and Thuente, Line search algo-
rithms with guaranteed sufficient decrease,
1994.
‡A similar algorithm is detailed in Chap-
ter 3 of Nocedal and Wright.79

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

The sufficient decrease slope must be shallower than the sufficient
curvature slope, that is, 0 < �1 < �2 < 1. This is to guarantee that
there are steps that satisfy both the sufficient decrease and sufficient
curvature conditions. Otherwise, the situation illustrated in Fig. 4.27
could take place.

We now present a line search algorithm that finds a step satisfying
the strong Wolfe conditions. Enforcing the sufficient curvature condi-
tion means we require derivative information ()′), at least using the
derivative at the beginning of the line search that we already computed
from the gradient. There are various line search algorithms in the
literature, including some that are derivative-free. Here, we detail a line
search algorithm based on the one developed by Moré and Thuente.78‡
The algorithm has two phases:

1. The bracketing phase finds an interval within which we are certain
to find a point that satisfies the strong Wolfe conditions.

2. The pinpointing phase finds a point that satisfies the strong Wolfe
conditions within the interval provided by the bracketing phase.

The bracketing phase is given by Alg. 4.3 and illustrated in Fig. 4.28.
For brevity, we use a notation in the following algorithms where,
for example,)0 ≡)(0) and)low ≡)(
low). Overall, the bracketing
algorithm increases the step size until it either finds an interval that
must contain a point satisfying the strong Wolfe conditions or a point
that already meets those conditions.

We start the line search with a guess for the step size, which defines
the first interval. For a smooth continuous function, we are guaranteed
to have a minimum within an interval if either of the following hold:

1. The function value at the candidate step is higher than the value
at the start of the line search.

2. The step satisfies sufficient decrease, and the slope is positive.

These two scenarios are illustrated in the top two rows of Fig. 4.28. In
either case, we have an interval within which we can find a point that
satisfies the strong Wolfe conditions using the pinpointing algorithm.
The order in arguments to the pinpoint function inAlg. 4.3 is significant
because this function assumes that the function value corresponding
to the first
 is the lower one. The third row in Fig. 4.28 illustrates the
scenario where the point satisfies the strong Wolfe conditions, in which
case the line search is finished.

If the point satisfies sufficient decrease and the slope at that point
is negative, we assume that there are better points farther along the
line, and the algorithm increases the step size. This larger step and the

https://dx.doi.org/10.1145/192115.192132
https://dx.doi.org/10.1145/192115.192132
https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-0-387-40065-5

4 Unconstrained Gradient-Based Optimization 104

previous one define a new interval that has moved away from the line
search starting point. We repeat the procedure and check the scenarios
for this new interval. To save function calls, bracketing should return
not just
∗ but also the corresponding function value and gradient to
the outer function.

Algorithm 4.3 Bracketing phase for the line search algorithm
Inputs:

init > 0: Initial step size
)0 ,)′0: computed in outer routine, pass in to save function call
0 < �1 < 1: Sufficient decrease factor
�1 < �2 < 1: Sufficient curvature factor
� > 1: Step size increase factor (e.g., � = 2)

Outputs:

∗: Acceptable step size (satisfies the strong Wolfe conditions)

1 = 0 Define initial bracket

2 =
init
)1 =)0
)′1 =)′0 Used in pinpoint
first = true
while true do

)2 =)(
2) Compute)′2 on this line if user provides derivatives
if

[
)2 >)0 + �1
2)′0

]
or

[
not first and)2 >)1

]
then

∗ = pinpoint(
1 ,
2 , . . .) 1⇒ low, 2⇒ high
return
∗

end if
)′2 =)′(
2) If not computed previously
if |)′2 | ≤ −�2)′0 then Step is acceptable; exit line search

return
∗ =
2
else if)′2 ≥ 0 then Bracketed minimum

∗ = pinpoint (
2 ,
1 , . . .) Find acceptable step, 2⇒ low, 1⇒ high
return
∗

else Slope is negative

1 =
2

2 = �
2 Increase step

end if
first = false

end while

If the bracketing phase does not find a point that satisfies the
strong Wolfe conditions, it finds an interval where we are guaranteed
to find such a point in the pinpointing phase described in Alg. 4.4

4 Unconstrained Gradient-Based Optimization 105

Minimum bracketed; call pinpoint

Conditions are met;
line search is done

1
2

1
2

1
2

Fig. 4.28 Visual representation of the
bracketing algorithm. The sufficient
decrease line is drawn as if
1 were
the starting point for the line search,
which is the case for the first line
search iteration but not necessarily
the case for later iterations.

and illustrated in Fig. 4.29. The intervals generated by this algorithm,
bounded by
low and
high, always have the following properties:

1. The interval has one or more points that satisfy the strong Wolfe
conditions.

2. Among all the points generated so far that satisfy the sufficient
decrease condition,
low has the lowest function value.

3. The slope at
low decreases toward
high.

The first step of pinpointing is to find a new point within the
given interval. Various techniques can be used to find such a point.
The simplest one is to select the midpoint of the interval (bisection),
but this method is limited to a linear convergence rate. It is more
efficient to perform interpolation and select the point thatminimizes the
interpolation function, which can be done analytically (see Section 4.3.3).
Using this approach, we can achieve quadratic convergence.

Once we have a new point within the interval, four scenarios are
possible, as shown in Fig. 4.29. The first scenario is that)

(

?

)
is above

4 Unconstrained Gradient-Based Optimization 106

the sufficient decrease line or greater than or equal to)(
low). In that
scenario,
? becomes the new
high, and we have a new smaller interval.

In the second, third, and fourth scenarios,)
(

?

)
is below the

sufficient decrease line, and)
(

?

)
<)(
low). In those scenarios, we

check the value of the slope)′
(

?

)
. In the second and third scenarios,

we choose the new interval based on the direction in which the slope
predicts a local decrease. If the slope is shallowenough (fourth scenario),
we have found a point that satisfies the strong Wolfe conditions.

Algorithm 4.4 Pinpoint function for the line search algorithm
Inputs:

low: Interval endpoint with lower function value

high: Interval endpoint with higher function value
)0 ,)low ,)high ,)′0: Computed in outer routine
)′low ,)

′
high: One, if not both, computed previously

0 < �1 < 1: Sufficient decrease factor
�1 < �2 < 1: Sufficient curvature factor

Outputs:

∗: Step size satisfying strong Wolfe conditions

: = 0
while true do

Find
? in interval (
low ,
high) Use interpolation (see Section 4.3.3)
Uses)low,)high, and)′ from at least one endpoint

)? =)
(

?

) Also evaluate)′? if derivatives available
if)? >)0 + �1
?)′0 or)? >)low then

high =
? Also update)high =)? , and if cubic interpolation)′high =)′?
else

)′? =)′
(

?

) If not already computed
if |)′? | ≤ −�2)′0 then

∗ =
?
return
?

else if)′?(
high −
low) ≥ 0 then

high =
low

end if

low =
?

end if
: = : + 1

end while

In theory, the line search given in Alg. 4.3 followed by Alg. 4.4 is
guaranteed to find a step length satisfying the strong Wolfe conditions.
In practice, some additional considerations are needed for improved

4 Unconstrained Gradient-Based Optimization 107

robustness. One of these criteria is to ensure that the new point
in the pinpoint algorithm is not so close to an endpoint as to cause
the interpolation to be ill-conditioned. A fallback option in case
the interpolation fails could be a simpler algorithm, such as bisection.
Another criterion is to ensure that the loopdoes not continue indefinitely
in case finite-precision arithmetic leads to indistinguishable function
value changes. A limit on the number of iterations might be necessary.

Done

?
low
high
low
high

low
high

low
high

∗

Fig. 4.29 Visual representation of the
pinpointing algorithm. The labels
in red indicate the new interval end-
points.

Example 4.9 Line search with bracketing and pinpointing
Let us perform the same line search as in Alg. 4.2 but using bracketing

and pinpointing instead of backtracking. In this example, we use quadratic
interpolation, the pinpointing phase uses a step size increase factor of � = 2,
and the sufficient curvature factor is �2 = 0.9. Bracketing is achieved in the
first iteration by using a large initial step of
init = 1.2 (Fig. 4.30, left). Then
pinpointing finds an improved point through interpolation. The small initial
step of
init = 0.05 (Fig. 4.30, right) does not satisfy the strongWolfe conditions,

4 Unconstrained Gradient-Based Optimization 108

Bracketing

Pinpointing

init
∗
0 0.2 0.4 0.6 0.8 1 1.2

−10

0

10

20

30

)

Bracketing

Pinpointing

init
∗
0 0.2 0.4 0.6 0.8 1 1.2

−10

0

10

20

30

)

Fig. 4.30 Example of a line search
iteration with different initial steps.

and the bracketing phase moves forward toward a flatter part of the function.
The result is a point that is much better than the one obtainedwith backtracking.

Tip 4.3 When stuck, plot the line search
When gradient-based optimizers cannot move away from a non-optimal

point, it usually happens during the line search. To understand why the
optimizer is stuck, plot the iterations along the line search, add more points, or
plot the whole line if you can afford to. Even if you have a high-dimensional
problem, you can always plot the line search, which will be understandable
because it is one-dimensional.

4.3.3 Interpolation for Pinpointing
Interpolation is recommended to find a new point within each interval
at the pinpointing phase. Once we have an interpolation function,
we find the new point by determining the analytic minimum of that
function. This accelerates the convergence comparedwith bisection. We
consider two options: quadratic interpolation and cubic interpolation.

Because we have the function value and derivative at one endpoint
of the interval and at least the function value at the other endpoint, one
option is to perform quadratic interpolation to estimate the minimum
within the interval.

The quadratic can be written as

)̃(
) = 20 + 21
 + 22

2 , (4.33)

where 20, 21, and 22 are constants to be determined by interpolation.
Suppose that we have the function value and the derivative at
1
and the function value at
2, as illustrated in Fig. 4.31. These values
correspond to
low and
high in the pinpointing algorithm, but we use

4 Unconstrained Gradient-Based Optimization 109

)̃(
))′(
1)

1
2
∗

)(
1)

)(
2)

Fig. 4.31 Quadratic interpolation
with two function values and one
derivative.

)̃(
)
)′(
1)

)′(
2)

1
2
∗

)(
1)

)(
2)

Fig. 4.32 Cubic interpolation with
function values and derivatives at
endpoints.

the more generic indices 1 and 2 because the formulas of this section
are not dependent on which one is lower or higher. Then, the boundary
conditions at the endpoints are

)(
1) = 20 + 21
1 + 22

2
1

)(
2) = 20 + 22
2 + 22

2
2

)′(
1) = 21 + 222
1 .

(4.34)

We can use these three equations to find the three coefficients based
on function and derivative values. Once we have the coefficients for
the quadratic, we can find the minimum of the quadratic analytically
by finding the point
∗ such that)̃′(
∗) = 0, which is
∗ = −21/222.
Substituting the analytic solution for the coefficients as a function of
the given values into this expression yields the final expression for the
minimizer of the quadratic:

∗ =
2
1

[
)(
2) −)(
1)

] +)′(
1)
(

2

1 −
2
2
)

2
[
)(
2) −)(
1) +)′(
1)(
1 −
2)

] . (4.35)

Performing this quadratic interpolation for successive intervals is
similar to the Newton method and also converges quadratically. The
pure Newton method also models a quadratic, but it is based on the
information at a single point (function value, derivative, and curvature),
as opposed to information at two points.

If computing additional derivatives is inexpensive, or we already
evaluated)′ (
8) (either as part of Alg. 4.3 or as part of checking the
strong Wolfe conditions in Alg. 4.4), then we have the function values
and derivatives at both points. With these four pieces of information,
we can perform a cubic interpolation,

)̃(
) = 20 + 21
 + 22

2 + 23

3 , (4.36)

as shown in Fig. 4.32. To determine the four coefficients, we apply the
boundary conditions:

)(
1) = 20 + 21
1 + 22

2
1 + 23

3
1

)(
2) = 20 + 22
2 + 22

2
2 + 23

3
2

)′(
1) = 21 + 222
1 + 323

2
1

)′(
2) = 21 + 222
2 + 323

2
2 .

(4.37)

Using these four equations, we can find expressions for the four co-
efficients as a function of the four pieces of information. Similar
to the quadratic interpolation function, we can find the solution for
)̃′(
∗) = 21 + 222
∗ + 323
∗2 = 0 as a function of the coefficients. There

4 Unconstrained Gradient-Based Optimization 110

∇ 5

?:

Fig. 4.33 The steepest-descent direc-
tion points in the opposite direction
of the gradient.

could be two valid solutions, but we are only interested in theminimum,
for which the curvature is positive; that is,)̃′′(
∗) = 222 + 623
∗ > 0.
Substituting the coefficients with the expressions obtained from solving
the boundary condition equations and selecting the minimum solution
yields

∗ =
2 − (
2 −
1)
)′(
2) + �2 − �1

)′(
2) −)′(
1) + 2�2
, (4.38)

where
�1 =)′(
1) +)′(
2) − 3

)(
1) −)(
2)

1 −
2

�2 = sign(
2 −
1)
√
�2

1 −)′(
1))′(
2) .
(4.39)

These interpolations become ill-conditioned if the interval becomes
too small. The interpolation may also lead to points outside the bracket.
In such cases, we can switch to bisection for the problematic iterations.

4.4 Search Direction
As stated at the beginning of this chapter, each iteration of an uncon-
strained gradient-based algorithm consists of two main steps: deter-
mining the search direction and performing the line search (Alg. 4.1).
The optimization algorithms are named after the method used to find
the search direction, ?: , and can use any suitable line search. We start
by introducing two first-order methods that only require the gradient
and then explain two second-order methods that require the Hessian,
or at least an approximation of the Hessian.

4.4.1 Steepest Descent
The steepest-descentmethod (also called gradient descent) is a simple and
intuitive method for determining the search direction. As discussed in
Section 4.1.1, the gradient points in the direction of steepest increase,
so −∇ 5 points in the direction of steepest descent, as shown in Fig. 4.33.
Thus, our search direction at iteration : is simply

? = −∇ 5 . (4.40)

One major issue with the steepest descent is that, in general, the
entries in the gradient and its overall scale can vary greatly depending
on the magnitudes of the objective function and design variables. The
gradient itself contains no information about an appropriate step length,
and therefore the search direction is often better posed as a normalized

4 Unconstrained Gradient-Based Optimization 111

direction,

?: = −
∇ 5:
‖∇ 5: ‖ . (4.41)

Algorithm 4.5 provides the complete steepest descent procedure.

Algorithm 4.5 Steepest descent
Inputs:
G0: Starting point
�: Convergence tolerance

Outputs:
G∗: Optimal point
5 (G∗): Minimum function value

: = 0 Initialize iteration counter
while

∇ 5

∞ > � do Optimality condition
?: = − ∇ 5:‖∇ 5: ‖ Normalized steepest descent direction
Estimate
init from Eq. 4.43

: = linesearch

(
?: ,
init

) Perform a line search
G:+1 = G: +
:?: Update design variables
: = : + 1 Increment iteration index

end while

Regardless of whether we choose to normalize the search direction
or not, the gradient does not provide enough information to inform
a good guess of the initial step size for the line search. As we saw in
Section 4.3, this initial choice has a large impact on the efficiency of
the line search because the first guess could be orders of magnitude
too small or too large. The second-order methods described later in
this section are better in this respect. In the meantime, we can make
a guess of the step size for a given line search based on the result of
the previous one. Assuming that we will obtain a decrease in objective
function at the current line search that is comparable to the previous
one, we can write

:∇ 5:ᵀ?: ≈
:−1∇ 5:−1
ᵀ?:−1 . (4.42)

Solving for the step length, we obtain the guess

: =
:−1
∇ 5:−1

ᵀ?:−1

∇ 5:ᵀ?: . (4.43)

Although this expression could be simplified for the steepest descent,
we leave it as is so that it is applicable to other methods. If the slope of

4 Unconstrained Gradient-Based Optimization 112

the function increases in magnitude relative to the previous line search,
this guess decreases relative to the previous line search step length, and
vice versa. This is just the first step length in the new line search, after
which we proceed as usual.

Although steepest descent sounds like the best possible search
direction for decreasing a function, it generally is not. The reason is
that when a function curvature varies significantly with direction, the
gradient alone is a poor representation of function behavior beyond a
small neighborhood, as illustrated previously in Fig. 4.19.

Example 4.10 Steepest descent with varying amount of curvature
Consider the following quadratic function:

5 (G1 , G2) = G2
1 + �G2

2 ,

where � can be set to adjust the curvature in the G2 direction. In Fig. 4.34, we
show this function for � = 1, 5, 15. The starting point is G0 = (10, 1). When
� = 1 (left), this quadratic has the same curvature in all directions, and the
steepest-descent direction points directly to the minimum. When � > 1 (middle
and right), this is no longer the case, and steepest descent shows abrupt changes
in the subsequent search directions. This zigzagging is an inefficient way to
approach the minimum. The higher the difference in curvature, the more
iterations it takes.

G0

G∗

1 iteration

−5 0 5 10

−5

0

5

G1

G2

� = 1

G0

G∗

32 iterations

−5 0 5 10

−5

0

5

G1

G2

� = 5

G0

G∗

111 iterations

−5 0 5 10

−5

0

5

G1

G2

� = 15

Fig. 4.34 Iteration history for a
quadratic function, with three differ-
ent curvatures, using the steepest-
descent method with an exact line
search (small enough �2).

The behavior shown in Ex. 4.10 is expected, and we can show it
mathematically. Assuming we perform an exact line search at each
iteration, this means selecting the optimal value for
 along the line

4 Unconstrained Gradient-Based Optimization 113

G0

G∗

34 iterations

−2 −1 0 1 2
−1

0

1

2

3

G1

G2

Fig. 4.36 Steepest-descent optimiza-
tion path.

search:
% 5

(
G: +
?:

)
%

= 0⇒
% 5 (G:+1)

%

= 0⇒

% 5 (G:+1)
%G:+1

%
(
G: +
?:

)
%

= 0⇒
∇ 5:+1

ᵀ?: = 0⇒
−?:+1

ᵀ?: = 0 .

(4.44)

Hence, each search direction is orthogonal to the previous one. When
performing an exact line search, the gradient projection in the line search
direction vanishes at the minimum, which means that the gradient is
orthogonal to the search direction, as shown in Fig. 4.35.

?

G:∇ 5 ᵀ?

∇ 5

−5 0 5 10

−5

0

5

G1

G2

0

40

80

120

5

Fig. 4.35 The gradient projection in
the line search direction vanishes at
the line search minimum.

As discussed in the last section, exact line searches are not desirable,
so the search directions are not orthogonal. However, the overall
zigzagging behavior still exists.

Example 4.11 Steepest descent applied to the bean function
We now find the minimum of the bean function,

5 (G1 , G2) = (1 − G1)2 + (1 − G2)2 + 1
2

(
2G2 − G2

1

)2
,

using the steepest-descent algorithm with an exact line search, and a conver-
gence tolerance of ‖∇ 5 ‖∞ ≤ 10−6. The optimization path is shown in Fig. 4.36.
Although it takes only a few iterations to get close to the minimum, it takes
many more to satisfy the specified convergence tolerance.

4 Unconstrained Gradient-Based Optimization 114

Optimizer

Model

Ḡ � BG 5 /B 5

G0 � BG Ḡ∗ � BG

G0 G∗

Ḡ0

Ḡ

G 5

5̄

Ḡ∗

Fig. 4.37 Scaling works by providing
a scaled version of the design vari-
ables and objective function to the op-
timizer. However, the model analysis
still needs to work with the original
variables and function.

Tip 4.4 Scale the design variables and the objective function
Problem scaling is one of the most crucial considerations in practical

optimization. Steepest descent is susceptible to scaling, as demonstrated in
Ex. 4.10. Even though we will learn about less sensitive methods, poor scaling
can decrease the effectiveness of any method for general nonlinear functions.

A common cause of poor scaling is unit choice. For example, consider a
problem with two types of design variables, where one type is the material
thickness, on the order of 10−6 m, and the other type is the length of the
structure, on the order of 1 m. If both distances are measured in meters, the
derivative in the thickness direction is much larger than the derivative in the
length direction. In other words, the design space would have a valley that
is steep in one direction and shallow in the other. The optimizer would have
great difficulty in navigating this type of design space.

Similarly, if the objective is power and a typical value is 106 W, the gradients
would likely be relatively small, and satisfying convergence tolerances may be
challenging.

A good rule of thumb is to scale the objective function and every design
variable to be around unity. The scaling of the objective is only needed after
the model analysis computes the function and can be written as

5̄ = 5 /B 5 , (4.45)

where B 5 is the scaling factor, which could be the value of the objective at the
starting point, 5 (G0), or another typical value. Multiplying the functions by a
scalar does not change the optimal solution but can significantly improve the
ability of the optimizer to find the optimum.

Scaling the design variables is more involved because scaling them changes
the value that the optimizer would pass to the model and thus changes their
meaning. In general, we might use different scaling factors for different types
of variables, so we represent these as an =-vector, BG . Starting with the physical
design variables, G0, we obtain the scaled variables by dividing them by the
scaling factors:

Ḡ0 = G0 � BG , (4.46)

where � denotes element-wise division. Then, because the optimizer works
with the scaled variables, we need to convert them back to physical variables
by multiplying them by the scaling factors:

G = Ḡ � BG , (4.47)

where � denotes element-wise multiplication. Finally, we must also convert
the scaled variables to their physical values after the optimization is completed.
The complete process is shown in Fig. 4.37.

It is not necessary that the objective and all variables be precisely 1—which
is impossible to maintain as the optimization progresses. Instead, this heuristic
suggests that the objective and all variables should have an order of magnitude
of 1. If one of the variables or functions is expected to vary across multiple
orders of magnitude during an optimization, one effective way to scale is to

4 Unconstrained Gradient-Based Optimization 115

∗If 5 can be negative, a transformation is
required to ensure that the logarithm ar-
gument is always positive.

G0

G∗

2 iterations

?0
?1

G1

G2

Fig. 4.38 For a quadratic function
with elliptical contours and the princi-
pal axis aligned with the coordinate
axis, we can find the minimum in
= steps, where = is the number of
dimensions, by using a coordinate
search.

take the logarithm. For example, suppose the objective was expected to vary
across multiple orders of magnitude. In that case, we could minimize log(5)
instead of minimizing 5 .∗

This heuristic still does not guarantee that the derivatives are well scaled,
but it provides a reasonable starting point for further fine-tuning of the problem
scaling. A scaling example is discussed in Ex. 4.19.

Sometimes, additional adjustment is needed if the objective is far less
sensitive to some of the design variables than others (i.e., the entries in the
gradient span various orders of magnitude). A more appropriate but more
involved approach is to scale the variables and objective function such that the
gradient elements have a similar magnitude (ideally of order 1). Achieving a
well-scaled gradient sometimes requires adjusting inputs and outputs away
from the earlier heuristic. Sometimes this occurs because the objective is much
less sensitive to a particular variable.

4.4.2 Conjugate Gradient
Steepest descent generally performs poorly, especially if the problem is
not well scaled, like the quadratic example in Fig. 4.34. The conjugate
gradient method updates the search directions such that they do
not zigzag as much. This method is based on the linear conjugate
gradient method, which was designed to solve linear equations. We
first introduce the linear conjugate gradient method and then adapt it
to the nonlinear case.

For the moment, let us assume that we have the following quadratic
objective function:

5 (G) = 1
2G

ᵀ�G − 1ᵀG , (4.48)

where � is a positive definite Hessian, and 1 is the gradient at G = 0.
The constant term is omitted with no loss of generality because it does
not change the location of the minimum. To find the minimum of this
quadratic, we require

∇ 5 (G∗) = �G∗ − 1 = 0 . (4.49)

Thus, finding the minimum of a quadratic amounts to solving the linear
system �G = 1, and the residual vector is the gradient of the quadratic.

If �were a positive-definite diagonal matrix, the contours would be
elliptical, as shown in Fig. 4.38 (or hyper-ellipsoids in the =-dimensional
case), and the axes of the ellipses would align with the coordinate direc-
tions. In that case, we could converge to the minimum by successively
performing an exact line search in each coordinate direction for a total
of = line searches.

4 Unconstrained Gradient-Based Optimization 116

G0

G∗

16 iterations

?0?1

G1

G2

Fig. 4.39 For a quadratic function
with the elliptical principal axis not
aligned with the coordinate axis,
more iterations are needed to find the
minimum using a coordinate search.

G0

G∗

2 iterations

?0
?1

G1

G2

Fig. 4.40 We can converge to the min-
imum of a quadratic function by min-
imizing along each Hessian eigenvec-
tor.

In themore general case (but still assuming � to be positive definite),
the axes of the ellipses form an orthogonal coordinate system in some
other orientation. A coordinate search would no longer work as well in
this case, as illustrated in Fig. 4.39.

Recall from Section 4.1.2 that the eigenvectors of the Hessian repre-
sent the directions of principal curvature, which correspond to the axes
of the ellipses. Therefore, we could successively perform a line search
along the direction defined by each eigenvector and again converge
to the minimum with = line searches, as illustrated in Fig. 4.40. The
problem with this approach is that we would have to compute the
eigenvectors of �, a computation whose cost is O(=3).

Fortunately, the eigenvector directions are not the only set of direc-
tions that can minimize the quadratic function in = line searches. To
find out which directions can achieve this, let us express the path from
the origin to the minimum of the quadratic as a sequence of = steps
with directions ?8 and length
8 ,

G∗ =
=−1∑
8=0

8?8 . (4.50)

Thus, we have represented the solution as a linear combination of =
vectors. Substituting this into the quadratic (Eq. 4.48), we get

5 (G∗) = 5

(
=−1∑
8=0

8?8

)

=
1
2

(
=−1∑
8=0

8?8

)ᵀ
�

©­«
=−1∑
9=0

 9? 9
ª®¬
− 1ᵀ

(
=−1∑
8=0

8?8

)

=
1
2

=−1∑
8=0

=−1∑
9=0

8
 9?8ᵀ�? 9 −
=−1∑
8=0

81ᵀ?8 .

(4.51)

Suppose that the vectors ?0 , ?1 , . . . , ?=−1 are conjugate with respect to
�; that is, they have the following property:

?8ᵀ�? 9 = 0, for all 8 ≠ 9 . (4.52)

Then, the double-sum term in Eq. 4.51 can be simplified to a single sum
and we can write

5 (G∗) =
=−1∑
8=0

(
1
2

2
8 ?8

ᵀ�?8 −
81ᵀ?8
)
. (4.53)

Because each term in this sum involves only one direction ?8 , we have
reduced the original problem to a series of one-dimensional quadratic

4 Unconstrained Gradient-Based Optimization 117

G0

G∗

2 iterations

?0
?1

G1

G2

Fig. 4.41 By minimizing along a se-
quence of conjugate directions in
turn, we can find the minimum of
a quadratic in = steps, where = is the
number of dimensions.

−∇ 5:

�:?:−1

?:−1

?:

Fig. 4.42 The conjugate gradient
search direction update combines the
steepest-descent direction with the
previous conjugate gradient direc-
tion.

functions that can be minimized one at a time. Two possible conjugate
directions are shown for the two-dimensional case in Fig. 4.41.

Each one-dimensional problem corresponds to minimizing the
quadratic with respect to the step length
8 . Differentiating each term
and setting it to zero yields

8?8ᵀ�?8 − 1ᵀ?8 = 0 ⇒
8 =
1ᵀ?8
?8ᵀ�?8

, (4.54)

which corresponds to the result of an exact line search in direction ?8 .
There are many possible sets of vectors that are conjugate with

respect to�, including the eigenvectors. The conjugate gradientmethod
finds these directions starting with the steepest-descent direction,

?0 = −∇ 5 (G0) , (4.55)

and then finds each subsequent direction using the update,

?: = −∇ 5: + �:−1?:−1 . (4.56)

For a positive �, the result is a new direction somewhere between the
current steepest descent and the previous search direction, as shown in
Fig. 4.42. The factor � is set such that ?: and ?:−1 are conjugate with
respect to �. One option to compute a � that achieves conjugacy is
given by the Fletcher–Reeves formula,

�: =
∇ 5:ᵀ∇ 5:
∇ 5:−1

ᵀ∇ 5:−1
. (4.57)

This formula is derived in Appendix B.4 as Eq. B.40 in the context of
linear solvers. Here, we replace the residual of the linear system with
the gradient of the quadratic because they are equivalent. Using the
directions given by Eq. 4.56 and the step lengths given by Eq. 4.54,
we can minimize a quadratic in = steps, where = is the size of G.
The minimization shown in Fig. 4.41 starts with the steepest-descent
direction and then computes one update to converge to the minimum in
two iterations using exact line searches. The linear conjugate gradient
method is detailed in Alg. B.2.

However, we are interested in minimizing general nonlinear func-
tions. We can adapt the linear conjugate gradient method to the
nonlinear case by doing the following:

1. Use the gradient of the nonlinear function in the search direction
update (Eq. 4.56) and the expression for � (Eq. 4.57). This gradient
can be computed using any of the methods in Chapter 6.

4 Unconstrained Gradient-Based Optimization 118

†For more details on the line search re-
quirements, see Sec. 5.2 in Nocedal and
Wright.79

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

2. Perform an inexact line search instead of doing the exact line
search. This frees us from providing the Hessian vector products
required for an exact line search (see Eq. 4.54). A line search that
satisfies the strongWolfe conditions is a good choice, but we need
a stricter range in the sufficient decrease and sufficient curvature
parameters (0 < �1 < �2 < 1/2).† This stricter requirement on �2
is necessary with the Fletcher–Reeves formula (Eq. 4.57) to ensure
descent directions. As a first guess for
 in the line search, we can
use the same estimate proposed for steepest descent (Eq. 4.43).

3. Reset the search direction periodically back to the steepest-descent
direction. In practice, resetting is often helpful to remove old
information that is no longer useful. Some methods reset every =
iterations, motivated by the fact that the linear case only generates
= conjugate vectors. A more mathematical approach resets the
direction when

|∇ 5 ᵀ: ∇ 5:−1 |
|∇ 5 ᵀ: ∇ 5: |

≥ 0.1 . (4.58)

The full procedure is given in Alg. 4.6. As with steepest descent, we
may use normalized search directions.

The nonlinear conjugate gradient method is no longer guaranteed
to converge in = steps like its linear counterpart, but it significantly
outperforms the steepest-descent method. The change required relative
to steepest descent is minimal: save information on the search direction
and gradient from the previous iteration, and add the � term to the
search direction update. Therefore, there is rarely a reason to prefer
steepest descent. The parameter � can be interpreted as a “damping
parameter” that prevents each search direction from varying too much
relative to the previous one. When the function steepens, the damping
becomes larger, and vice versa.

The formula for � in Eq. 4.57 is only one of several options. Another
well-known option is the Polak–Ribière formula, which is given by

�: =
∇ 5:ᵀ

(∇ 5: − ∇ 5:−1
)

∇ 5:−1
ᵀ∇ 5:−1

. (4.59)

The conjugate gradient method with the Polak–Ribière formula tends
to converge more quickly than with the Fletcher–Reeves formula, and
this method does not require the more stringent range for �2. However,
regardless of the value of �2, the strong Wolfe conditions still do not
guarantee that ?: is a descent direction (�might become negative). This
issue can be addressed by forcing � to remain nonnegative:

�← max(0, �) . (4.60)

https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-0-387-40065-5

4 Unconstrained Gradient-Based Optimization 119

G0

G∗

22 iterations

−2 −1 0 1 2
−1

0

1

2

3

G1

G2

Fig. 4.43 Conjugate gradient opti-
mization path.

This equation automatically triggers a reset whenever � = 0 (see
Eq. 4.56), so in this approach, other checks on resetting can be removed
from Alg. 4.6.

Algorithm 4.6 Nonlinear conjugate gradient
Inputs:
G0: Starting point
�: Convergence tolerance

Outputs:
G∗: Optimal point
5 (G∗): Minimum function value

: = 0 Initialize iteration counter
while ‖∇ 5: ‖∞ > � do Optimality condition

if : = 0 or reset = true then first direction, and at resets
?: = − ∇ 5:‖∇ 5: ‖

else
�: =

∇ 5:ᵀ∇ 5:
∇ 5:−1

ᵀ∇ 5:−1

?: = − ∇ 5:‖∇ 5: ‖ + �:?:−1 Conjugate gradient direction update
end if

: = linesearch

(
?: ,
init

) Perform a line search
G:+1 = G: +
:?: Update design variables
: = : + 1 Increment iteration index

end while

Example 4.12 Conjugate gradient applied to the bean function
Minimizing the same bean function from Ex. 4.11 and the same line search

algorithm and settings, we get the optimization path shown in Fig. 4.43. The
changes in direction for the conjugate gradient method are smaller than for
steepest descent, and it takes fewer iterations to achieve the same convergence
tolerance.

4.4.3 Newton’s Method
The steepest-descent and conjugate gradient methods use only first-
order information (the gradient). Newton’s method uses second-order
(curvature) information to get better estimates for search directions. The
main advantage of Newton’s method is that, unlike first-order methods,

4 Unconstrained Gradient-Based Optimization 120

0

1

2

0

5

10

15

20 5

G0G∗
1 2 3

−10

0

10

20 5 ′

Fig. 4.44 Newton’s method for find-
ing roots can be adapted for func-
tion minimization by formulating it
to find a zero of the derivative. We
step to the minimum of a quadratic
at each iteration (top) or equivalently
find the root of the function’s first
derivative (bottom).

it provides an estimate of the step length because the curvature predicts
where the function derivative is zero.

In Section 3.8, we presented Newton’s method for solving nonlinear
equations. Newton’s method for minimizing functions is based on the
same principle, but instead of solving A(D) = 0, we solve for ∇ 5 (G) = 0.

As in Section 3.8,we canderiveNewton’smethod for one-dimensional
function minimization from the Taylor series approximation,

5 (G: + B) ≈ 5 (G:) + B 5 ′ (G:) + 1
2 B

2 5 ′′ (G:) . (4.61)

We now include a second-order term to get a quadratic that we can
minimize. Weminimize this quadratic approximation by differentiating
with respect to the step B and setting the derivative to zero, which yields

5 ′ (G:) + B 5 ′′ (G:) = 0 ⇒ B = − 5
′ (G:)
5 ′′ (G:) . (4.62)

Thus, the Newton update is

G:+1 = G: −
5 ′:
5 ′′:
. (4.63)

We could also derive this equation by taking Newton’s method for root
finding (Eq. 3.24) and replacing A(D)with 5 ′(G).

Example 4.13 Newton’s method for one-dimensional minimization
Suppose we want to minimize the following single-variable function:

5 (G) = (G − 2)4 + 2G2 − 4G + 4 .

The first derivative is
5 ′(G) = 4(G − 2)3 + 4G − 4 ,

and the second derivative is

5 ′′(G) = 12(G − 2)2 + 4 .

Starting from G0 = 3, we can form the quadratic (Eq. 4.61) using the function
value and the first and second derivatives evaluated at that point, as shown
in the top plot in Fig. 4.44. Then, the minimum of the quadratic is given
analytically by the Newton update (Eq. 4.63). We successively form quadratics
at each iteration andminimize them to find the next iteration. This is equivalent
to finding the zero of the function’s first derivative, as shown in the bottom plot
in Eq. 4.63.

4 Unconstrained Gradient-Based Optimization 121

G0

G∗

1 iteration

−5 0 5 10

−5

0

5

G1

G2

Fig. 4.45 Iteration history for a
quadratic function using an exact line
search and Newton’s method. Un-
surprisingly, only one iteration is re-
quired.

Like the one-dimensional case, we can build an =-dimensional
Taylor series expansion about the current design point:

5 (G: + B) ≈ 5: + ∇ 5:ᵀB + 1
2 B

ᵀ�: B , (4.64)

where B is a vector centered at G: . Similar to the one-dimensional case,
we can find the step B: that minimizes this quadratic model by taking
the derivative with respect to B and setting that equal to zero:

d 5 (G: + B)
dB = ∇ 5: + �: B = 0 . (4.65)

Thus, each Newton step is the solution of a linear system where the
matrix is the Hessian,

�: B: = −∇ 5: . (4.66)

This linear system is analogous to the one used for solving nonlinear
systems with Newton’s method (Eq. 3.30), except that the Jacobian
becomes the Hessian, the residual is the gradient, and the design
variables replace the states. We can use any of the linear solvers
mentioned in Section 3.6 and Appendix B to solve this system.

When minimizing the quadratic function from Ex. 4.10, Newton’s
method converges in one step for any value of �, as shown in Fig. 4.45.
Thus, Newton’s method is scale invariant

Because the function is quadratic, the quadratic “approximation”
from the Taylor series is exact, so we can find the minimum in one
step. It will take more iterations for a general nonlinear function, but
using curvature information generally yields a better search direction
than first-order methods. In addition, Newton’s method provides a
step length embedded in B: because the quadratic model estimates
the stationary point location. Furthermore, Newton’s method exhibits
quadratic convergence.

Although Newton’s method is powerful, it suffers from a few issues
in practice. One issue is that the Newton step does not necessarily
result in a function decrease. This issue can occur if the Hessian is not
positive definite or if the quadratic predictions overshoot because the
actual function has more curvature than predicted by the quadratic
approximation. Both of these possibilities are illustrated in Fig. 4.46.

If the Hessian is not positive definite, the step might not even be in
a descent direction. Replacing the real Hessian with a positive-definite
Hessian can mitigate this issue. The quasi-Newton methods in the next
section force a positive-definite Hessian by construction.

To fix the overshooting issue, we can use a line search instead of
blindly accepting the Newton step length. We would set ?: = B: ,

4 Unconstrained Gradient-Based Optimization 122

G:
G:+1

−4 −2 0 2 4
−4

−2

0

2

4

G1

G2

G:G:+1
10

15

20

25

5

Negative curvature

G:

G:+1

−4 −2 0 2 4
−4

−2

0

2

4

G1

G2

G: G:+1

−40

−20

0

5

Overshoot

Fig. 4.46 Newton’s method in its pure
form is vulnerable to negative curva-
ture (in which case it might step away
from the minimum) and overshoot-
ing (which might result in a function
increase).

with
init = 1 as the first guess for the step length. In this case, we
have a much better guess for
 compared with the steepest-descent
or conjugate gradient cases because this guess is based on the local
curvature. Even if the first step length given by the Newton step
overshoots, the line search would find a point with a lower function
value.

The trust-region methods in Section 4.5 address both of these issues
by minimizing the function approximation within a specified region
around the current iteration.

Another major issue with Newton’s method is that the Hessian can
be difficult or costly to compute. Even if available, the solution of the
linear system in Eq. 4.65 can be expensive. Both of these considerations
motivate the quasi-Newton methods, which we explain next.

Example 4.14 Newton method applied to the bean function
Minimizing the same bean function from Exs. 4.11 and 4.12, we get the

optimization path shown in Fig. 4.47. Newton’s method takes fewer iterations
than steepest descent (Ex. 4.11) or conjugate gradient (Ex. 4.12) to achieve the
same convergence tolerance. The first quadratic approximation is a saddle
function that steps to the saddle point, away from the minimum of the function.
However, in subsequent iterations, the quadratic approximation becomes
convex, and the steps take us along the valley of the bean function toward the
minimum.

4 Unconstrained Gradient-Based Optimization 123

G0

G1

B0

−2 −1 0 1 2
−1

0

1

2

3

G1

G2

G0 G1
5

10

15

5

: = 0

G2

G3B2

−2 −1 0 1 2
−1

0

1

2

3

G1

G2

G2 G3
2

4

6

8

10

5

: = 2

G∗

−2 −1 0 1 2
−1

0

1

2

3

G1

G2

G∗

0

2

4

5

: = 8

Fig. 4.47 Newton’s method mini-
mizes a sequence of quadratic ap-
proximations of the function at each
iteration. In this case, it converges in
8 major iterations.

4.4.4 Quasi-Newton Methods
As mentioned in Section 4.4.3, Newton’s method is efficient because the
second-order information results in better search directions, but it has
the significant shortcoming of requiring the Hessian. Quasi-Newton
methods are designed to address this issue. The basic idea is that
we can use first-order information (gradients) along each step in the
iteration path to build an approximation of the Hessian.

In one dimension, we can adapt the secant method (see Eq. 3.26) for
function minimization. Instead of estimating the first derivative, we
now estimate the second derivative (curvature) using two successive
first derivatives, as follows:

5 ′′:+1 =
5 ′:+1 − 5 ′:
G:+1 − G: . (4.67)

Then we can use this approximation in the Newton step (Eq. 4.63) to
obtain an iterative procedure that requires only first derivatives instead
of first and second derivatives.

The quadratic approximation based on this approximation of the
second derivative is

5̃:+1 (G:+1 + B) = 5:+1 + B 5 ′:+1 +
B2

2

(
5 ′:+1 − 5 ′:
G:+1 − G:

)
. (4.68)

Taking the derivative of this approximation with respect to B, we get

5̃ ′:+1 (G:+1 + B) = 5 ′:+1 + B
(
5 ′:+1 − 5 ′:
G:+1 − G:

)
. (4.69)

4 Unconstrained Gradient-Based Optimization 124

5
5̃

2

4

6

8 5

5 ′

5̃ ′

G: G:+1
−10

−5

0

5

10 5 ′

Fig. 4.48 The quadratic approxima-
tion based on the secant method
matches the slopes at the two last
points and the function value at the
last point.

For B = 0, which corresponds to G:+1, we get 5̃ ′:+1 (G:+1) = 5 ′:+1, which
tells us that the slope of the approximation matches the slope of the
actual function at G:+1, as expected.

Also, by stepping backward to G: by setting B = − (G:+1 − G:), we
find that 5̃ ′:+1 (G:) = 5 ′: . Thus, the nature of this approximation is such
that it matches the slope of the actual function at the last two points, as
shown in Fig. 4.48.

In = dimensions, things are more involved, but the principle is
the same: use first-derivative information from the last two points
to approximate second-derivative information. Instead of iterating
along the G-axis as we would in one dimension, the optimization in =
dimensions follows a sequence of steps (as shown in Fig. 4.1) for the
separate line searches. We have gradients at the endpoints of each step,
so we can take the difference between the gradients at those points to
get the curvature along that direction. The question is: How do we
update the Hessian, which is expressed in the coordinate system of G,
based on directional curvatures in directions that are not necessarily
aligned with the coordinate system?

Quasi-Newton methods use the quadratic approximation of the
objective function,

5̃
(
G: + ?

)
= 5: + ∇ 5:ᵀ? + 1

2?
ᵀ�̃:? , (4.70)

where �̃ is an approximation of the Hessian. Similar to Newton’s
method, we minimize this quadratic with respect to ?, which yields the
linear system

�̃:?: = −∇ 5: . (4.71)

We solve this linear system for ?: , but instead of accepting it as the final
step, we perform a line search in the ?: direction. Only after finding a
step size
: that satisfies the strong Wolfe conditions do we update the
point using

G:+1 = G: +
:?: . (4.72)

Quasi-Newton methods update the approximate Hessian at every
iteration based on the latest information using an update of the form

�̃:+1 = �̃: + Δ�̃: , (4.73)

where the update Δ�̃: is a function of the last two gradients. The first
Hessian approximation is usually set to the identity matrix (or a scaled
version of it), which yields a steepest-descent direction for the first line
search (set �̃ = � in Eq. 4.71 to verify this).

4 Unconstrained Gradient-Based Optimization 125

∇ 5:

∇ 5:+1

B:
?:

?:+1

G:

G:+1

Fig. 4.49 Quasi-Newton methods use
the gradient at the endpoint of each
step to estimate the curvature in the
step direction and update an approx-
imation of the Hessian.

We now develop the requirements for the approximate Hessian
update. Suppose we just obtained the new point G:+1 after a line search
starting from G: in the direction ?: . We can write the new quadratic
based on an updated Hessian as follows:

5̃
(
G:+1 + ?

)
= 5:+1 + ∇ 5:+1

ᵀ? + 1
2 ?

ᵀ�̃:+1? . (4.74)

We can assume that the new point’s function value and gradient are
given, but we do not have the new approximate Hessian yet. Taking
the gradient of this quadratic with respect to ?, we obtain

∇ 5̃ (
G:+1 + ?

)
= ∇ 5:+1 + �̃:+1? . (4.75)

In the single-variable case, we observed that the quadratic approx-
imation based on the secant method matched the slope of the actual
function at the last two points. Therefore, it is logical to require the
=-dimensional quadratic based on the approximate Hessian to match
the gradient of the actual function at the last two points.

The gradient of the new approximation (Eq. 4.75) matches the
gradient at the new point G:+1 by construction (just set ? = 0). To
find the gradient predicted by the new approximation (Eq. 4.75) at the
previous point G: , we set ? = G: − G:+1 = −
:?: (which is a backward
step from the end of the last line search to the start of the line search) to
get

∇ 5̃ (
G:+1 −
:?:

)
= ∇ 5:+1 −
:�̃:+1?: . (4.76)

Now, we enforce that this must be equal to the actual gradient at that
point,

∇ 5:+1 −
:�̃:+1?: = ∇ 5: ⇒

:�̃:+1?: = ∇ 5:+1 − ∇ 5: .

(4.77)

To simplify the notation, we define the step as

B: = G:+1 − G: =
:?: , (4.78)

and the difference in the gradient as

H: = ∇ 5:+1 − ∇ 5: . (4.79)

Figure 4.49 shows the step and the corresponding gradients.
Rewriting Eq. 4.77 using this notation, we get

�̃:+1B: = H: . (4.80)

This is called the secant equation and is a fundamental requirement
for quasi-Newton methods. The result is intuitive when we recall the

4 Unconstrained Gradient-Based Optimization 126

‡The secant equation is also known as the
quasi-Newton condition.

20. Davidon, Variable metric method for
minimization, 1991.

21. Fletcher and Powell, A rapidly con-
vergent descent method for minimization,
1963.
80. Broyden, The convergence of a class
of double-rank minimization algorithms 1.
General considerations, 1970.

81. Fletcher, A new approach to variable
metric algorithms, 1970.

82. Goldfarb, A family of variable-metric
methods derived by variational means, 1970.

83. Shanno, Conditioning of quasi-Newton
methods for function minimization, 1970.

meaning of the product of the Hessian with a vector (Eq. 4.12): it is the
rate of change of the Hessian in the direction defined by that vector.
Thus, it makes sense that the rate of change of the curvature predicted
by the approximate Hessian should match the difference between the
gradients.‡

We need �̃ to be positive definite. Using the secant equation
(Eq. 4.80) and the definition of positive definiteness (Bᵀ�B > 0), we see
that this requirement implies that the predicted curvature is positive
along the step; that is,

B:ᵀH: > 0 . (4.81)

This is called the curvature condition, and it is automatically satisfied if
the line search finds a step that satisfies the strong Wolfe conditions.

The secant equation (Eq. 4.80) is a linear system of = equations
where the step and the gradients are known. However, there are
=(=+1)/2 unknowns in the approximate Hessian matrix (recall that it is
symmetric), so this equation is not sufficient to determine the elements
of �̃. The requirement of positive definiteness adds one more equation,
but those are not enough to determine all the unknowns, leaving us
with an infinite number of possibilities for �̃.

To find a unique �̃:+1, we rationalize that among all the matrices
that satisfy the secant equation (Eq. 4.80), �̃:+1 should be the one
closest to the previous approximate Hessian, �̃: . This makes sense
intuitively because the curvature information gathered in one step is
limited (because it is along a single direction) and should not change the
Hessian approximationmore than necessary to satisfy the requirements.

The original quasi-Newton update, known as DFP, was first pro-
posed by Davidon and then refined by Fletcher and also Powell (see
historical note in Section 2.3).20,21 The DFP update formula has been
superseded by the BFGS formula, which was independently developed
by Broyden, Fletcher, Goldfarb, and Shanno.80–83 BFGS is currently
considered the most effective quasi-Newton update, so we focus on this
update. However, Appendix C.2.1 has more details on DFP.

The formal derivation of the BFGS update formula is rather involved,
so we do not include it here. Instead, we work through an informal
derivation that provides intuition about this update and quasi-Newton
methods in general. We also include more details in Appendix C.2.2.

Recall that quasi-Newton methods add an update to the previous
Hessian approximation (Eq. 4.73). One way to think about an update
that yields a matrix close to the previous one is to consider the rank
of the update, Δ�̃. The lower the rank of the update, the closer the
updated matrix is to the previous one. Also, the curvature information
contained in this update is minimal because we are only gathering

https://dx.doi.org/10.1137/0801001
https://dx.doi.org/10.1137/0801001
https://dx.doi.org/10.1093/comjnl/6.2.163
https://dx.doi.org/10.1093/comjnl/6.2.163
https://dx.doi.org/10.1093/imamat/6.1.76
https://dx.doi.org/10.1093/imamat/6.1.76
https://dx.doi.org/10.1093/imamat/6.1.76
https://dx.doi.org/10.1093/comjnl/13.3.317
https://dx.doi.org/10.1093/comjnl/13.3.317
https://dx.doi.org/10.1090/s0025-5718-1970-0258249-6
https://dx.doi.org/10.1090/s0025-5718-1970-0258249-6
https://dx.doi.org/10.1090/s0025-5718-1970-0274029-x
https://dx.doi.org/10.1090/s0025-5718-1970-0274029-x

4 Unconstrained Gradient-Based Optimization 127

(= × 1) (1 × =) (= × =)

=

Fig. 4.50 The self outer product of a
vector produces a symmetric (= × =)
matrix of rank 1.

information in one direction for each update. Therefore, we can reason
that the rank of the update matrix should be the lowest possible rank
that satisfies the secant equation (Eq. 4.80).

The update must be symmetric and positive definite to ensure
a symmetric positive-definite Hessian approximation. If we start
with a symmetric positive-definite approximation, then all subsequent
approximations remain symmetric and positive definite. As it turns
out, it is possible to derive a rank 1 update matrix that satisfies the
secant equation, but this update is not guaranteed to be positive definite.
However, we can get positive definiteness with a rank 2 update.

We can obtain a symmetric rank 2 update by adding two symmetric
rank 1 matrices. One convenient way to obtain a symmetric rank 1
matrix is to perform a self outer product of a vector, which takes a vector
of size = and multiplies it with its transpose to obtain an (= × =)matrix,
as shown in Fig. 4.50. Matrices resulting from vector outer products
have rank 1 because all the columns are linearly dependent.

With two linearly independent vectors (D and E), we can get a rank
2 update using

�̃:+1 = �̃: +
DDᵀ + �EEᵀ , (4.82)

where
 and � are scalar coefficients. Substituting this into the secant
equation (Eq. 4.80), we have

�̃: B: +
DDᵀB: + �EEᵀB: = H: . (4.83)

Because the new information about the function is encapsulated in the
vectors H and B, we can reason that D and E should be based on these
vectors. It turns out that using B on its own does not yield a useful
update (one term cancels out), but �̃B does. Setting D = H and E = �̃B
in Eq. 4.83 yields

�̃: B: +
H:H:ᵀB: + ��̃: B:
(
�̃: B:

)ᵀ
B: = H: . (4.84)

Rearranging this equation, we have

H:
(
1 −
H:ᵀB:

)
= �̃: B:

(
1 + �B:ᵀ�̃: B:

)
. (4.85)

Because the vectors H: and �̃: B: are not parallel in general (because the
secant equation applies to �̃:+1, not to �̃:), the only way to guarantee
this equality is to set the terms in parentheses to zero. Thus, the scalar
coefficients are

 =
1

H:ᵀB:
, � = − 1

B:ᵀ�̃: B:
. (4.86)

4 Unconstrained Gradient-Based Optimization 128

§This formula is also known as the Wood-
burymatrix identity. Given amatrix and an
update to that matrix, it yields an explicit
expression for the inverse of the updated
matrix in terms of the inverses of the ma-
trix and the update (see Appendix C.3).

Substituting these coefficients and the chosen vectors back into Eq. 4.82,
we get the BFGS update,

�̃:+1 = �̃: +
H:H:ᵀ

H:ᵀB:
− �̃: B: B:ᵀ�̃:

B:ᵀ�̃: B:
. (4.87)

Although we did not explicitly enforce positive definiteness, the rank 2
update is positive definite, and therefore, all the Hessian approxima-
tions are positive definite, as long as we start with a positive-definite
approximation.

Now recall that we want to solve the linear system that involves
this matrix (Eq. 4.71), so it would be more efficient to approximate
the inverse of the Hessian directly instead. The inverse can be found
analytically from the update (Eq. 4.87) using the Sherman–Morrison–
Woodbury formula.§ Defining +̃ as the approximation of the inverse of
the Hessian, the final result is

+̃:+1 =
(
� − �: B:H:ᵀ

)
+̃:

(
� − �:H: B:ᵀ

) + �: B: B:ᵀ , (4.88)

where
�: =

1
H:ᵀB:

. (4.89)

Figure 4.51 shows the sizes of the vectors and matrices involved in this
equation.

+̃:+1 � �: B: H: +̃: � �: H: B: �: B: B:= − − +

(= × =) (= × =) (1 × 1) (= × 1) (1 × =) (= × =) (= × =) (1 × 1) (= × 1) (1 × =) (1 × 1) (= × 1) (1 × =)

Fig. 4.51 Sizes of each term of the
BFGS update (Eq. 4.88).

Now we can replace the potentially costly solution of the linear
system (Eq. 4.71) with the much cheaper matrix-vector product,

?: = −+̃:∇ 5: , (4.90)

where +̃ is the estimate for the inverse of the Hessian.
Algorithm 4.7 details the steps for the BFGS algorithm. Unlike

first-order methods, we should not normalize the direction vector ?:
because the length of the vector is meaningful. Once we have curvature
information, the quasi-Newton step should give a reasonable estimate
of where the function slope flattens. Thus, as advised for Newton’s
method, we set
init = 1. Alternatively, this would be equivalent to
using a normalized direction vector and then setting
init to the initial
magnitude of ?. However, optimization algorithms in practice use

4 Unconstrained Gradient-Based Optimization 129

init = 1 to signify that a full (quasi-) Newton step was accepted (see
Tip 4.5).

As discussed previously, we need to start with a positive-definite
estimate to maintain a positive-definite inverse Hessian. Typically, this
is the identity matrix or a weighted identity matrix, for example:

+̃0 =
1

∇ 50

 � . (4.91)

This makes the first step a normalized steepest-descent direction:

?0 = −+̃0∇ 50 = − ∇ 50‖∇ 50‖ . (4.92)

Algorithm 4.7 BFGS
Inputs:
G0: Starting point
�: Convergence tolerance

Outputs:
G∗: Optimal point
5 (G∗): Minimum function value

: = 0 Initialize iteration counter

init = 1 Initial step length for line search
while

∇ 5:

∞ > � do Optimality condition
if : = 0 or reset = true then

+̃: =
1
‖∇ 5 ‖ �

else
B = G: − G:−1 Last step
H = ∇ 5: − ∇ 5:−1 Curvature along last step
� = 1

BᵀH

+̃: =
(
� − �BHᵀ) +̃:−1

(
� − �HBᵀ) + �BBᵀ Quasi-Newton update

end if
? = −+̃:∇ 5: Compute quasi-Newton step

 = linesearch

(
?,
init

) Should satisfy the strong Wolfe conditions
G:+1 = G: +
? Update design variables
: = : + 1 Increment iteration index

end while

In a practical algorithm, +̃ might require occasional resets to the
scaled identity matrix. This is because as we iterate in the design
space, curvature information gathered far from the current point might
become irrelevant and even counterproductive. The trigger for this

4 Unconstrained Gradient-Based Optimization 130

G0

G∗

7 iterations

−2 −1 0 1 2
−1

0

1

2

3

G1

G2

Fig. 4.52 BFGS optimization path.

reset could occur when the directional derivative ∇ 5 ᵀ? is greater than
some threshold. That would mean that the slope along the search
direction is shallow; in other words, the search direction is close to
orthogonal to the steepest-descent direction.

Another well-known quasi-Newton update is the symmetric rank 1
(SR1) update, which we derive in Appendix C.2.3. Because the update
is rank 1, it does not guarantee positive definiteness. Why would we be
interested in a Hessian approximation that is potentially indefinite? In
practice, the matrices produced by SR1 have been found to approximate
the true Hessian matrix well, often better than BFGS. This alternative is
more common in trust-region methods (see Section 4.5), which depend
more strongly on an accurate Hessian and do not require positive
definiteness. It is also sometimes used for constrained optimization
problems where the Hessian of the Lagrangian is often indefinite, even
at the minimizer.

Example 4.15 BFGS applied to the bean function
Minimizing the same bean function fromprevious examples using BFGS,we

get the optimization path shown in Fig. 4.52. We also show the corresponding
quadratic approximations for a few selected steps of this minimization in
Fig. 4.53. Because we generate approximations to the inverse, we invert those
approximations to get the Hessian approximation for the purpose of illustration.

We initialize the inverse Hessian to the identity matrix, which results in
a quadratic with circular contours and a steepest-descent step (Fig. 4.53, left).
Using the BFGS update procedure, after two iterations,

G2 = (0.1197030,−0.043079) ,

and the inverse Hessian approximation is

+̃2 =

[
0.435747 −0.202020
−0.202020 0.222556

]
.

The exact inverse Hessian at the same point is

�−1 (G2) =
[
0.450435 0.035946
0.035946 0.169535

]
.

The predicted curvature improves, and it results in a good step toward the
minimum, as shown in the middle plot of Fig. 4.53. The one-dimensional
slice reveals how the approximation curvature in the line search direction is
higher than the actual; however, the line search moves past the approximation
minimum toward the true minimum.

By the end of the optimization, at G∗ = (1.213412, 0.824123), the BFGS
estimate is

+̃∗ =
[
0.276946 0.224010
0.224010 0.347847

]
,

4 Unconstrained Gradient-Based Optimization 131

G0

G1

B0

−2 −1 0 1 2
−1

0

1

2

3

G1

G2

G0 G1
5

10

15

5

: = 0

G2
G3

B2

−2 −1 0 1 2
−1

0

1

2

3

G1

G2

G2 G3
0

2

4

6

5

: = 2

G∗

−2 −1 0 1 2
−1

0

1

2

3

G1

G2

G∗

0

2

4

5

: = 7

Fig. 4.53 Minimization of the bean
function using BFGS. The first
quadratic approximation has circular
contours (left). After two iterations,
the quadratic approximation im-
proves, and the step approaches the
minimum (middle). Once converged,
the minimum of the quadratic ap-
proximation coincides with the bean
function minimum (right).

whereas the exact one is

�−1 (G∗) =
[
0.276901 0.223996
0.223996 0.347867

]
.

Now the estimate is much more accurate. In the right plot of Fig. 4.53, we can
see that the minimum of the approximation coincides with the actual minimum.
The approximation is only accurate locally, worsening away from the minimum.

4.4.5 Limited-Memory Quasi-Newton Methods
When the number of design variables is large (millions or billions), it
might not be possible to store the Hessian inverse approximationmatrix
in memory. This motivates limited-memory quasi-Newton methods,
which make it possible to handle such problems. In addition, these
methods also improve the computational efficiency of medium-sized
problems (hundreds or thousands of design variables) with minimal
sacrifice in accuracy.

Recall that we are only interested in the matrix-vector product +̃∇ 5
to find each search direction using Eq. 4.90. As we will see in this
section, we can compute this product without ever actually forming
the matrix +̃ . We focus on doing this for the BFGS update because
this is the most popular approach (known as L-BFGS), although similar
techniques apply to other quasi-Newton update formulas.

The BFGS update (Eq. 4.88) is a recursive sequence:

+̃: =
[(� − �BHᵀ)+̃(� − �HBᵀ) + �BBᵀ] :−1 , (4.93)

4 Unconstrained Gradient-Based Optimization 132

where
� =

1
BᵀH

. (4.94)

If we save the sequence of B and H vectors and specify a starting value
for +̃0, we can compute any subsequent +̃: . Of course, what we want
is +̃:∇ 5: , which we can also compute using an algorithm with the
recurrence relationship. However, such an algorithm would not be
advantageous from the memory-usage perspective because we would
have to store a long sequence of vectors and a starting matrix.

To reduce the memory usage, we do not store the entire history of
vectors. Instead, we limit the storage to the last < vectors for B and
H. In practice, < is usually between 5 and 20. Next, we make the
starting Hessian diagonal such that we only require vector storage (or
scalar storage if we make all entries in the diagonal equal). A common
choice is to use a scaled identity matrix, which just requires storing one
number,

+̃0 =
BᵀH
HᵀH

� , (4.95)

where the B and H correspond to the previous iteration. Algorithm 4.8
details the procedure.

Algorithm 4.8 Compute search direction using L-BFGS
Inputs:
∇ 5: : Gradient at point G:
B:−1,...,:−< : History of steps G: − G:−1

H:−1,...,:−< : History of gradient differences ∇ 5: − ∇ 5:−1

Outputs:
?: Search direction −+̃:∇ 5:
3 = ∇ 5:
for 8 = : − 1 to : − < by −1 do

8 = �8 B8ᵀ3
3 = 3 −
8H8

end for
+̃0 =

(
Bᵀ:−1H:−1

Hᵀ:−1H:−1

)
� Initialize Hessian inverse approximation as a scaled identity matrix

3 = +̃03
for 8 = : − < to : − 1 do

�8 = �8H8ᵀ3
3 = 3 + (
8 − �8)B8

end for
? = −3

4 Unconstrained Gradient-Based Optimization 133

BFGS

G0

G∗
L-BFGS

L-BFGS: 7 iterations
BFGS: 7 iterations

−2 0 2
−1

0

1

2

3

G1

G2

Fig. 4.54 Optimization paths using
BFGS and L-BFGS.

¶Appendix D.1.8 has details on this prob-
lem.

Using this technique, we no longer need to bear the memory cost
of storing a large matrix or incur the computational cost of a large
matrix-vector product. Instead, we store a small number of vectors and
require fewer vector-vector products (a cost that scales linearly with =
rather than quadratically).

Example 4.16 L-BFGS compared with BFGS for the bean function
Minimizing the same bean function from the previous examples, the

optimization iterations using BFGS and L-BFGS are the same, as shown in
Fig. 4.54. The L-BFGS method is applied to the same sequence using the
last five iterations. The number of variables is too small to benefit from the
limited-memory approach, but we show it in this small problem as an example.
At the same G∗ as in Ex. 4.15, the product +̃∇ 5 is estimated using Alg. 4.8 as

3∗ =
[−7.38683 × 10−5

5.75370 × 10−5

]
,

whereas the exact value is:

+̃∗∇ 5 ∗ =
[−7.49228 × 10−5

5.90441 × 10−5

]
.

Example 4.17 Minimizing the total potential energy for a spring system
Many structural mechanics models involve solving an unconstrained energy

minimization problem. Consider a mass supported by two springs, as shown
in Fig. 4.55. Formulating the total potential energy for the system as a function
of the mass position yields the following problem:¶

minimize
G1 ,G2

1
2 :1

(√
(ℓ1 + G1)2 + G2

2 − ℓ1
)2
+ 1

2 :2

(√
(ℓ2 − G1)2 + G2

2 − ℓ2
)2

− <6G2 .

The contours of this function are shown in Fig. 4.56 for the case where
;1 = 12, ;2 = 8, :1 = 1, :2 = 10, <6 = 7. There is a minimum and a maximum.
The minimum represents the position of the mass at the stable equilibrium
condition. Themaximumalso represents an equilibriumpoint, but it is unstable.
All methods converge to the minimum when starting near the maximum. All
four methods use the same parameters, convergence tolerance, and starting
point. Depending on the starting point, Newton’s method can become stuck at
the saddle point, and if a line search is not added to safeguard it, it could have
terminated at the maximum instead.

As expected, steepest descent is the least efficient, and the second-order
methods are the most efficient. The number of iterations and the relative

4 Unconstrained Gradient-Based Optimization 134

:1 :2

ℓ1 ℓ2

<6

G1

G2
Fig. 4.55 Two-spring system with no
applied force (top) and with applied
force (bottom).

performance are problemdependent and sensitive to the optimization algorithm
parameters, so we should not analyze the number of iterations too closely.
However, these results show the expected trends for most problems.

G0

G∗
32 iterations

−5 0 5 10 15

−8

−4

0

4

8

12

G1

G2

Steepest descent

G0

G∗
27 iterations

−5 0 5 10 15

−8

−4

0

4

8

12

G1

G2

Conjugate gradient

G0

G∗
14 iterations

−5 0 5 10 15

−8

−4

0

4

8

12

G1

G2

Quasi-Newton

G0

G∗
12 iterations

−5 0 5 10 15

−8

−4

0

4

8

12

G1

G2

Newton

Fig. 4.56 Minimizing the total poten-
tial for two-spring system.

4 Unconstrained Gradient-Based Optimization 135

‖The “bean” functionwe used in previous
examples is a milder version of the Rosen-
brock function.

Example 4.18 Comparing methods for the Rosenbrock function
We now test the methods on the following more challenging function:

5 (G1 , G2) = (1 − G1)2 + 100
(
G2 − G2

1

)2
,

which is known as the Rosenbrock function. This is a well-known optimization
problem because a narrow, highly curved valley makes it challenging to
minimize.‖ The optimization path and the convergence history for fourmethods
starting from G = (−1.2, 1.0) are shown in Figs. 4.57 and 4.58, respectively.
All four methods use an inexact line search with the same parameters and
a convergence tolerance of ‖∇ 5 ‖∞ ≤ 10−6. Compared with the previous
two examples, the difference between the steepest-descent and second-order
methods is much more dramatic (two orders of magnitude more iterations!),
owing to the more challenging variation in the curvature (recall Ex. 4.10).

G0

G∗

10,662 iterations

−1 0 1

0

1

2

G1

G2

Steepest descent

G0

G∗

930 iterations

−1 0 1

0

1

2

G1

G2

Conjugate gradient

G0

G∗

36 iterations

−1 0 1

0

1

2

G1

G2

Quasi-Newton

G0

G∗

24 iterations

−1 0 1

0

1

2

G1

G2

Newton

Fig. 4.57 Optimization paths for the
Rosenbrock function using steepest
descent, conjugate gradient, BFGS,
and Newton.

The steepest-descentmethod converges, but it takesmany iterations because
it bounces between the steep walls of the valley while making little progress
along the bottom of the valley. The conjugate gradient method is much
more efficient because it damps the steepest-descent oscillations. Eventually,
the conjugate gradient method achieves superlinear convergence near the
optimum, saving many iterations over the last several orders of magnitude in

4 Unconstrained Gradient-Based Optimization 136

Steepest
descent

Conjugate
gradient

Newton

Quasi-
Newton

100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

Major iterations

| |∇ 5 | |∞
Fig. 4.58 Convergence of the four
methods shows the dramatic differ-
ence between the linear convergence
of steepest descent, the superlinear
convergence of the conjugate gradi-
entmethod, and the quadratic conver-
gence of themethods that use second-
order information.

the convergence criterion. The methods that use second-order information are
even more efficient, exhibiting quadratic convergence in the last few iterations.

The number of major iterations is not always an effective way to
compare performance. For example, Newton’s method takes fewer ma-
jor iterations, but each iteration in Newton’s method is more expensive
than each iteration in the quasi-Newton method. This is because New-
ton’s method requires a linear solution, which is an O(=3) operation, as
opposed to a matrix-vector multiplication, which is an O(=2) operation.
For a small problem like the two-dimensional Rosenbrock function,
this is an insignificant difference, but this is a significant difference
in computational effort for large problems. Additionally, each major
iteration includes a line search, and depending on the quality of the
search direction, the number of function calls contained in each iteration
will differ.

Tip 4.5 Unit steps indicate good progress
When performing a line search within a quasi-Newton algorithm, we pick

init = 1 (a unit step) because this corresponds to the minimum if the quadratic
approximation were perfect. When the quadratic approximation matches the
actual function well enough, the line search should exit after the first evaluation.
On the other hand, if the line search takes many iterations, this indicates a poor
match or other numerical difficulties. If difficulties persist over many major
iterations, plot the line search (Tip 4.3).

4 Unconstrained Gradient-Based Optimization 137

Example 4.19 Problem scaling
In Tip 4.4, we discussed the importance of scaling. Let us illustrate this

with an example. Consider a stretched version of the Rosenbrock function from
Ex. 4.18:

5 (G1 , G2) =
(
1 − G1

104

)2
+ 100

(
G2 −

(
G1
104

)2
)2

. (4.96)

The contours of this function have the same characteristics as those of the
original Rosenbrock function shown in Fig. 4.57, but the G1 axis is stretched,
as shown in Fig. 4.59. Because G1 is scaled by such a large number (104), we
cannot show it using the same scale as the G2 axis, otherwise the G2 axis would
disappear. The minimum of this function is at G∗ = [104 , 1], where 5 ∗ = 0.

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

1
−1
−3 G0

G� G∗

G1

G2

Fig. 4.59 The contours the scaled
Rosenbrock function (Eq. 4.96) are
highly stretched in the G1 direction,
by orders of magnitude more than
what we can show here.

Let us attempt to minimize this function starting from G0 = [−5000,−3].
The gradient at this starting point is ∇ 5 (G0) = [−0.0653,−650.0], so the slope
in the G2 direction is four orders of magnitude times larger than the slope in
the G1 direction! Therefore, there is a significant bias toward moving along the
G2 direction but little incentive to move in the G1 direction. After an exact line
search in the steepest descent direction, we obtain the step to G� = [−5000, 0.25]
as shown in Fig. 4.59. The optimization stops at this point, even though it is
not a minimum. This premature convergence is because % 5 /%G1 is orders of
magnitude smaller, so both components of the gradient satisfy the optimality
conditions when using a standard relative tolerance.

To address this issue, we scale the design variables as explained in
Tip 4.4. Using the scaling BG = [104 , 1], the scaled starting point becomes
Ḡ0 = [−5000,−3] � [104 , 1] = [−0.5,−3]. Before evaluating the function, we
need to convert the design variables back to their unscaled values, that is,
5 (G) = 5 (Ḡ � BG).

This scaling of the design variables alone is sufficient to improve the
optimization convergence. Still, let us also scale the objective because it is
large at our starting point (around 900). Dividing the objective by B 5 = 1000,
the initial gradient becomes ∇ 5 (G0) = [−0.00206,−0.6]. This is still not ideally
scaled, but it has much less variation in orders of magnitude—more than
sufficient to solve the problem successfully. The optimizer returns Ḡ∗ = [1, 1],
where 5̄ ∗ = 1.57 × 10−12. When rescaled back to the problem coordinates,
G∗ = [104 , 1], 5 ∗ = 1.57 × 10−9.

In this example, the function derivatives span many orders of magnitude,
so dividing the function by a scalar does not have much effect. Instead, we
could minimize log(5), which allows us to solve the problem even without
scaling G. If we also scale G, the number of required iterations for convergence

4 Unconstrained Gradient-Based Optimization 138

decreases. Using log(5) as the objective and scaling the design variables as
before yields Ḡ∗ = [1, 1], where 5̄ ∗ = −25.28, which in the original problem
space corresponds to G∗ = [104 , 1], where 5 ∗ = 1.05 × 10−11.

Although this example does not correspond to a physical problem, such
differences in scaling occur frequently in engineering analysis. For example,
optimizing the operating point of a propeller might involve two variables: the
pitch angle and the rotation rate. The angle would typically be specified in
radians (a quantity of order 1) and the rotation rate in rotations per minute
(typically tens of thousands).

Poor scaling causes premature convergence for various reasons. In
Ex. 4.19, it was because convergence was based on a tolerance relative
to the starting gradient, and some gradient components were much
smaller than others. When using an absolute tolerance, premature
convergence can occur when the gradients are small to begin with
(because of the scale of the problem, not because they are near an
optimum). When the scaling is poor, the optimizer is even more
dependent on accurate gradients to navigate the narrow regions of
function improvement.

Larger engineering simulations are usually more susceptible to
numerical noise due to iteration loops, solver convergence tolerances,
and longer computational procedures. Another issue arises when the
derivatives are not computed accurately. In these cases, poorly scaled
problems struggle because the line search directions are not accurate
enough to yield a decrease, except for tiny step sizes.

Most practical optimization algorithms terminate early when this
occurs, not because the optimality conditions are satisfied but because
the step sizes or function changes are too small, and progress is stalled
(see Tip 4.1). A lack of attention to scaling is one of the most frequent
causes of poor solutions in engineering optimization problems.

Tip 4.6 Accurate derivatives matter
The effectiveness of gradient-basedmethods depends strongly on providing

accurate gradients. Convergence difficulties, or apparent multimodal behavior,
are often mistakenly identified as optimization algorithm difficulties or fun-
damental modeling issues when in reality, the numerical issues are caused by
inaccurate gradients. Chapter 6 is devoted to computing accurate derivatives.

4 Unconstrained Gradient-Based Optimization 139

Create model

Minimize
model

Is G a
minimum?

Update G

Update trust-
region size, Δ

G0

G∗

Yes

No

Fig. 4.60 Trust-region methods mini-
mize amodelwithin a trust region for
each iteration, and then they update
the trust-region size and the model
before the next iteration.

4.5 Trust-Region Methods
In Section 4.2, we mentioned two main approaches for unconstrained
gradient-based optimization: line search and trust region. Wedescribed
the line search in Section 4.3 and the associated methods for computing
search directions in Section 4.4. Now we describe trust-region methods,
also known as restricted-step methods. The main motivation for trust-
region methods is to address the issues with Newton’s method (see
Section 4.4.3) and quasi-Newton updates that do not guarantee a
positive definite-Hessian approximation (e.g., SR1, which we briefly
described in Section 4.4.4).

The trust-region approach is fundamentally different from the line
search approach because it finds the direction and distance of the
step simultaneously instead of finding the direction first and then the
distance. The trust-region approach builds a model of the function
to be minimized and then minimizes the model within a trust region,
within which we trust the model to be good enough for our purposes.

The most common model is a local quadratic function, but other
models may be used. When using a quadratic model based on the
function value, gradient, and Hessian at the current iteration, the
method is similar to Newton’s method.

The trust region is centered about the current iteration point and
can be defined as an =-dimensional box, sphere, or ellipsoid of a given
size. Each trust-region iteration consists of the following main steps:

1. Create or update the model about the current point.
2. Minimize the model within the trust region.
3. Move to the new point, update values, and adapt the size of the

trust region.

These steps are illustrated in Fig. 4.60, and they are repeated until
convergence. Figure 4.61 shows the steps to minimize the bean function,
where the circles show the trust regions for each iteration.

The trust-region subproblem solved at each iteration is

minimize
B

5̃ (B)
subject to ‖B‖ ≤ Δ ,

(4.97)

where 5̃ (B) is the local trust-region model, B is the step from the current
iteration point, and Δ is the size of the trust region. We use B instead
of ? to indicate that this is a step vector and not simply the direction
vector used in methods based on a line search.

4 Unconstrained Gradient-Based Optimization 140

B:

G0

G:

G:+1
G∗

G1

G2

Fig. 4.61 Path for the trust-region ap-
proach showing the circular trust re-
gions at each step.

84. Conn et al., Trust Region Methods,
2000.

The subproblem (Eq. 4.97) defines the trust region as a norm. The
Euclidean norm, ‖B‖2, defines a spherical trust region and is the most
common type of trust region. Sometimes ∞-norms are used instead
because they are easy to apply, but 1-norms are rarely used because
they are just as complex as 2-norms but introduce sharp corners that
can be problematic.84 The shape of the trust region is dictated by the
norm (see Fig. A.8) and can significantly affect the convergence rate.
The ideal trust-region shape depends on the local function space, and
some algorithms allow for the trust-region shape to change throughout
the optimization.

4.5.1 Quadratic Model with Spherical Trust Region
Using a quadratic trust-region model and the Euclidean norm, we can
define the more specific subproblem:

minimize
B

5̃ (B) = 5: + ∇ 5:ᵀB + 1
2 B

ᵀ�̃: B

subject to ‖B‖2 ≤ Δ: ,
(4.98)

where �̃: is the approximate (or true) Hessian at our current iterate.
This problem has a quadratic objective and quadratic constraints and
is called a quadratically constrained quadratic program (QCQP). If the
problem is unconstrained and �̃ is positive definite, we can get to the
solution using a single step, B = −�̃(:)−1∇ 5: . However, because of
the constraints, there is no analytic solution for the QCQP. Although
the problem is still straightforward to solve numerically (because it is
a convex problem; see Section 11.4), it requires an iterative solution
approach with multiple factorizations.

Similar to the line search, where we only obtain a sufficiently
good point instead of finding the exact minimum, in the trust-region

https://books.google.com/books?vid=ISBN0898714605

4 Unconstrained Gradient-Based Optimization 141

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

84. Conn et al., Trust Region Methods,
2000.
85. Steihaug, The conjugate gradient
method and trust regions in large scale
optimization, 1983.

subproblem, we seek an approximate solution to the QCQP. Including
the trust-region constraint allows us to omit the requirement that �̃:

be positive definite, which is used in most quasi-Newton methods. We
do not detail approximate solution methods to the QCQP, but there are
various options.79,84,85

Figure 4.62 compares the bean function with a local quadratic
model, which is built using information about the point where the
arrow originates. The trust-region step seeks the minimum of the local
quadratic model within the circular trust region. Unlike line search
methods, as the size of the trust region changes, the direction of the
step (the solution to Eq. 4.98) might also change, as shown on the right
panel of Fig. 4.62.

B:
?:

G1

G2 B:

G1

G2

Fig. 4.62 Quadratic model (gray con-
tours) compared to the actual func-
tion (blue contours), and two differ-
ent different trust region sizes (red
circles). The trust-region step B: finds
the minimum of the quadratic model
while remaining within the trust re-
gion. The steepest-descent direction
? is shown for comparison.

4.5.2 Trust-Region Sizing Strategy
This section presents an algorithm for updating the size of the trust
region at each iteration. The trust region can grow, shrink, or remain the
same, depending on how well the model predicts the actual function
decrease. The metric we use to assess the model is the actual function
decrease divided by the expected decrease:

A =
5 (G) − 5 (G + B)
5̃ (0) − 5̃ (B) . (4.99)

The denominator in this definition is the expected decrease, which is
always positive. The numerator is the actual change in the function,
which could be a reduction or an increase. An A value close to unity
means that the model agrees well with the actual function. An A value
larger than 1 is fortuitous and means that the actual decrease was even
greater than expected. A negative value of A means that the function
actually increased at the expected minimum, and therefore the model
is not suitable.

https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-0-387-40065-5
https://books.google.com/books?vid=ISBN0898714605
https://dx.doi.org/10.1137/0720042
https://dx.doi.org/10.1137/0720042
https://dx.doi.org/10.1137/0720042

4 Unconstrained Gradient-Based Optimization 142

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

84. Conn et al., Trust Region Methods,
2000.

The trust-region sizing strategy in Alg. 4.9 determines the size of
the trust region at each major iteration : based on the value of A: . The
parameters in this algorithm are not derived from any theory; instead,
they are empirical. This example uses the basic procedure fromNocedal
and Wright79 with the parameters recommended by Conn et al.84

Algorithm 4.9 Trust-region algorithm
Inputs:
G0: Starting point
Δ0: Initial size of the trust region

Outputs:
G∗: Optimal point

while not converged do
Compute or estimate the Hessian
Solve (approximately) for B: Use Eq. 4.97
Compute A: Use Eq. 4.99
⊲ Resize trust region
if A: ≤ 0.05 then Poor model

Δ:+1 = Δ:/4 Shrink trust region
B: = 0 Reject step

else if A: ≥ 0.9 and ‖B: ‖ = Δ: then Good model and step to edge
Δ:+1 = min(2Δ: ,Δmax) Expand trust region

else Reasonable model and step within trust region
Δ:+1 = Δ: Maintain trust region size

end if
G:+1 = G: + B: Update location of trust region
: = : + 1 Update iteration count

end while

The initial value of Δ is usually 1, assuming the problem is already
well scaled. One way to rationalize the trust-region method is that the
quadratic approximation of a nonlinear function is guaranteed to be
reasonable only within a limited region around the current point G: .
Thus, we minimize the quadratic function within a region around G:
within which we trust the quadratic model.

When ourmodel performswell, we expand the trust region. When it
performs poorly, we shrink the trust region. If we shrink the trust region
sufficiently, our local model will eventually be a good approximation
of the actual function, as dictated by the Taylor series expansion.

We should also set a maximum trust-region size (Δmax) to prevent
the trust region from expanding too much. Otherwise, it may take

https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-0-387-40065-5
https://books.google.com/books?vid=ISBN0898714605

4 Unconstrained Gradient-Based Optimization 143

∗Conn et al.84 provide more detail on
trust-region problems, including trust-
region norms and scaling, approaches to
solving the trust-region subproblem, ex-
tensions to the model, and other impor-
tant practical considerations.

too long to reduce the trust region to an acceptable size over other
portions of the design space where a smaller trust region is needed.
The same convergence criteria used in other gradient-based methods
are applicable.∗

Example 4.20 Trust-region method applied to the total potential energy ofspring system
Minimizing the total potential energy function from Ex. 4.17 using a trust-

region method starting from the same points as before yields the optimization
path shown in Fig. 4.63. The initial trust region size is Δ = 0.3, and the
maximum allowable is Δmax = 1.5.

B0 G0

−5 0 5 10 15

−4

0

4

8

G1

G2

: = 0

B3

−5 0 5 10 15

−4

0

4

8

G1

G2

: = 3

B5

−5 0 5 10 15

−4

0

4

8

G1

G2

: = 5

B8

−5 0 5 10 15

−4

0

4

8

G1

G2

: = 8

B11

−5 0 5 10 15

−4

0

4

8

G1

G2

: = 11

G∗

−5 0 5 10 15

−4

0

4

8

G1

G2

: = 15

Fig. 4.63 Minimizing the total poten-
tial for two-spring system using a
trust-region method shown at differ-
ent iterations. The local quadratic
approximation is overlaid on the func-
tion contours and the trust region is
shown as a red circle.

The first few quadratic approximations do not have a minimum because
the function has negative curvature around the starting point, but the trust
region prevents steps that are too large. When it gets close enough to the bowl
containing the minimum, the quadratic approximation has a minimum, and
the trust-region subproblem yields a minimum within the trust region. In the
last few iterations, the quadratic is a good model, and therefore the region
remains large.

4 Unconstrained Gradient-Based Optimization 144

Example 4.21 Trust-region method applied to the Rosenbrock function
We now test the trust-region method on the Rosenbrock function. The

overall path is similar to the other second-order methods, as shown in Fig. 4.64.
The initial trust region size is Δ = 1, and the maximum allowable is Δmax = 5.
At any given point, the direction of maximum curvature of the quadratic
approximation matches the maximum curvature across the valley and rotates
as we track the bottom of the valley toward the minimum.

B0G0

−2 −1 0 1 2
−1

0

1

2

G1

G2

: = 0

B3

−2 −1 0 1 2
−1

0

1

2

G1

G2

: = 3

B7

−2 −1 0 1 2
−1

0

1

2

G1

G2

: = 7

B12

−2 −1 0 1 2
−1

0

1

2

G1

G2

: = 12

B17

−2 −1 0 1 2
−1

0

1

2

G1

G2

: = 17

G∗

−2 −1 0 1 2
−1

0

1

2

G1

G2

: = 35

Fig. 4.64 Minimization of the Rosen-
brock function using a trust-region
method.

4.5.3 Comparison with Line Search Methods
Trust-regionmethods are typicallymore strongly dependent on accurate
Hessians than are line search methods. For this reason, they are usually
only effective when exact gradients (or better yet, an exact Hessian)
can be supplied. Many optimization packages require the user to
provide the full Hessian, or at least the gradients, to use a trust-region
approach. Trust-region methods usually require fewer iterations than
quasi-Newton methods with a line search, but each iteration is more
computationally expensive because they require at least one matrix
factorization.

4 Unconstrained Gradient-Based Optimization 145

−ΔG ΔG

G

5

Fig. 4.65 Smoothed absolute value
function.

†Another option to smooth the max of
multiple functions is aggregation, which
is detailed in Section 5.7.

Scaling can also be more challenging with trust-region approaches.
Newton’s method is invariant with scaling, but a Euclidean trust-region
constraint implicitly assumes that the function changes in each direction
at a similar rate. Some enhancements try to address this issue through
elliptical trust regions rather than spherical ones.

Tip 4.7 Smooth model discontinuities
Many models are defined in a piecewise manner, resulting in a discontinu-

ous function value, discontinuous derivative, or both. This can happen even if
the underlying physical behavior is continuous, such as fitting experimental
data using a non-smooth interpolation. The solution is to modify the implemen-
tation so that it is continuouswhile remaining consistent with the physics. If the
physics is truly discontinuous, it might still be advisable to artificially smooth
the function, as long as there is no significant increase in the modeling error.
Even if the smoothed version is highly nonlinear, having a continuous first
derivative helps the derivative computation and gradient-based optimization.
Some techniques are specific to the problem, but we discuss some examples
here.

The absolute value function can often be tolerated as the outermost level of
the optimization. However, if propagated through subsequent functions, it can
introduce numerical issues from rapid changes in the function. One possibility
to smooth this function is to round off the vertex with a quadratic function, as
shown in Fig. 4.65. If we force continuity in the function and the first derivative,
then the equation of a smooth absolute value is

5 (G) =


|G | if |G | > ΔG
G2

2ΔG +
ΔG
2 otherwise ,

(4.100)

where ΔG is a user-adjustable parameter representing the half-width of the
transition.

Piecewise functions are often used in fits to empirical data. Cubic splines
or a sigmoid function can blend the transition between two functions smoothly.
We can also use the same technique to blend discrete steps (where the two
functions are constant values) or implement smooth max or min functions.†
For example, a sigmoid can be used to blend two functions (51(G) and 52(G))
together at a transition point GC using

5 (G) = 51(G) +
(
52(G) − 51(G)

) (
1

1 + 4−ℎ(G−GC)
)
, (4.101)

where ℎ is a user-selected parameter that controls how sharply the transition
occurs. The left side of Fig. 4.66 shows an example transitioning G and G2 with
GC = 0 and ℎ = 50.

4 Unconstrained Gradient-Based Optimization 146

51(G)
52(G)

5 (G)

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

G

5

Sigmoid function

51(G)
52(G)

5 (G)

−0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

G

5

Cubic spline

Fig. 4.66 Smoothly blending two func-
tions.

G∗

−2 0 2 4
−2

−1

0

1

2

3

G1

G2

Fig. 4.67 A multistart approach with
a gradient-based algorithm finds the
global minimum of the Jones func-
tion. We successfully apply the same
strategy to a discontinuous version
of this function in Ex. 7.9.

Another approach is to use a cubic spline for the blending. Given a transition
point GC and a half-width ΔG, we can compute a cubic spline transition as

5 (G) =


51(G) if G < G1

52(G) if G > G2

21G3 + 22G2 + 23G + 24 otherwise ,
(4.102)

where we define G1 = GC −ΔG and G2 = GC +ΔG, and the coefficients 2 are found
by solving the following linear system:



G3
1 G2

1 G1 1
G3

2 G2
2 G2 1

3G2
1 2G1 1 0

3G2
2 2G2 1 0





21
22
23
24


=



51(G1)
52(G2)
5 ′1(G1)
5 ′2(G2)


. (4.103)

This ensures continuity in the function and the first derivative. The right side
of Fig. 4.66 shows the same two functions and transition location, blended with
a cubic spline using a half-width of 0.05.

Tip 4.8 Gradient-based optimization can find the global optimum
Gradient-based methods are local search methods. If the design space is

fundamentally multimodal, it may be helpful to augment the gradient-based
search with a global search. The simplest and most common approach is to use
a multistart approach, where we run a gradient-based search multiple times,
starting from different points, as shown in Fig. 4.67. The starting points might
be chosen from engineering intuition, randomly generated points, or sampling
methods, such as Latin hypercube sampling (see Section 10.2.1).

Convergence testing is needed to determine a suitable number of starting
points. If all points converge to the same optimum and the starting points are
well spaced, this suggests that the design space might not be multimodal after
all. By using multiple starting points, we increase the likelihood that we find
the global optimum, or at least that we find a better optimum than would be

4 Unconstrained Gradient-Based Optimization 147

found with a single starting point. One advantage of this approach is that it
can easily be run in parallel.

Another approach is to start with a global search strategy (see Chapter 7).
After a suitable initial exploration, the design(s) given by the global search
become starting points for gradient-based optimization(s). This finds points
that satisfy the optimality conditions, which is typically challenging with a
pure gradient-free approach. It also improves the convergence rate and finds
optima more precisely.

4.6 Summary
Gradient-based optimization is powerful because gradients make it
possible to efficiently navigate =-dimensional space in a series of steps
converging to an optimum. The gradient also determines when the
optimum has been reached, which is when the gradient is zero.

Gradients provide only local information, so an approach that
ensures a function decrease when stepping away from the current point
is required. There are two approaches to ensure this: line search and
trust region. Algorithms based on a line search have two stages: finding
an appropriate search direction and determining how far to step in
that direction. Trust-region algorithms minimize a surrogate function
within a finite region around the current point. The region expands or
contracts, depending on how well the optimization within the previous
iteration went. Gradient-based optimization algorithms based on a line
search are more prevalent than trust-region methods, but trust-region
methods can be effective when second derivatives are available.

There are different options for determining the search direction for
each line search using gradient information. Although the negative
gradient points in the steepest-descent direction, following this direction
is not the best approach because it is prone to oscillations. The conjugate
gradient method dampens these oscillations and thus converges much
faster than steepest descent.

Second-order methods use curvature information, which dramati-
cally improves the rate of convergence. Newton’s method converges
quadratically but requires the Hessian of the function, which can be
prohibitive. Quasi-Newton methods circumvent this requirement by
building an approximation of the inverse of the Hessian based on
changes in the gradients along the optimization path. Quasi-Newton
methods also avoid matrix factorization, requiring matrix-vector multi-
plication instead. Because they are much less costly while achieving
better than linear convergence, quasi-Newton methods are widely

4 Unconstrained Gradient-Based Optimization 148

used. Limited-memory quasi-Newton methods can be used when the
problem is too large to fit in computer memory.

The line search in a given direction does not seek to find a minimum
because this is not usually worthwhile. Instead, it seeks to find a “good
enough” point that sufficiently decreases the function and the slope.
Once such a point is found, we select a new search direction and repeat
the process. Second-order methods provide a guess for the first step
length in the line search that further improves overall convergence.

This chapter provides the building blocks for the gradient-based
constrained optimization covered in the next chapter.

4 Unconstrained Gradient-Based Optimization 149

Problems
4.1 Answer true or false and justify your answer.

a. Gradient-based optimization requires the function to be
continuous and infinitely differentiable.

b. Gradient-based methods perform a local search.
c. Gradient-basedmethods are only effective for problemswith

one minimum.
d. The dot product of ∇ 5 with a unit vector ? yields the slope

of the 5 along the direction of ?.
e. The Hessian of a unimodal function is positive definite or

positive semidefinite everywhere.
f. Each column 9 of the Hessian quantifies the rate of change

of component 9 of the gradient vector with respect to all
coordinate directions 8.

g. If the function curvature at a point is zero in some direction,
that point cannot be a local minimum.

h. A globalization strategy in a gradient-based algorithm en-
sures convergence to the global minimum.

i. The goal of the line search is to find the minimum along a
given direction.

j. For minimization, the line search must always start in a
descent direction.

k. The direction in the steepest-descent algorithm for a given
iteration is orthogonal to the direction of the previous itera-
tion.

l. Newton’s method is not affected by problem scaling.
m. Quasi-Newton methods approximate the function Hessian

by using gradients.
n. Newton’s method is a good choice among gradient-based

methods because it uses exact second-order information and
therefore converges well from any starting point.

o. The trust-region method does not require a line search.

4.2 Consider the function

5 (G1 , G2 , G3) = G2
1G2 + 4G4

2 − G2G3 + G−1
3 ,

and answer the following:

4 Unconstrained Gradient-Based Optimization 150

a. Find the gradient of this function. Where is the gradient not
defined?

b. Calculate the directional derivative of the function at G� =
(2,−1, 5) in the direction ? = [6,−2, 3].

c. Find the Hessian of this function. Is the curvature in the
direction ? positive or negative?

d. Write the second-order Taylor series expansion of this func-
tion. Plot the Taylor series function along the ? direction
and compare it to the actual function.

4.3 Consider the function from Ex. 4.1,

5 (G1 , G2) = G3
1 + 2G1G2

2 − G3
2 − 20G1 . (4.104)

Find the critical points of this function analytically and classify
them. What is the global minimum of this function?

4.4 Review Kepler’s wine barrel story from Section 2.2. Approximate
the barrel as a cylinder and find the height and diameter of a
barrel that maximizes its volume for a diagonal measurement of
1 m.

4.5 Consider the following function:

5 = G4
1 + 3G3

1 + 3G2
2 − 6G1G2 − 2G2 .

Find the critical points analytically and classify them. Where is
the global minimum? Plot the function contours to verify your
results.

4.6 Consider a slightlymodified version of the function fromProb. 4.5,
where we add a G4

2 term to get

5 = G4
1 + G4

2 + 3G3
1 + 3G2

2 − 6G1G2 − 2G2 .

Can you find the critical points analytically? Plot the function
contours. Locate the critical points graphically and classify them.

4.7 Implement the two line search algorithms from Section 4.3, such
that they work in = dimensions (G and ? can be vectors of any
size).

a. As a first test for your code, reproduce the results from the
examples in Section 4.3 and plot the function and iterations
for both algorithms. For the line search that satisfies the
strong Wolfe conditions, reduce the value of �2 until you get
an exact line search. How much accuracy can you achieve?

4 Unconstrained Gradient-Based Optimization 151

b. Test your code on another easy two-dimensional function,
such as the bean function from Ex. 4.11, starting from differ-
ent points and using different directions (but remember that
you must always provide a valid descent direction; other-
wise, the algorithm might not work!). Does it always find a
suitable point? Exploration: Try different values of �2 and �
to analyze their effect on the number of iterations.

c. Apply your line search algorithms to the two-dimensional
Rosenbrock function and then the =-dimensional variant
(see Appendix D.1.2). Again, try different points and search
directions to see how robust the algorithm is, and try to tune
�2 and �.

4.8 Consider the one-dimensional function

5 (G) = − G
G2 + 2

.

Solve this problem using your line search implementations from
Prob. 4.7. Start from G0 = 0 and with an initial step of
0 =
−: 5 ′(G0), where : = 1.

a. How many function evaluations are required for each of the
algorithms? Plot the points where each algorithm terminates
on top of the function.

b. Try a different initial step of : = 20 from the same starting
point. Did your algorithms work as expected? Explain the
behaviors.

c. Start from G0 = 30 with : = 20 and discuss the results.

4.9 Program the steepest-descent, conjugate gradient, and BFGS
algorithms from Section 4.4. You must have a thoroughly tested
line search algorithm from the previous exercise first. For the
gradients, differentiate the functions analytically and compute
them exactly. Solve each problem using your implementations
of the various algorithms, as well as off-the-shelf optimization
software for comparison.

a. For your first test problem, reproduce the results from the
examples in Section 4.4.

b. Minimize the two-dimensional Rosenbrock function (see
Appendix D.1.2) using the various algorithms and compare
your results starting from G = (−1, 2). Compare the total
number of evaluations. Compare the number of minor

4 Unconstrained Gradient-Based Optimization 152

∗This problem was mentioned in Sec-
tion 2.2 as one of the problems that in-
spired developments in calculus of varia-
tions.

versus major iterations. Discuss the trends. Exploration: Try
different starting points and tuning parameters (e.g., � and
�2 in the line search) and compare the number of major and
minor iterations.

c. Benchmark your algorithms on the =-dimensional variant
of the Rosenbrock function (see Appendix D.1.2). Try = = 3
and = = 4 first, then = = 8, 16, 32, What is the highest
number of dimensions you can solve? How does the number
of function evaluations scale with the number of variables?

d. Optional: Implement L-BFGS and compare it with BFGS.

4.10 Implement a trust-region algorithm and apply it to one or more
of the test problems from the previous exercise. Compare the
trust-region results with BFGS and the off-the-shelf software.

4.11 Consider the aircraft wing design problem described in Ap-
pendix D.1.6. Program the model and solve the problem using an
optimizer of your choice. Plot the optimization path and conver-
gence histories. Exploration: Change the model to fit an aircraft
of your choice by picking the appropriate parameter values and
solve the same optimization problem.

4.12 The brachistochroneproblemseeks to find thepath thatminimizes
travel time between two points for a particle under the force of
gravity.∗ Solve the discretized version of this problem using
an optimizer of your choice (see Appendix D.1.7 for a detailed
description).

a. Plot the optimal path for the frictionless case with = = 10
and compare it to the exact solution (see Appendix D.1.7).

b. Solve the optimal path with friction and plot the resulting
path. Report the travel time between the two points and
compare it to the frictionless case.

c. Study the effect of increased problem dimensionality. Start
with 4 points and double the dimension each time up to
128 points. Plot and discuss the increase in computational
expense with problem size. Example metrics include the
number of major iterations, function evaluations, and com-
putational time. Hint: When solving the higher-dimensional
cases, start with the solution interpolated from a lower-
dimensional case—this is called a warm start.

5Constrained Gradient-Based Optimization
Engineering design optimization problems are rarely unconstrained. In
this chapter, we explain how to solve constrained problems. The meth-
ods in this chapter build on the gradient-based unconstrained methods
from Chapter 4 and also assume smooth functions. We first introduce
the optimality conditions for a constrained optimization problem and
then focus on three main methods for handling constraints: penalty
methods, sequential quadratic programming (SQP), and interior-point
methods.

Penalty methods are no longer used in constrained gradient-based
optimization because they have been replaced by more effective meth-
ods. Still, the concept of a penalty is useful when thinking about
constraints, partially motivates more sophisticated approaches like
interior-point methods, and is often used with gradient-free optimizers.

SQP and interior-point methods represent the state of the art in
nonlinear constrained optimization. We introduce the basics for these
two optimization methods, but a complete and robust implementation
of these methods requires detailed knowledge of a growing body of
literature that is not covered here.

By the end of this chapter you should be able to:

1. State and understand the optimality conditions for a con-
strained problem.

2. Understand the motivation for and the limitations of
penalty methods.

3. Understand the concepts behind state-of-the-art con-
strained optimization algorithms and use them to solve
real engineering problems.

153

5 Constrained Gradient-Based Optimization 154

61(G)62(G)
G∗

−2 0 2 4

−2

0

2

4

G1

G2

Fig. 5.1 Graphical solution for con-
strained problem showing contours
of the objective, the two constraint
curves, and the shaded infeasible re-
gion.

5.1 Constrained Problem Formulation
We can express a general constrained optimization problem as

minimize 5 (G)
by varying G8 8 = 1, . . . , =G
subject to 69(G) ≤ 0 9 = 1, . . . , =6

ℎ;(G) = 0 ; = 1, . . . , =ℎ
G 8 ≤ G8 ≤ G 8 8 = 1, . . . , =G ,

(5.1)

where 6(G) is the vector of inequality constraints, ℎ(G) is the vector of
equality constraints, and G and G are lower and upper design variable
bounds (also known as bound constraints). Both objective and constraint
functions can be nonlinear, but they should be �2 continuous to be
solved using gradient-based optimization algorithms. The inequality
constraints are expressed as “less than” without loss of generality
because they can always be converted to “greater than” by putting a
negative sign on 6. We could also eliminate the equality constraints
ℎ = 0 without loss of generality by replacing it with two inequality con-
straints, ℎ ≤ � and −ℎ ≤ �, where � is some small number. In practice,
it is desirable to distinguish between equality and inequality constraints
because of numerical precision and algorithm implementation.

Example 5.1 Graphical solution of constrained problem
Consider the following two-variable problem with quadratic objective and

constraint functions:

minimize
G1 ,G2

5 (G1 , G2) = G2
1 −

1
2 G1 − G2 − 2

subject to 61(G1 , G2) = G2
1 − 4G1 + G2 + 1 ≤ 0

62(G1 , G2) = 1
2 G

2
1 + G2

2 − G1 − 4 ≤ 0 .

We can plot the contours of the objective function and the constraint lines
(61 = 0 and 62 = 0), as shown in Fig. 5.1. We can see the feasible region defined
by the two constraints. The approximate location of the minimum is evident
by inspection. We can visualize the contours for this problem because the
functions can be evaluated quickly and because it has only two dimensions. If
the functions were more expensive, we would not be able to afford the many
evaluations needed to plot the contours. If the problem had more dimensions,
it would become difficult or impossible to visualize the functions and feasible
space fully.

5 Constrained Gradient-Based Optimization 155

Tip 5.1 Do not mistake constraints for objectives
Practitioners sometimes consider metrics to be objectives when it would be

more appropriate to pose them as constraints. This can lead to a multiobjective
problem, which does not have a single optimum and is costly to solve (more on
this in Chapter 9).

A helpful rule of thumb is to ask yourself if improving that metric indefi-
nitely is desirable or whether there is some threshold after which additional
improvements do not matter. For example, you might state that you want to
maximize the range of an electric car. However, there is probably a threshold
beyond which increasing the range does not improve the car’s desirability (e.g.,
if the range is greater than can be driven in one day). In that case, the range
should be posed as a constraint, and the objective should be another metric,
such as efficiency or profitability.

The constrained problem formulation just described does not dis-
tinguish between nonlinear and linear constraints. It is advantageous
to make this distinction because some algorithms can take advantage
of these differences. However, the methods introduced in this chapter
assume general nonlinear functions.

For unconstrained gradient-based optimization (Chapter 4), we
only require the gradient of the objective, ∇ 5 . To solve a constrained
problem, we also require the gradients of all the constraints. Because
the constraints are vectors, their derivatives yield a Jacobian matrix. For
the equality constraints, the Jacobian is defined as

�ℎ =
%ℎ
%G

=



%ℎ1
%G1

· · · %ℎ1
%G=G

...
. . .

...
%ℎ=ℎ
%G1

· · · %ℎ=ℎ
%G=G

︸ ︷︷ ︸
(=ℎ×=G)

=


∇ℎᵀ1
...
∇ℎᵀ=ℎ


, (5.2)

which is an (=ℎ × =G) matrix whose rows are the gradients of each
constraint. Similarly, the Jacobian of the inequality constraints is an
(=6 × =G)matrix.

Tip 5.2 Donot specify design variable bounds as nonlinear constraints
The design variable bounds in the general nonlinear constrained problem

(Eq. 5.1) are expressed as G ≤ G ≤ G, where G is the vector of lower bounds and
G is the vector of upper bounds. Bounds are treated differently in optimization
algorithms, so they should be specified as a bound constraint rather than a

5 Constrained Gradient-Based Optimization 156

∗For a more formal introduction to these
concepts, see Chapter 2 in Boyd and
Vandenberghe.86 Strang87 provides a com-
prehensive treatment of linear algebra.

86. Boyd and Vandenberghe, Convex
Optimization, 2004.

87. Strang, Linear Algebra and its Applica-
tions, 2006.

?

01
02

Fig. 5.3 Nullspace of a (2 × 3)matrix
� of rank 2, where 01 and 02 are the
row vectors of �.

general nonlinear constraint. Some bounds stem from physical limitations
on the engineering system. If not otherwise limited, the bounds should be
sufficiently wide not to constrain the problem artificially. It is good practice to
check your optimal solution against your design variable bounds to ensure that
you have not artificially constrained the problem.

5.2 Understanding n-Dimensional Space
Understanding the optimality conditions and optimization algorithms
for constrained problems requires basic =-dimensional geometry and
linear algebra concepts. Here, we review the concepts in an informal
way.∗ We sketch the concepts for two and three dimensions to provide
some geometric intuition but keep in mind that the only way to tackle
= dimensions is through mathematics.

There are several essential linear algebra concepts for constrained
optimization. The span of a set of vectors is the space formed by all the
points that can be obtained by a linear combination of those vectors.
With one vector, this space is a line, with two linearly independent
vectors, this space is a two-dimensional plane (see Fig. 5.2), and so
on. With = linearly independent vectors, we can obtain any point in
=-dimensional space.

DD

D + �E

D

E

D + �E + �F

D

E

F

Fig. 5.2 Span of one, two, and three
vectors in three-dimensional space.

Because matrices are composed of vectors, we can apply the concept
of span to matrices. Suppose we have a rectangular (< × =)matrix �.
For our purposes, we are interested in considering the < row vectors in
the matrix. The rank of � is the number of linearly independent rows
of �, and it corresponds to the dimension of the space spanned by the
row vectors of �.

The nullspace of a matrix � is the set of all =-dimensional vectors ?
such that �? = 0. This is a subspace of = − A dimensions, where A is
the rank of �. One fundamental theorem of linear algebra is that the
nullspace of a matrix contains all the vectors that are perpendicular to the row
space of that matrix and vice versa. This concept is illustrated in Fig. 5.3

https://books.google.com/books?vid=ISBN0521833787
https://books.google.com/books?vid=ISBN0521833787
https://books.google.com/books?vid=ISBN0030105676
https://books.google.com/books?vid=ISBN0030105676

5 Constrained Gradient-Based Optimization 157

†The subspaces spanned by �, �ᵀ, and
their respective nullspaces constitute four
fundamental subspaces, which we elabo-
rate on in Appendix A.4.

for = = 3, where A = 2, leaving only one dimension for the nullspace.
Any vector E that is perpendicular to ? must be a linear combination of
the rows of �, so it can be expressed as E =
01 + �02.†

A hyperplane is a generalization of a plane in =-dimensional space
and is an essential concept in constrained optimization. In a space of =
dimensions, a hyperplane is a subspace with at most = − 1 dimensions.
In Fig. 5.4, we illustrate hyperplanes in two dimensions (a line) and
three dimensions (a two-dimensional plane); higher dimensions cannot
be visualized, but the mathematical description that follows holds for
any =.

G0

E
?ᵀE = 0

?ᵀE > 0

?ᵀE < 0

G0

?ᵀE = 0
E ?ᵀE > 0

?ᵀE < 0

G0
Fig. 5.4 Hyperplanes and half-spaces
in two and three dimensions.

To define a hyperplane of = − 1 dimensions, we just need a point
contained in the hyperplane (G0) and a vector (E). Then, the hyperplane
is defined as the set of all points G = G0 + ? such that ?ᵀE = 0. That is,
the hyperplane is defined by all vectors that are perpendicular to E. To
define a hyperplane with = − 2 dimensions, we would need two vectors,
and so on. In = dimensions, a hyperplane of = − 1 dimensions divides
the space into two half-spaces: in one of these, ?ᵀE > 0, and in the other,
?ᵀE < 0. Each half-space is closed if it includes the hyperplane (?ᵀE = 0)
and open otherwise.

When we have the isosurface of a function 5 , the function gradient
at a point on the isosurface is locally perpendicular to the isosurface.
The gradient vector defines the tangent hyperplane at that point, which is
the set of points such that ?ᵀ∇ 5 = 0. In two dimensions, the isosurface
reduces to a contour and the tangent reduces to a line, as shown
in Fig. 5.5 (left). In three dimensions, we have a two-dimensional
hyperplane tangent to an isosurface, as shown in Fig. 5.5 (right).

Tangent
line

∇ 5

5 isosurface

Tangent
plane ∇ 5

Fig. 5.5 The gradient of a function
defines the hyperplane tangent to the
function isosurface.

5 Constrained Gradient-Based Optimization 158

The intersection of multiple half-spaces yields a polyhedral cone. A
polyhedral cone is the set of all the points that can be obtained by
the linear combination of a given set of vectors using nonnegative
coefficients. This concept is illustrated in Fig. 5.6 (left) for the two-
dimensional case. In this case, only two vectors are required to define
a cone uniquely. In three dimensions and higher there could be any
number of vectors corresponding to all the possible polyhedral “cross
sections”, as illustrated in Fig. 5.6 (middle and right).

D

E

D + �E

, � ≥ 0

Fig. 5.6 Polyhedral cones in two and
three dimensions.

5.3 Optimality Conditions
The optimality conditions for constrained optimization problems are
not as straightforward as those for unconstrained optimization (Sec-
tion 4.1.4). We begin with equality constraints because the mathematics
and intuition are simpler, then add inequality constraints. As in the
case of unconstrained optimization, the optimality conditions for con-
strained problems are used not only for the termination criteria, but
they are also used as the basis for optimization algorithms.

5.3.1 Equality Constraints
First, we review the optimality conditions for an unconstrained problem,
which we derived in Section 4.1.4. For the unconstrained case, we can
take a first-order Taylor series expansion of the objective function with
some step ? that is small enough that the second-order term is negligible
and write

5 (G + ?) ≈ 5 (G) + ∇ 5 (G)ᵀ? . (5.3)

If G∗ is a minimum point, then every point in a small neighborhood
must have a greater value,

5 (G∗ + ?) ≥ 5 (G∗) . (5.4)

Given the Taylor series expansion (Eq. 5.3), the only way that this
inequality can be satisfied is if

∇ 5 (G∗)ᵀ? ≥ 0 . (5.5)

5 Constrained Gradient-Based Optimization 159

∇ 5

∇ 5 ᵀ? > 0

∇ 5 ᵀ? = 0

∇ 5 ᵀ? < 0

Half-space of
function decrease

Fig. 5.7 The gradient 5 (G), which is
the direction of steepest function in-
crease, splits the design space into
two halves. Here we highlight the
open half-space of directions that re-
sult in function decrease.

ℎ1 = 0

G

∇ℎ1

ℎ2 = 0

∇ℎ2

Feasible point

Fig. 5.8 If we have two equality con-
straints (=ℎ = 2) in two-dimensional
space (=G = 2), we are left with no
freedom for optimization.

The condition ∇ 5 ᵀ? = 0 defines a hyperplane that contains the
directions along which the first-order variation of the function is zero.
This hyperplane divides the space into an open half-space of directions
where the function decreases (∇ 5 ᵀ? < 0) and an open half-space where
the function increases (∇ 5 ᵀ? > 0), as shown in Fig. 5.7. Again, we are
considering first-order variations.

If the problem were unconstrained, the only way to satisfy the
inequality in Eq. 5.5 would be if ∇ 5 (G∗) = 0. That is because for any
nonzero ∇ 5 , there is an open half-space of directions that result in a
function decrease (see Fig. 5.7). This is consistent with the first-order
unconstrained optimality conditions derived in Section 4.1.4.

However, we nowhave a constrainedproblem. The function increase
condition (Eq. 5.5) still applies, but ? must also be a feasible direction.
To find the feasible directions, we can write a first-order Taylor series
expansion for each equality constraint function as

ℎ 9(G + ?) ≈ ℎ 9(G) + ∇ℎ 9(G)ᵀ?, 9 = 1, . . . , =ℎ . (5.6)

Again, the step size is assumed to be small enough so that the higher-
order terms are negligible.

Assuming that G is a feasible point, then ℎ 9(G) = 0 for all constraints
9, and we are left with the second term in the linearized constraint
(Eq. 5.6). To remain feasible a small step away from G, we require that
ℎ 9(G + ?) = 0 for all 9. Therefore, first-order feasibility requires that

∇ℎ 9(G)ᵀ? = 0, for all 9 = 1, . . . , =ℎ , (5.7)

which means that a direction is feasible when it is orthogonal to all equality
constraint gradients. We can write this in matrix form as

�ℎ(G)? = 0 . (5.8)

This equation states that any feasible direction has to lie in the nullspace
of the Jacobian of the constraints, �ℎ .

Assuming that �ℎ has full row rank (i.e., the constraint gradients are
linearly independent), then the feasible space is a subspace of dimension
=G − =ℎ . For optimization to be possible, we require =G > =ℎ . Figure 5.8
illustrates a case where =G = =ℎ = 2, where the feasible space reduces
to a single point, and there is no freedom for performing optimization.

For one constraint, Eq. 5.8 reduces to a dot product, and the feasible
space corresponds to a tangent hyperplane, as illustrated on the left side
of Fig. 5.9 for the three-dimensional case. For two or more constraints,
the feasible space corresponds to the intersection of all the tangent
hyperplanes. On the right side of Fig. 5.9, we show the intersection of
two tangent hyperplanes in three-dimensional space (a line).

5 Constrained Gradient-Based Optimization 160

ℎ = 0

∇ℎᵀ? = 0

G∗

∇ℎ

ℎ1 = 0

ℎ2 = 0

�ℎ? = 0

G∗

∇ℎ1

∇ℎ2

Fig. 5.9 Feasible spaces in three di-
mensions for one and two constraints.

∗Recall the fundamental theorem of linear
algebra illustrated in Fig. 5.3 and the four
subspaces reviewed in Appendix A.4.

†Despite our convention of reserving
Greek symbols for scalars, we use � to
represent the =ℎ -vector of Lagrange mul-
tipliers because it is common usage.

For constrained optimality, we need to satisfy both ∇ 5 (G∗)ᵀ? ≥ 0
(Eq. 5.5) and �ℎ(G)? = 0 (Eq. 5.8). For equality constraints, if a direction
? is feasible, then −? must also be feasible. Therefore, the only way to
satisfy ∇ 5 (G∗)ᵀ? ≥ 0 is if ∇ 5 (G)ᵀ? = 0.

In sum, for G∗ to be a constrained optimum, we require

∇ 5 (G∗)ᵀ? = 0 for all ? such that �ℎ(G∗)? = 0 . (5.9)

In other words, the projection of the objective function gradient onto the
feasible space must vanish. Figure 5.10 illustrates this requirement for a
case with two constraints in three dimensions.

?

∇ℎ1

∇ℎ2

∇ 5

∇ 5 ᵀ? ?

∇ℎ1

∇ℎ2

∇ 5

∇ 5 ᵀ? = 0

Fig. 5.10 If the projection of ∇ 5 onto
the feasible space is nonzero, there is
a feasible descent direction (left); if
the projection is zero, the point is a
constrained optimum (right).

The constrained optimum conditions (Eq. 5.9) require that ∇ 5 be
orthogonal to the nullspace of �ℎ (since ?, as defined, is the nullspace
of �ℎ). The row space of a matrix contains all the vectors that are
orthogonal to its nullspace.∗ Because the rows of �ℎ are the gradients of
the constraints, the objective function gradient must be a linear combination
of the gradients of the constraints. Thus, we can write the requirements
defined in Eq. 5.9 as a single vector equation,

∇ 5 (G∗) = −
=ℎ∑
9=1

� 9∇ℎ 9(G∗) , (5.10)

where � 9 are called the Lagrange multipliers.† There is a multiplier
associated with each constraint. The sign of the Lagrange multipliers
is arbitrary for equality constraints but will be significant later when
dealing with inequality constraints.

5 Constrained Gradient-Based Optimization 161

ℎ1 = 0

ℎ2 = 0

∇ℎ1

∇ℎ2

G∗

Fig. 5.11 The constraint qualification
condition does not hold in this case
because the gradients of the two con-
straints not linearly independent.

Therefore, the first-order optimality conditions for the equality
constrained case are

∇ 5 (G∗) = −�ℎ(G)ᵀ�
ℎ(G) = 0 ,

(5.11)

where we have reexpressed Eq. 5.10 in matrix form and added the
constraint satisfaction condition.

In constrained optimization, it is sometimes convenient to use the
Lagrangian function, which is a scalar function defined as

ℒ(G,�) = 5 (G) + ℎ(G)ᵀ� . (5.12)

In this function, the Lagrange multipliers are considered to be indepen-
dent variables. Taking the gradient of ℒ with respect to both G and �
and setting them to zero yields

∇Gℒ = ∇ 5 (G) + �ℎ(G)ᵀ� = 0
∇�ℒ = ℎ(G) = 0 ,

(5.13)

which are the first-order conditions derived in Eq. 5.11.
With the Lagrangian function, we have transformed a constrained

problem into an unconstrained problem by adding new variables,
�. A constrained problem of =G design variables and =ℎ equality
constraintswas transformed into an unconstrained problemwith =G+=ℎ
variables. Although youmight be tempted to simply use the algorithms
of Chapter 4 to minimize the Lagrangian function (Eq. 5.12), some
modifications are needed in the algorithms to solve these problems
effectively (particularly once inequality constraints are introduced).

The derivation of the first-order optimality conditions (Eq. 5.11)
assumes that the gradients of the constraints are linearly independent;
that is, �ℎ has full row rank. A point satisfying this condition is
called a regular point and is said to satisfy linear independence constraint
qualification. Figure 5.11 illustrates a case where the G∗ is not a regular
point. A special case that does not satisfy constraint qualification is
when one (or more) constraint gradient is zero. In that case, that
constraint is not linearly independent, and the point is not regular.
Fortunately, these situations are uncommon.

The optimality conditions just described are first-order conditions
that are necessary but not sufficient. To make sure that a point is a
constrained minimum, we also need to satisfy second-order conditions.
For the unconstrained case, the Hessian of the objective function has
to be positive definite. In the constrained case, we need to check the
Hessian of the Lagrangian with respect to the design variables in the

5 Constrained Gradient-Based Optimization 162

space of feasible directions. The Lagrangian Hessian is

�ℒ = � 5 +
=ℎ∑
9=1

� 9�ℎ 9 , (5.14)

where � 5 is the Hessian of the objective, and �ℎ 9 is the Hessian of
equality constraint 9. The second-order sufficient conditions are as
follows:

?ᵀ�ℒ? > 0 for all ? such that �ℎ? = 0 . (5.15)

This ensures that the curvature of the Lagrangian is positive when
projected onto any feasible direction.

Example 5.2 Equality constrained problem
Consider the following constrained problem featuring a linear objective

function and a quadratic equality constraint:

minimize
G1 ,G2

5 (G1 , G2) = G1 + 2G2

subject to ℎ(G1 , G2) = 1
4 G

2
1 + G2

2 − 1 = 0 .

The Lagrangian for this problem is

ℒ(G1 , G2 ,�) = G1 + 2G2 + �
(
1
4 G

2
1 + G2

2 − 1
)
.

Differentiating this to get the first-order optimality conditions,

%ℒ
%G1

= 1 + 1
2�G1 = 0

%ℒ
%G2

= 2 + 2�G2 = 0

%ℒ
%�

=
1
4 G

2
1 + G2

2 − 1 = 0 .

Solving these three equations for the three unknowns (G1 , G2 ,�), we obtain two
possible solutions:

G� =

[
G1
G2

]
=

[
−√2
−
√

2
2

]
, �� =

√
2,

G� =

[
G1
G2

]
=

[√
2√
2

2

]
, �� = −

√
2 .

These two points are shown in Fig. 5.12, together with the objective and
constraint gradients. The optimality conditions (Eq. 5.11) state that the gradient
must be a linear combination of the gradients of the constraints at the optimum.
In the case of one constraint, this means that the two gradients are colinear
(which occurs in this example).

5 Constrained Gradient-Based Optimization 163

∇ 5

∇ℎ

G�
Minimum

∇ 5
∇ℎ

G�
Maximum

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

Fig. 5.12 Two points satisfy the first-
order optimality conditions; one is a
constrained minimum, and the other
is a constrained maximum.

G∗

−2 0 2

−2

0

2

G1

G2

Fig. 5.13 The minimum of the La-
grangian function with the optimum
Lagrange multiplier value (� =

√
2)

is the constrained minimum of the
original problem.

To determine if either of these points is a minimum, we check the second-
order conditions by evaluating the Hessian of the Lagrangian,

�ℒ =
[1

2� 0
0 2�

]
.

The Hessian is only positive definite for the case where �� =
√

2, and therefore
G� is a minimum. Although the Hessian only needs to be positive definite in
the feasible directions, in this case, we can show that it is positive or negative
definite in all possible directions. The Hessian is negative definite for G�, so
this is not a minimum; instead, it is a maximum.

Figure 5.13 shows the Lagrangian function (with the optimal Lagrange
multiplier we solved for) overlaid on top of the original function and constraint.
The unconstrained minimum of the Lagrangian corresponds to the constrained
minimum of the original function. The Lagrange multiplier can be visualized
as a third dimension coming out of the page. Here we show only the slice for
the Lagrange multiplier that solves the optimality conditions.

Example 5.3 Second-order conditions for constrained case
Consider the following problem:

minimize
G1 ,G2

5 (G1 , G2) = G2
1 + 3(G2 − 2)2

subject to ℎ(G1 , G2) = �G2
1 − G2 = 0 ,

where � is a parameter that we will vary to change the characteristics of the
constraint.

The Lagrangian for this problem is

ℒ(G1 , G2 ,�) = G2
1 + 3(G2 − 2)2 + �

(
�G2

1 − G2
)
.

5 Constrained Gradient-Based Optimization 164

‡This happens to be the same condition
for a positive-definite �ℒ in this case, but
this does not happen in general.

Differentiating for the first-order optimality conditions, we get

∇Gℒ =
[

2G1(1 + ��)
6(G2 − 2) − �

]
= 0

∇�ℒ = �G2
1 − G2 = 0 .

Solving these three equations for the three unknowns (G1 , G2 ,�), the solution is
[G1 , G2 ,�] = [0, 0,−12], which is independent of �.

To determine if this is a minimum, we must check the second-order
conditions by evaluating the Hessian of the Lagrangian,

�ℒ =
[
2(1 − 12�) 0

0 6

]
.

We only need �ℒ to be positive definite in the feasible directions. The feasible
directions are all ? such that �ᵀℎ ? = 0. In this case, �ℎ = [2�G1 ,−1], yielding
�ℎ(G∗) = [0,−1]. Therefore, the feasible directions at the solution can be
represented as ? = [
, 0], where
 is any real number. For positive curvature
in the feasible directions, we require that

?ᵀ�ℒ? = 2
2(1 − 12�) > 0 .

Thus, the second-order sufficient condition requires that � < 1/12.‡
We plot the constraint and the Lagrangian for three different values of

� in Fig. 5.14. The location of the point satisfying the first-order optimality
conditions is the same for all three cases, but the curvature of the constraint
changes the Lagrangian significantly.

∇ 5

∇ℎ

−4 −2 0 2 4

−2

0

2

4

G1

G2

� = −0.5

∇ 5

∇ℎ

−4 −2 0 2 4

−2

0

2

4

G1

G2

� = 1
12

∇ 5

∇ℎ

−4 −2 0 2 4

−2

0

2

4

G1

G2

� = 0.5

Fig. 5.14 Three different problems il-
lustrating the meaning of the second-
order conditions for constrained
problems.

For � = −0.5, the Hessian of the Lagrangian is positive definite, and we
have a minimum. For � = 0.5, the Lagrangian has negative curvature in the
feasible directions, so the point is not a minimum; we can reduce the objective
by moving along the curved constraint. The first-order conditions alone do
not capture this possibility because they linearize the constraint. Finally, in the
limiting case (� = 1/12), the curvature of the constraint matches the curvature
of the objective, and the curvature of the Lagrangian is zero in the feasible
directions. This point is not a minimum either.

5 Constrained Gradient-Based Optimization 165

∇ 5

∇ 5 ᵀ? < 0
Descent directions

5

G

Fig. 5.15 The descent directions are
in the open half-space defined by the
objective function gradient.

∇6

∇6ᵀ? ≥ 0
Infeasible
directions

Feasible
directions

6 = 0

G

Fig. 5.16 The feasible directions for
each constraint are in the closed half-
space defined by the inequality con-
straint gradient.

∇61

∇62

Feasible
directions

�ᵀ6 �, � ≥ 0
directions

G

Fig. 5.17 Excluding the infeasible di-
rections with respect to each con-
straint (red arcs) leaves the cone of
feasible directions (blue), which is
the polar cone of the active constraint
gradients cone (gray).

5.3.2 Inequality Constraints
We can reuse some of the concepts from the equality constrained
optimality conditions for inequality constrained problems. Recall that
an inequality constraint 9 is feasible when 69(G∗) ≤ 0 and it is said to be
active if 69(G∗) = 0 and inactive if 69(G∗) < 0.

As before, if G∗ is an optimum, any small enough feasible step ?
from the optimum must result in a function increase. Based on the
Taylor series expansion (Eq. 5.3), we get the condition

∇ 5 (G∗)ᵀ? ≥ 0 , (5.16)

which is the same as for the equality constrained case. We use the
arc in Fig. 5.15 to show the descent directions, which are in the open
half-space defined by the hyperplane tangent to the gradient of the
objective.

To consider inequality constraints, we use the same linearization as
the equality constraints (Eq. 5.6), but now we enforce an inequality to
get

69(G + ?) ≈ 69(G) + ∇69(G)ᵀ? ≤ 0, 9 = 1, . . . , =6 . (5.17)

For a given candidate point that satisfies all constraints, there are
two possibilities to consider for each inequality constraint: whether
the constraint is inactive (69(G) < 0) or active (69(G) = 0). If a given
constraint is inactive, we do not need to add any condition for it because
we can take a step ? in any direction and remain feasible as long as
the step is small enough. Thus, we only need to consider the active
constraints for the optimality conditions.

For the equality constraint, we found that all first-order feasible
directions are in the nullspace of the Jacobian matrix. Inequality
constraints are not as restrictive. From Eq. 5.17, if constraint 9 is
active (69(G) = 0), then the nearby point 69(G + ?) is only feasible if
∇69(G)ᵀ? ≤ 0 for all constraints 9 that are active. In matrix form, we can
write �6(G)? ≤ 0, where the Jacobian matrix includes only the gradients
of the active constraints. Thus, the feasible directions for inequality
constraint 9 can be any direction in the closed half-space, corresponding
to all directions ? such that ?ᵀ69 ≤ 0, as shown in Fig. 5.16. In this
figure, the arc shows the infeasible directions.

The set of feasible directions that satisfies all active constraints is
the intersection of all the closed half-spaces defined by the inequality
constraints, that is, all ? such that �6(G)? ≤ 0. This intersection of the
feasible directions forms a polyhedral cone, as illustrated in Fig. 5.17
for a two-dimensional case with two constraints. To find the cone of

5 Constrained Gradient-Based Optimization 166

§Farkas’ lemma has other applications be-
yond optimization and can be written in
various equivalent forms. Using the state-
ment by Dax,88 we set � = �6 , G = −?,
2 = −∇ 5 , and H = �.

88. Dax, Classroom note: An elementary
proof of Farkas’ lemma, 1997.

feasible directions, let us first consider the cone formed by the active
inequality constraint gradients (shown in gray in Fig. 5.17). This cone
is defined by all vectors 3 such that

3 = �ᵀ6 � =
=6∑
9=1

�9∇69 , where �9 ≥ 0 . (5.18)

A direction ? is feasible if ?ᵀ3 ≤ 0 for all 3 in the cone. The set of all
feasible directions forms the polar cone of the cone defined by Eq. 5.18
and is shown in blue in Fig. 5.17.

Now that we have established some intuition about the feasible
directions, we need to establish under which conditions there is no
feasible descent direction (i.e., we have reached an optimum). In other
words, when is there no intersection between the cone of feasible
directions and the open half-space of descent directions? To answer
this question, we can use Farkas’ lemma. This lemma states that given
a rectangular matrix (�6 in our case) and a vector with the same size
as the rows of the matrix (∇ 5 in our case), one (and only one) of two
possibilities occurs:§

1. There exists a ? such that �6? ≤ 0 and ∇ 5 ᵀ? < 0. This means that
there is a descent direction that is feasible (Fig. 5.18, left).

2. There exists a � such that �ᵀ6 � = −∇ 5 with � ≥ 0 (Fig. 5.18,
right). This corresponds to optimality because it excludes the first
possibility.

∇ 5

−∇ 5
∇61

∇62

Feasible
descent

directions

�ᵀ�, � ≥ 0
directions

1. Feasible descent direction ex-
ists, so point is not an optimum

∇ 5

−∇ 5
∇61

∇62

2. No feasible descent di-
rection exists, so point is an
optimum

Fig. 5.18 Two possibilities involving
active inequality constraints.

The second possibility yields the following optimality criterion for
inequality constraints:

∇ 5 + �6(G)ᵀ� = 0 , with � ≥ 0 . (5.19)

https://dx.doi.org/10.1137/S0036144594295502
https://dx.doi.org/10.1137/S0036144594295502

5 Constrained Gradient-Based Optimization 167

¶This is a special case of the Hadamard
product of two matrices.

Comparing with the corresponding criteria for equality constraints
(Eq. 5.13), we see a similar form. However, � corresponds to the
Lagrange multipliers for the inequality constraints and carries the
additional restriction that � ≥ 0.

If equality constraints are present, the conditions for the inequality
constraints apply only in the subspace of the directions feasible with
respect to the equality constraints.

Similar to the equality constrained case, we can construct a La-
grangian function whose stationary points are candidates for optimal
points. We need to include all inequality constraints in the optimality
conditions because we do not know in advance which constraints are
active. To represent inequality constraints in the Lagrangian, we replace
them with the equality constraints defined by

69 + B2
9 = 0, 9 = 1, . . . , =6 , (5.20)

where B 9 is a new unknown associated with each inequality constraint
called a slack variable. The slack variable is squared to ensure it is
nonnegative In that way, Eq. 5.20 can only be satisfied when 69 is
feasible (69 ≤ 0). The significance of the slack variable is that when
B 9 = 0, the corresponding inequality constraint is active (69 = 0), and
when B 9 ≠ 0, the corresponding constraint is inactive.

The Lagrangian including both equality and inequality constraints
is then

ℒ(G,�, �, B) = 5 (G) + �ᵀℎ(G) + �ᵀ (
6(G) + B � B) , (5.21)

where � represents the Lagrange multipliers associated with the in-
equality constraints. Here, we use � to represent the element-wise
multiplication of B.¶

Similar to the equality constrained case,we seek a stationarypoint for
the Lagrangian, but now we have additional unknowns: the inequality
Lagrange multipliers and the slack variables. Taking partial derivatives
of the Lagrangian with respect to each set of unknowns and setting
those derivatives to zero yields the first-order optimality conditions:

∇Gℒ = 0 ⇒ %ℒ
%G8

=
% 5
%G8
+

=ℎ∑
;=1

�;
%ℎ;
%G8
+

=6∑
9=1

�9
%69
%G8

= 0

8 = 1, . . . , =G . (5.22)

This criterion is the same as before but with additional Lagrange
multipliers and constraints. Taking the derivatives with respect to the

5 Constrained Gradient-Based Optimization 168

equality Lagrange multipliers, we have

∇�ℒ = 0 ⇒ %ℒ
%�;

= ℎ; = 0, ; = 1, . . . , =ℎ , (5.23)

which enforces the equality constraints as before. Taking derivatives
with respect to the inequality Lagrange multipliers, we get

∇�ℒ = 0 ⇒ %ℒ
%�9

= 69 + B2
9 = 0 9 = 1, . . . , =6 , (5.24)

which enforces the inequality constraints. Finally, differentiating the
Lagrangian with respect to the slack variables, we obtain

∇Bℒ = 0 ⇒ %ℒ
%B 9

= 2�9B 9 = 0, 9 = 1, . . . , =6 , (5.25)

which is called the complementary slackness condition. This condition
helps us to distinguish the active constraints from the inactive ones.
For each inequality constraint, either the Lagrange multiplier is zero
(which means that the constraint is inactive), or the slack variable
is zero (which means that the constraint is active). Unfortunately,
the complementary slackness condition introduces a combinatorial
problem. The complexity of this problem grows exponentially with
the number of inequality constraints because the number of possible
combinations of active versus inactive constraints is 2=6 .

In addition to the conditions for a stationary point of the Lagrangian
(Eqs. 5.22 to 5.25), recall that we require the Lagrange multipliers for
the active constraints to be nonnegative. Putting all these conditions to-
gether in matrix form, the first-order constrained optimality conditions
are as follows:

∇ 5 + �ᵀℎ� + �ᵀ6 � = 0

ℎ = 0
6 + B � B = 0

� � B = 0
� ≥ 0 .

(5.26)

These are called theKarush–Kuhn–Tucker (KKT) conditions. The equality
and inequality constraints are sometimes lumped together using a single
Jacobian matrix (and single Lagrange multiplier vector). This can be
convenient because the expression for the Lagrangian follows the same
form for both cases.

As in the equality constrained case, these first-order conditions are
necessary but not sufficient. The second-order sufficient conditions

5 Constrained Gradient-Based Optimization 169

require that the Hessian of the Lagrangian must be positive definite in
all feasible directions, that is,

?ᵀ�ℒ? > 0 for all ? such that:
�ℎ? = 0
�6? ≤ 0 for the active constraints.

(5.27)

In other words, we only require positive definiteness in the intersection
of the nullspace of the equality constraint Jacobian with the feasibility
cone of the active inequality constraints.

Similar to the equality constrained case, theKKT conditions (Eq. 5.26)
only apply when a point is regular, that is, when it satisfies linear inde-
pendence constraint qualification. However, the linear independence
applies only to the gradients of the inequality constraints that are active
and the equality constraint gradients.

Suppose we have the two constraints shown in the left pane of
Fig. 5.19. For the given objective function contours, point G∗ is a
minimum. At G∗, the gradients of the two constraints are linearly
independent, and G∗ is thus a regular point. Therefore, we can apply
the KKT conditions at this point.

∇ 5

∇61

∇62

G∗

G∗ is regular

∇ 5

∇61

∇62

G∗

G∗ is not regular

∇ 5
∇62 ∇61 G∗

G∗ is not regular

Fig. 5.19 The KKT conditions apply
only to regular points. A point G∗
is regular when the gradients of the
constraints are linearly independent.
The middle and right panes illustrate
cases where G∗ is a constrained mini-
mum but not a regular point.

The middle and right panes of Fig. 5.19 illustrate cases where G∗
is also a constrained minimum. However, G∗ is not a regular point in
either case because the gradients of the two constraints are not linearly
independent. This means that the gradient of the objective cannot be
expressed as a unique linear combination of the constraints. Therefore,
we cannot use the KKT conditions, even though G∗ is a minimum.
The problem would be ill-conditioned, and the numerical methods
described in this chapter would run into numerical difficulties. Similar
to the equality constrained case, this situation is uncommon in practice.

5 Constrained Gradient-Based Optimization 170

Example 5.4 Problem with one inequality constraint
Consider a variation of the problem in Ex. 5.2 where the equality is replaced

by an inequality, as follows:

minimize
G1 ,G2

5 (G1 , G2) = G1 + 2G2

subject to 6(G1 , G2) = 1
4 G

2
1 + G2

2 − 1 ≤ 0 .

The Lagrangian for this problem is

ℒ(G1 , G2 , �, B) = G1 + 2G2 + �
(
1
4 G

2
1 + G2

2 − 1 + B2
)
.

The objective function and feasible region are shown in Fig. 5.20.

∇ 5

∇6

G�
Minimum

∇ 5
∇6

G�
Maximum

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

Fig. 5.20 Inequality constrained prob-
lem with linear objective and feasible
space within an ellipse.

Differentiating the Lagrangian with respect to all the variables, we get the
first-order optimality conditions

%ℒ
%G1

= 1 + 1
2�G1 = 0

%ℒ
%G2

= 2 + 2�G2 = 0

%ℒ
%�

=
1
4 G

2
1 + G2

2 − 1 = 0

%ℒ
%B

= 2�B = 0 .

There are two possibilities in the last (complementary slackness) condition:
B = 0 (meaning the constraint is active) and � = 0 (meaning the constraint is
not active). However, we can see that setting � = 0 in either of the two first
equations does not yield a solution. Assuming that B = 0 and � ≠ 0, we can
solve the equations to obtain:

G� =


G1
G2
�


=


−√2
−√2/2√

2


, G� =


G1
G2
�


=



√
2√

2/2
−√2


.

5 Constrained Gradient-Based Optimization 171

These are the same critical points as in the equality constrained case of Ex. 5.2,
as shown in Fig. 5.20. However, now the sign of the Lagrange multiplier is
significant.

According to the KKT conditions, the Lagrange multiplier has to be nonneg-
ative. Point G� satisfies this condition. As a result, there is no feasible descent
direction at G�, as shown in Fig. 5.21 (left). The Hessian of the Lagrangian at
this point is the same as in Ex. 5.2, which we have already shown to be positive
definite. Therefore, G� is a minimum.

∇ 5

∇6
Infeasible
directions

Descent
directions

G∗

∇ 5

∇6

Infeasible
directions

Feasible
descent

directions

G�

Fig. 5.21 At the minimum (left), the
Lagrange multiplier is positive, and
there is no feasible descent direction.
At the critical point G� (right), the
Lagrange multiplier is negative, and
all descent directions are feasible, so
this point is not a minimum.

Unlike the equality constrained problem, we do not need to check the Hes-
sian at point G� because the Lagrange multiplier is negative. As a consequence,
there are feasible descent directions, as shown in Fig. 5.21 (right). Therefore,
G� is not a minimum.

Example 5.5 Simple problem with two inequality constraints
Consider a variation of Ex. 5.4 where we add onemore inequality constraint,

as follows:
minimize

G1 ,G2
5 (G1 , G2) = G1 + 2G2

subject to 61(G1 , G2) = 1
4 G

2
1 + G2

2 − 1 ≤ 0

62(G2) = −G2 ≤ 0 .
The feasible region is the top half of the ellipse, as shown in Fig. 5.22.

The Lagrangian for this problem is

ℒ(G, �, B) = G1 + 2G2 + �1

(
1
4 G

2
1 + G2

2 − 1 + B21
)
+ �2

(
−G2 + B22

)
.

Differentiating the Lagrangian with respect to all the variables, we get the
first-order optimality conditions,

%ℒ
%G1

= 1 + 1
2�1G1 = 0

%ℒ
%G2

= 2 + 2�1G2 − �2 = 0

%ℒ
%�1

=
1
4 G

2
1 + G2

2 − 1 + B21 = 0

5 Constrained Gradient-Based Optimization 172

%ℒ
%�2

= −G2 + B22 = 0

%ℒ
%B1

= 2�1B1 = 0

%ℒ
%B2

= 2�2B2 = 0 .

We now have two complementary slackness conditions, which yield the four
potential combinations listed in Table 5.1.

Assumption Meaning G1 G2 �1 �2 B1 B2 Point

B1 = 0 61 is active −2 0 1 2 0 0 G∗
B2 = 0 62 is active 2 0 −1 2 0 0 G�

�1 = 0 61 is inactive – – – – – –
�2 = 0 62 is inactive

B1 = 0 61 is active √
2

√
2

2 −√2 0 0 2− 1
4 G��2 = 0 62 is inactive

�1 = 0 61 is inactive – – – – – –
B2 = 0 62 is active

Table 5.1 Two inequality constraints
yield four potential combinations.

∇ 5

∇61

∇62

G∗
Minimum

∇ 5
∇61

G�

∇ 5

∇61

∇62

G�

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

Fig. 5.22 Only one point satisfies the
first-order KKT conditions.

∇ 5

∇61

∇62

Infeasible
61

directions

Infeasible
62

directions

G∗

∇ 5

∇61

∇62

Infeasible
61

directions

Infeasible
62

directions

Feasible
descent

directions

G�

Fig. 5.23 At the minimum (left), the
intersection of the feasible directions
and descent directions is null, so
there is no feasible descent direction.
At this point, there is a cone of de-
scent directions that is also feasible,
so it is not a minimum.

5 Constrained Gradient-Based Optimization 173

Assuming that both constraints are active yields two possible solutions (G∗
and G�) corresponding to two different Lagrange multipliers. According to the
KKT conditions, the Lagrange multipliers for all active inequality constraints
have to be positive, so only the solution with �1 = 1 (G∗) is a candidate for a
minimum. This point corresponds to G∗ in Fig. 5.22. As shown in Fig. 5.23 (left),
there are no feasible descent directions starting from G∗. The Hessian of the
Lagrangian at G∗ is identical to the previous example and is positive definite
when �1 is positive. Therefore, G∗ is a minimum.

The other solution for which both constraints are active is point G� in
Fig. 5.22. As shown in Fig. 5.23 (right), there is a cone of feasible descent
directions, and therefore G� is not a minimum.

Assuming that neither constraint is active yields 1 = 0 for the first optimality
condition, so this situation is not possible. Assuming that 61 is active yields
the solution corresponding to the maximum that we already found in Ex. 5.4,
G�. Finally, assuming that only 62 is active yields no candidate point.

Although these examples can be solved analytically, they are the
exception rather than the rule. The KKT conditions quickly become
challenging to solve analytically (try solving Ex. 5.1), and as the number
of constraints increases, trying all combinations of active and inactive
constraints becomes intractable. Furthermore, engineering problems
usually involve functions defined by models with implicit equations,
which are impossible to solve analytically. The reason we include
these analytic examples is to gain a better understanding of the KKT
conditions. For the rest of the chapter, we focus on numerical methods,
which are necessary for the vast majority of practical problems.

5.3.3 Meaning of the Lagrange Multipliers
The Lagrange multipliers quantify how much the corresponding con-
straints drive the design. More specifically, a Lagrange multiplier
quantifies the sensitivity of the optimal objective function value 5 (G∗)
to a variation in the value of the corresponding constraint. Here we
explain why that is the case. We discuss only inequality constraints,
but the same analysis applies to equality constraints.

When a constraint is inactive, the corresponding Lagrangemultiplier
is zero. This indicates that changing the value of an inactive constraint
does not affect the optimum, as expected. This is only valid to the
first order because the KKT conditions are based on the linearization
of the objective and constraint functions. Because small changes are
assumed in the linearization, we do not consider the case where an
inactive constraint becomes active after perturbation.

5 Constrained Gradient-Based Optimization 174

‖As an example, we could change the
value of the allowable stress constraint
in the structural optimization problem of
Ex. 3.9.

∗∗This condition is similar to Eq. 5.7, but
here we apply it to all equality and active
constraints except for constraint 8.

6 1
≤ 0

6 1
+ d6 1

= 0

62 ≤ 0

% 5
%G

%62

%G

%61

%G

G∗
G∗ + dG

Fig. 5.24 Lagrange multipliers can be
interpreted as the change in the op-
timal objective due a perturbation in
the corresponding constraint. In this
case, we show the effect of perturbing
61.

Now let us examine the active constraints. Suppose that we want to
quantify the effect of a change in an active (or equality) constraint 68 on
the optimal objective function value.‖ The differential of 68 is given by
the following dot product:

d68 =
%68
%G

dG . (5.28)

For all the other constraints 9 that remain unperturbed, which means
that

%69
%G

dG = 0 for all 9 ≠ 8 . (5.29)

This equation states that any movement dG must be in the nullspace
of the remaining constraints to remain feasible with respect to those
constraints.∗∗ An example with two constraints is illustrated in Fig. 5.24,
where 61 is perturbed and 62 remains fixed. The objective and constraint
functions are linearized because we are considering first-order changes
represented by the differentials.

From the KKT conditions (Eq. 5.22), we know that at the optimum,
% 5
%G

= −�ᵀ %6
%G

. (5.30)

Using this condition, we can write the differential of the objective,
d 5 = (% 5 /%G)dG, as

d 5 = −�ᵀ %6
%G

dG . (5.31)

According to Eqs. 5.28 and 5.29, the product with dG is only nonzero
for the perturbed constraint 8 and therefore,

d 5 = −�8 %68%G
dG = −�8 d68 . (5.32)

This leads to the derivative of the optimal 5 with respect to a change in
the value of constraint 8:

�8 = − d 5
d68

. (5.33)

Thus, the Lagrange multipliers can predict howmuch improvement
can be expected if a given constraint is relaxed. For inequality con-
straints, because the Lagrange multipliers are positive at an optimum,
this equation correctly predicts a decrease in the objective function
value when the constraint value is increased.

The derivative defined in Eq. 5.33 has practical value because it tells
us howmuch a given constraint drives the design. In this interpretation
of the Lagrange multipliers, we need to consider the scaling of the
problem and the units. Still, for similar quantities, they quantify the
relative importance of the constraints.

5 Constrained Gradient-Based Optimization 175

55�

6 1

6 1�

62

62�G∗

G∗�

Fig. 5.25 Post-optimality sensitivities
quantify the change in the optimal
objective due to a perturbation of a
parameter that was originally fixed
in the optimization. The optimal ob-
jective value changes due to changes
in the optimum point (which moves
to G∗�) and objective function (which
becomes 5�.)

5.3.4 Post-Optimality Sensitivities
It is sometimes helpful to find sensitivities of the optimal objective func-
tion value with respect to a parameter held fixed during optimization.
Suppose that we have found the optimum for a constrained problem.
Say we have a scalar parameter � held fixed in the optimization, but
now want to quantify the effect of a perturbation in that parameter on
the optimal objective value. Perturbing � changes the objective and
the constraint functions, so the optimum point moves, as illustrated in
Fig. 5.25. For our current purposes, we use 6 to represent either active
inequality or equality constraints. We assume that the set of active
constraints does not change with a perturbation in � like we did when
perturbing the constraint in Section 5.3.3.

The objective function is affected by � through a change in 5 itself and
a change induced by the movement of the constraints. This dependence
can be written in the total differential form as:

d 5 =
% 5
%�

d� + % 5
%6

%6
%�

d� . (5.34)

The derivative % 5 /%6 corresponds to the derivative of the optimal value
of the objective with respect to a perturbation in the constraint, which
according to Eq. 5.33, is the negative of the Lagrange multipliers. This
means that the post-optimality derivative is

d 5
d� =

% 5
%�
− �ᵀ %6

%�
, (5.35)

where the partial derivatives with respect to � can be computedwithout
re-optimizing.

5.4 Penalty Methods
The concept behind penalty methods is intuitive: to transform a con-
strained problem into an unconstrained one by adding a penalty to
the objective function when constraints are violated or close to being
violated. As mentioned in the introduction to this chapter, penalty
methods are no longer used directly in gradient-based optimization
algorithms because they have difficulty converging to the true solu-
tion. However, these methods are still valuable because (1) they are
simple and thus ease the transition into understanding constrained
optimization; (2) they are useful in some constrained gradient-free
methods (Chapter 7); (3) they can be used as merit functions in line
search algorithms, as discussed in Section 5.5.3; (4) penalty concepts

5 Constrained Gradient-Based Optimization 176

are used in interior points methods, as discussed in Section 5.6. The
penalized function can be written as

5̂ (G) = 5 (G) + ��(G) , (5.36)

where �(G) is a penalty function, and the scalar � is a penalty parameter.
This is similar in form to the Lagrangian, but one difference is that � is
fixed instead of being a variable.

We can use the unconstrained optimization techniques to minimize
5̂ (G). However, instead of just solving a single optimization problem,
penalty methods usually solve a sequence of problems with different
values of � to get closer to the actual constrained minimum. We will
see shortly why we need to solve a sequence of problems rather than
just one problem.

Various forms for �(G) can be used, leading to different penalty
methods. There are two main types of penalty functions: exterior
penalties, which impose a penalty only when constraints are violated,
and interior penalty functions, which impose a penalty that increases as
a constraint is approached.

Figure 5.26 shows both interior and exterior penalties for a two-
dimensional function. The exterior penalty leads to slightly infeasible
solutions, whereas an interior penalty leads to a feasible solution but
underpredicts the objective.

5.4.1 Exterior Penalty Methods
Of the many possible exterior penalty methods, we focus on two of
the most popular ones: quadratic penalties and the augmented La-
grangian method. Quadratic penalties are continuously differentiable
and straightforward to implement, but they suffer from numerical
ill-conditioning. The augmented Lagrangian method is more sophisti-
cated; it is based on the quadratic penalty but adds terms that improve
the numerical properties. Many other penalties are possible, such as
1-norms, which are often used when continuous differentiability is
unnecessary.

Quadratic Penalty Method
For equality constrained problems, the quadratic penalty method takes
the form

5̂ (G;�) = 5 (G) + �

2

∑
8

ℎ8(G)2 , (5.37)

where the semicolon denotes that � is a fixed parameter. Themotivation
for a quadratic penalty is that it is simple and results in a function that

5 Constrained Gradient-Based Optimization 177

?

G∗G∗

Objective

ConstraintInterior
penalty

?

G∗
G∗

Objective

ConstraintExterior
penalty

?

5̂ (G)

G∗exteriorG∗interior G
∗
true

Fig. 5.26 Interior penalties tend to in-
finity as the constraint is approached
from the feasible side of the constraint
(left), whereas exterior penalty func-
tions activate when the points are not
feasible (right). The minimum for
both approaches is different from the
true constrained minimum.

is continuously differentiable. The factor of one half is unnecessary but
is included by convention because it eliminates the extra factor of two
when taking derivatives. The penalty is nonzero unless the constraints
are satisfied (ℎ8 = 0), as desired.

5 (G)

G

5̂ (G;�)

� ↑

G∗true

Fig. 5.27 Quadratic penalty for an
equality constrained problem. The
minimum of the penalized function
(black dots) approaches the true con-
strained minimum (blue circle) as the
penalty parameter � increases.

The value of the penalty parameter � must be chosen carefully.
Mathematically, we recover the exact solution to the constrained prob-
lem only as � tends to infinity (see Fig. 5.27). However, starting with a
large value for � is not practical. This is because the larger the value of

5 Constrained Gradient-Based Optimization 178

�, the larger the Hessian condition number, which corresponds to the
curvature varying greatly with direction (see Ex. 4.10). This behavior
makes the problem difficult to solve numerically.

To solve the problemmore effectively, we begin with a small value of
� and solve the unconstrained problem. We then increase � and solve
the new unconstrained problem, using the previous solution as the
starting point. We repeat this process until the optimality conditions (or
some other approximate convergence criteria) are satisfied, as outlined
in Alg. 5.1. By gradually increasing � and reusing the solution from
the previous problem, we avoid some of the ill-conditioning issues.
Thus, the original constrained problem is transformed into a sequence
of unconstrained optimization problems.

Algorithm 5.1 Exterior penalty method
Inputs:
G0: Starting point
�0 > 0: Initial penalty parameter
� > 1: Penalty increase factor (� ∼ 1.2 is conservative, � ∼ 10 is aggressive)

Outputs:
G∗: Optimal point
5 (G∗): Corresponding function value

: = 0
while not converged do

G∗: ← minimize
G:

5̂ (G: ;�:)
�:+1 = ��: Increase penalty
G:+1 = G∗: Update starting point for next optimization
: = : + 1

end while

There are three potential issues with the approach outlined in
Alg. 5.1. Suppose the starting value for � is too low. In that case, the
penalty might not be enough to overcome a function that is unbounded
from below, and the penalized function has no minimum.

The second issue is that we cannot practically approach � → ∞.
Hence, the solution to the problem is always slightly infeasible. By
comparing the optimality condition of the constrained problem,

∇Gℒ = ∇ 5 + �ᵀℎ� = 0 , (5.38)

and the optimality conditional of the penalized function,

∇G 5̂ = ∇ 5 + ��ᵀℎ ℎ = 0 , (5.39)

5 Constrained Gradient-Based Optimization 179

10−1 100 101 102 103

10−3

10−2

10−1

100

�

| 5̂ ∗ − 5 ∗ |

Fig. 5.29 Error in optimal solution for
increasing penalty parameter.

we see that for each constraint 9,

ℎ 9 ≈
�∗9
�
. (5.40)

Because ℎ 9 = 0 at the optimum, �must be large to satisfy the constraints.
The third issue has to dowith the curvature of the penalized function,

which is directly proportional to �. The extra curvature is added in a
direction perpendicular to the constraints, making the Hessian of the
penalized function increasingly ill-conditioned as � increases. Thus,
the need to increase � to improve accuracy directly leads to a function
space that is increasingly challenging to solve.

Example 5.6 Quadratic penalty for equality constrained problem

G∗

G∗
5̂

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

� = 0.5

G∗

G∗
5̂

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

� = 3.0

G∗

G∗
5̂

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

� = 10.0

Fig. 5.28 The quadratic penalized
function minimum approaches the
constrained minimum as the penalty
parameter increases.

Consider the equality constrained problem from Ex. 5.2. The penalized
function for that case is

5̂ (G;�) = G1 + 2G2 +
�

2

(
1
4 G

2
1 + G2

2 − 1
)2
. (5.41)

Figure 5.28 shows this function for different values of the penalty parameter
�. The penalty is active for all points that are infeasible, but the minimum of
the penalized function does not coincide with the constrained minimum of
the original problem. The penalty parameter needs to be increased for the
minimum of the penalized function to approach the correct solution, but this
results in a poorly conditioned function.

To show the impact of increasing �, we solve a sequence of problems starting
with a small value of � and reusing the optimal point for one solution as the
starting point for the next. Figure 5.29 shows that large penalty values are
required for high accuracy. In this example, even using a penalty parameter of
� = 1, 000 (which results in extremely skewed contours), the objective value
achieves only three digits of accuracy.

5 Constrained Gradient-Based Optimization 180

The approach discussed so far handles only equality constraints,
but we can extend it to handle inequality constraints. Instead of adding
a penalty to both sides of the constraints, we add the penalty when the
inequality constraint is violated (i.e., when 69(G) > 0). This behavior
can be achieved by defining a new penalty function as

5̂ (G;�) = 5 (G) + �

2

=6∑
9=1

max
(
0, 69(G)

)2 . (5.42)

The only difference relative to the equality constraint penalty shown
in Fig. 5.27 is that the penalty is removed on the feasible side of the
inequality constraint, as shown in Fig. 5.30.

G

5̂ (G;�)

� ↑

G∗true

Fig. 5.30 Quadratic penalty for an in-
equality constrained problem. The
minimum of the penalized function
approaches the constrained mini-
mum from the infeasible side.

The inequality quadratic penalty can be used together with the
quadratic penalty for equality constraints if we need to handle both
types of constraints:

5̂ (G;�) = 5 (G) + �ℎ
2

=ℎ∑
;=1

ℎ;(G)2 +
�6

2

=6∑
9=1

max
(
0, 69(G)

)2 . (5.43)

The two penalty parameters can be incremented in lockstep or inde-
pendently.

Example 5.7 Quadratic penalty for inequality constrained problem
Consider the inequality constrained problem from Ex. 5.4. The penalized

function for that case is

5̂ (G;�) = G1 + 2G2 +
�

2 max
(
0, 1

4 G
2
1 + G2

2 − 1
)2
.

This function is shown in Fig. 5.31 for different values of the penalty parameter
�. The contours of the feasible region inside the ellipse coincide with the

5 Constrained Gradient-Based Optimization 181

original function contours. However, outside the feasible region, the contours
change to create a function whose minimum approaches the true constrained
minimum as the penalty parameter increases.

G∗

G∗
5̂

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

� = 0.5

G∗

G∗
5̂

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

� = 3.0

G∗

G∗
5̂

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

� = 10.0

Fig. 5.31 The quadratic penalized
function minimum approaches the
constrained minimum from the infea-
sible side.Tip 5.3 Scaling is also important for constrained problems

The considerations on scaling discussed in Tip 4.4 are just as crucial for
constrained problems. Similar to scaling the objective function, a good scaling
rule of thumb is to normalize each constraint function such they are of order
1. For constraints, a natural scale is typically already defined by the limits we
provide. For example, instead of

69(G) − 6max 9 ≤ 0 , (5.44)

we can reexpress a scaled version as

69(G)
6max 9

− 1 ≤ 0 . (5.45)

Augmented Lagrangian
As explained previously, the quadratic penalty method requires a
large value of � for constraint satisfaction, but the large � degrades
the numerical conditioning. The augmented Lagrangian method
helps alleviate this dilemma by adding the quadratic penalty to the
Lagrangian instead of just adding it to the function. The augmented
Lagrangian function for equality constraints is

5̂ (G;�, �) = 5 (G) +
=ℎ∑
9=1

� 9ℎ 9(G) + �

2

=ℎ∑
9=1

ℎ 9(G)2 . (5.46)

5 Constrained Gradient-Based Optimization 182

To estimate the Lagrangemultipliers, we can compare the optimality
conditions for the augmented Lagrangian,

∇G 5̂ (G;�, �) = ∇ 5 (G) +
=ℎ∑
9=1

(
� 9 + �ℎ 9(G)

) ∇ℎ 9 = 0 , (5.47)

to those of the actual Lagrangian,

∇Gℒ(G∗ ,�∗) = ∇ 5 (G∗) +
=ℎ∑
9=1

�∗9∇ℎ 9(G∗) = 0 . (5.48)

Comparing these two conditions suggests the approximation

�∗9 ≈ � 9 + �ℎ 9 . (5.49)

Therefore, we update the vector of Lagrange multipliers based on the
current estimate of the Lagrange multipliers and constraint values
using

�:+1 = �: + �: ℎ(G:) . (5.50)

The complete algorithm is shown in Alg. 5.2.
This approach is an improvement on the plain quadratic penalty

because updating the Lagrange multiplier estimates at each iteration
allows for more accurate solutions without increasing � as much. The
augmented Lagrangian approximation for each constraint obtained
from Eq. 5.49 is

ℎ 9 ≈ 1
�
(�∗9 − � 9) . (5.51)

The corresponding approximation in the quadratic penalty method is

ℎ 9 ≈
�∗9
�
. (5.52)

The quadratic penalty relies solely on increasing� in the denominator to
drive the constraints to zero. However, the augmented Lagrangian also
controls the numerator through the Lagrange multiplier estimate. If the
estimate is reasonably close to the true Lagrange multiplier, then the
numerator becomes small for modest values of �. Thus, the augmented
Lagrangian can provide a good solution for G∗ while avoiding the
ill-conditioning issues of the quadratic penalty.

5 Constrained Gradient-Based Optimization 183

89. Gill et al., Some theoretical properties
of an augmented Lagrangian merit function,
1986.
90. Di Pillo and Grippo, A new augmented
Lagrangian function for inequality con-
straints in nonlinear programming problems,
1982.
91. Birgin et al., Numerical comparison
of augmented Lagrangian algorithms for
nonconvex problems, 2005.

92. Rockafellar, The multiplier method
of Hestenes and Powell applied to convex
programming, 1973.

Algorithm 5.2 Augmented Lagrangian penalty method
Inputs:
G0: Starting point
�0 = 0: Initial Lagrange multiplier
�0 > 0: Initial penalty parameter
� > 1: Penalty increase factor

Outputs:
G∗: Optimal point
5 (G∗): Corresponding function value

: = 0
while not converged do

G∗: ← minimize
G:

5̂ (G: ;�: , �:)
�:+1 = �: + �: ℎ(G:) Update Lagrange multipliers
�:+1 = ��: Increase penalty parameter
G:+1 = G∗: Update starting point for next optimization
: = : + 1

end while

So far we have only discussed equality constraints where the defini-
tion for the augmented Lagrangian is universal. Example 5.8 included
an inequality constraint by assuming it was active and treating it like
an equality, but this is not an approach that can be used in general.
Several formulations exist for handling inequality constraints using the
augmented Lagrangian approach.89–91 One well-known approach is
given by:92

5̂ (G;�) = 5 (G) + �ᵀ 6̄(G) + 1
2�

6̄(G)

2
2 . (5.53)

where

6̄9(G) ≡


ℎ 9(G) for equality constraints
69(G) if 69 ≥ −� 9/�
−� 9/� otherwise .

(5.54)

Example 5.8 Augmented Lagrangian for inequality constrained problem
Consider the inequality constrained problem from Ex. 5.4. Assuming the

inequality constraint is active, the augmented Lagrangian (Eq. 5.46) is

5̂ (G;�) = G1 + 2G2 + �
(
1
4 G

2
1 + G2

2 − 1
)
+ �

2

(
1
4 G

2
1 + G2

2 − 1
)2
.

Applying Alg. 5.2, starting with � = 0.5 and using � = 1.1, we get the iterations
shown in Fig. 5.32.

https://https://apps.dtic.mil/sti/citations/ADA168503
https://https://apps.dtic.mil/sti/citations/ADA168503
https://dx.doi.org/10.1007/BF00940544
https://dx.doi.org/10.1007/BF00940544
https://dx.doi.org/10.1007/BF00940544
https://dx.doi.org/10.1007/s10589-005-1066-7
https://dx.doi.org/10.1007/s10589-005-1066-7
https://dx.doi.org/10.1007/s10589-005-1066-7
https://dx.doi.org/10.1007/BF00934777
https://dx.doi.org/10.1007/BF00934777
https://dx.doi.org/10.1007/BF00934777

5 Constrained Gradient-Based Optimization 184

G0

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

: = 0, � = 0.50, � = 0.000

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

: = 2, � = 0.61, � = 1.146

G∗

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

: = 9, � = 1.18, � = 1.413

Fig. 5.32 Augmented Lagrangian ap-
plied to inequality constrained prob-
lem.

10−1 100

10−1

10−4

10−7

10−10

10−13

�

| 5̂ ∗ − 5 ∗ |

Fig. 5.33 Error in optimal solution
as compared with true solution as
a function of an increasing penalty
parameter.

Inverse barrier

Logarithmic barrier
−2 −1

−2

0

2

4

6

8

06(G)

�(G)

Fig. 5.34 Two different interior
penalty functions: inverse barrier and
logarithmic barrier.

Compared with the quadratic penalty in Ex. 5.7, the penalized function
is much better conditioned, thanks to the term associated with the Lagrange
multiplier. The minimum of the penalized function eventually becomes the
minimum of the constrained problem without a large penalty parameter.

As done in Ex. 5.6, we solve a sequence of problems starting with a small
value of � and reusing the optimal point for one solution as the starting point
for the next. In this case, we update the Lagrange multiplier estimate between
optimizations as well. Figure 5.33 shows that only modest penalty parameters
are needed to achieve tight convergence to the true solution, a significant
improvement over the regular quadratic penalty.

5.4.2 Interior Penalty Methods
Interior penalty methods work the same way as exterior penalty
methods—they transform the constrained problem into a series of
unconstrained problems. The main difference with interior penalty
methods is that they always seek to maintain feasibility. Instead of
adding a penalty only when constraints are violated, they add a penalty
as the constraint is approached from the feasible region. This type of
penalty is particularly desirable if the objective function is ill-defined
outside the feasible region. These methods are called interior because
the iteration points remain on the interior of the feasible region. They
are also referred to as barrier methods because the penalty function acts
as a barrier preventing iterates from leaving the feasible region.

One possible interior penalty function to enforce 6(G) ≤ 0 is the
inverse barrier,

�(G) =
=6∑
9=1
− 1
69(G) , (5.55)

where �(G) → ∞ as 69(G) → 0− (where the superscript “−” indicates a
left-sided derivative). A more popular interior penalty function is the

5 Constrained Gradient-Based Optimization 185

logarithmic barrier,

�(G) =
=6∑
9=1
− ln

(−69(G)) , (5.56)

which also approaches infinity as the constraint tends to zero from the
feasible side. The penalty function is then

5̂ (G;�) = 5 (G) − �
=6∑
9=1

ln(−69(G)) . (5.57)

These two penalty functions as illustrated in Fig. 5.34.
Neither of these penalty functions applies when 6 > 0 because they

are designed to be evaluated only within the feasible space. Algorithms
based on these penalties must be prevented from evaluating infeasible
points.

Like exterior penalty methods, interior penalty methods must also
solve a sequence of unconstrained problems but with � → 0 (see
Alg. 5.3). As the penalty parameter decreases, the region across which
the penalty acts decreases, as shown in Fig. 5.35.

G

5̂ (G;�)

� ↓
G∗true

Fig. 5.35 Logarithmic barrier penalty
for an inequality constrained prob-
lem. The minimum of the penalized
function (black circles) approaches
the true constrained minimum (blue
circle) as the penalty parameter � de-
creases.

The methodology is the same as is described in Alg. 5.1 but with
a decreasing penalty parameter. One major weakness of the method
is that the penalty function is not defined for infeasible points, so a
feasible starting point must be provided. For some problems, providing
a feasible starting point may be difficult or practically impossible.

The optimization must be safeguarded to prevent the algorithm
from becoming infeasible when starting from a feasible point. This
can be achieved by checking the constraints values during the line
search and backtracking if any of them is greater than or equal to zero.
Multiple backtracking iterations might be required.

5 Constrained Gradient-Based Optimization 186

Algorithm 5.3 Interior penalty method
Inputs:
G0: Starting point
�0 > 0: Initial penalty parameter
� < 1: Penalty decrease factor

Outputs:
G∗: Optimal point
5 (G∗): Corresponding function value

: = 0
while not converged do

G∗: ← minimize
G:

5̂ (G: ;�:)
�:+1 = ��: Decrease penalty parameter
G:+1 = G∗: Update starting point for next optimization
: = : + 1

end while

Example 5.9 Logarithmic penalty for inequality constrained problem
Consider the equality constrained problem from Ex. 5.4. The penalized

function for that case using the logarithmic penalty (Eq. 5.57) is

5̂ (G;�) = G1 + 2G2 − � ln
(
−1

4 G
2
1 − G2

2 + 1
)
.

Figure 5.36 shows this function for different values of the penalty parameter �.
The penalized function is defined only in the feasible space, so we do not plot
its contours outside the ellipse.

G∗

G∗
5̂

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

� = 3.0

G∗

G∗
5̂

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

� = 1.0

G∗
G∗
5̂

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

� = 0.2

Fig. 5.36 Logarithmic penalty for one
inequality constraint. The minimum
of the penalized function approaches
the constrained minimum from the
feasible side.

Like exterior penalty methods, the Hessian for interior penalty
methods becomes increasingly ill-conditioned as the penalty parameter

5 Constrained Gradient-Based Optimization 187

93. Murray, Analytical expressions for the
eigenvalues and eigenvectors of the Hessian
matrices of barrier and penalty functions,
1971.
94. Forsgren et al., Interior methods for
nonlinear optimization, 2002.

tends to zero.93 There are augmented and modified barrier approaches
that can avoid the ill-conditioning issue (and other methods that remain
ill-conditioned but can still be solved reliably, albeit inefficiently).94
However, these methods have been superseded by the modern interior-
point methods discussed in Section 5.6, so we do not elaborate on
further improvements to classical penalty methods.

5.5 Sequential Quadratic Programming
SQP is the first of the modern constrained optimization methods we
discuss. SQP is not a single algorithm; instead, it is a conceptual method
from which various specific algorithms are derived. We present the
basic method but mention only a few of the many details needed for
robust practical implementations. We begin with equality constrained
SQP and then add inequality constraints.

5.5.1 Equality Constrained SQP
To derive the SQP method, we start with the KKT conditions for this
problem and treat them as equation residuals that need to be solved.
Recall that the Lagrangian (Eq. 5.12) is

ℒ(G,�) = 5 (G) + ℎ(G)ᵀ� . (5.58)

Differentiating this function with respect to the design variables and
Lagrange multipliers and setting the derivatives to zero, we get the
KKT conditions,

A =

[∇Gℒ(G,�)
∇�ℒ(G,�)

]
=

[∇ 5 (G) + �ᵀℎ�
ℎ(G)

]
= 0. (5.59)

Recall that to solve a system of equations A(D) = 0 using Newton’s
method, we solve a sequence of linear systems,

�A (D:) ?D = −A (D:) , (5.60)

where �A is the Jacobian of derivatives %A/%D. The step in the variables
is ?D = D:+1 − D: , where the variables are

D ≡
[
G
�

]
. (5.61)

Differentiating the vector of residuals (Eq. 5.59) with respect to the two
concatenated vectors in D yields the following block linear system:

[
�ℒ �ᵀℎ
�ℎ 0

] [
?G
?�

]
=

[−∇Gℒ
−ℎ

]
. (5.62)

https://dx.doi.org/10.1007/bf00932477
https://dx.doi.org/10.1007/bf00932477
https://dx.doi.org/10.1007/bf00932477
https://dx.doi.org/10.1137/s0036144502414942
https://dx.doi.org/10.1137/s0036144502414942

5 Constrained Gradient-Based Optimization 188

�ℒ �ᵀℎ

�ℎ 0

=G =ℎ

=G

=ℎ

Fig. 5.37 Structure and block shapes
for the matrix in the SQP system
(Eq. 5.62)

G∗

G1

G2

Fig. 5.38 Quadratic problem in two
dimensions.

This is a linear system of =G + =ℎ equations where the Jacobian matrix is
square. The shape of the matrix and its blocks are as shown in Fig. 5.37.
We solve a sequence of these problems to converge to the optimal design
variables and the corresponding optimal Lagrange multipliers. At each
iteration, we update the design variables and Lagrange multipliers as
follows:

G:+1 = G: +
:?G (5.63)
�:+1 = �: + ?� . (5.64)

The inclusion of
: suggests that we do not automatically accept the
Newton step (which corresponds to
 = 1) but instead perform a line
search as previously described in Section 4.3. The function used in the
line search needs some modification, as discussed later in this section.

SQP can be derived in an alternative way that leads to different in-
sights. This alternate approach requires an understanding of quadratic
programming (QP), which is discussed in more detail in Section 11.3
but briefly described here. A QP problem is an optimization problem
with a quadratic objective and linear constraints. In a general form, we
can express any equality constrained QP as

minimize
G

1
2 G

ᵀ&G + @ᵀG
subject to �G + 1 = 0 .

(5.65)

A two-dimensional examplewith one constraint is illustrated in Fig. 5.38.
The constraint is a matrix equation that represents multiple linear equal-
ity constraints—one for every row in �. We can solve this optimization
problem analytically from the optimality conditions. First, we form the
Lagrangian:

ℒ(G,�) = 1
2 G

ᵀ&G + @ᵀG + �ᵀ(�G + 1) . (5.66)

We now take the partial derivatives and set them equal to zero:

∇Gℒ = &G + @ + �ᵀ� = 0
∇�ℒ = �G + 1 = 0 .

(5.67)

We can express those same equations in a block matrix form:[
& �ᵀ

� 0

] [
G
�

]
=

[−@
−1

]
. (5.68)

This is like the procedure we used in solving the KKT conditions, except
that these are linear equations, so we can solve them directly without

5 Constrained Gradient-Based Optimization 189

∗In other words, this is a convex problem.
Convex optimization is discussed inChap-
ter 11.

any iteration. As in the unconstrained case, finding the minimum of a
quadratic objective results in a system of linear equations.

As long as & is positive definite, then the linear system always has
a solution, and it is the global minimum of the QP.∗ The ease with
which a QP can be solved provides a strong motivation for SQP. For a
general constrained problem, we can make a local QP approximation
of the nonlinear model, solve the QP, and repeat this process until
convergence. This method involves iteratively solving a sequence of
quadratic programming problems, hence the name sequential quadratic
programming.

To form the QP, we use a local quadratic approximation of the
Lagrangian (removing the constant term because it does not change the
solution) and a linear approximation of the constraints for some step
? near our current point. In other words, we locally approximate the
problem as the following QP:

minimize
?

1
2 ?

ᵀ�ℒ? + ∇Gℒᵀ?

subject to �ℎ? + ℎ = 0 .
(5.69)

We substitute the gradient of the Lagrangian into the objective:

1
2 ?

ᵀ�ℒ? + ∇ 5 ᵀ? + �ᵀ�ℎ? . (5.70)

Then, we substitute the constraint �ℎ? = −ℎ into the objective:

1
2 ?

ᵀ�ℒ? + ∇ 5 ᵀ? − �ᵀℎ . (5.71)

Now, we can remove the last term in the objective because it does
not depend on the variable (?), resulting in the following equivalent
problem:

minimize
?

1
2?

ᵀ�ℒ? + ∇ 5 ᵀ?

subject to �ℎ? + ℎ = 0 .
(5.72)

Using the QP solution method outlined previously results in the
following system of linear equations:[

�ℒ �ᵀℎ
�ℎ 0

] [
?G
�:+1

]
=

[−∇ 5
−ℎ

]
. (5.73)

Replacing �:+1 = �: + ?� and multiply through:[
�ℒ �ᵀℎ
�ℎ 0

] [
?G
?�

]
+

[
�ᵀℎ�:

0

]
=

[−∇ 5
−ℎ

]
. (5.74)

5 Constrained Gradient-Based Optimization 190

†The Lagrangian objective can also be con-
sidered to be an approximation of the ob-
jective along the feasible surface ℎ(G) =
0.95

95. Gill and Wong, Sequential quadratic
programming methods, 2012.

‡Linearizing the constraints can some-
times lead to an infeasible QP subprob-
lem; additional techniques are needed to
handle such cases.79 ,96

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

96. Gill et al., SNOPT: An SQP algorithm
for large-scale constrained optimization,
2005.

Subtracting the second term on both sides yields[
�ℒ �ᵀℎ
�ℎ 0

] [
?G
?�

]
=

[−∇Gℒ
−ℎ

]
, (5.75)

which is the same linear system we found from applying Newton’s
method to the KKT conditions (Eq. 5.62).

This derivation relies on the somewhat arbitrary choices of choosing
a QP as the subproblem and using an approximation of the Lagrangian
with constraints (rather than an approximation of the objective with
constraints or an approximation of the Lagrangianwith no constraints).†
Nevertheless, it is helpful to conceptualize the method as solving a
sequence of QPs. This concept will motivate the solution process once
we add inequality constraints.

5.5.2 Inequality Constraints
Introducing inequality constraints adds complications. For inequality
constraints, we cannot solve the KKT conditions directly as we could
for equality constraints. This is because the KKT conditions include the
complementary slackness conditions �9 69 = 0, which we cannot solve
directly. Even though the number of equations in the KKT conditions
is equal to the number of unknowns, the complementary conditions do
not provide complete information (they just state that each constraint
is either active or inactive). Suppose we knew which of the inequality
constraints were active (69 = 0) and which were inactive (�9 = 0) at
the optimum. Then, we could use the same approach outlined in the
previous section, treating the active constraints as equality constraints
and ignoring the inactive constraints. Unfortunately, we do not know
which constraints are active at the optimum beforehand in general.
Finding which constraints are active in an iterative way is challenging
because we would have to try all possible combinations of active
constraints. This is intractable if there are many constraints.

A common approach to handling inequality constraints is to use an
active-set method. The active set is the set of constraints that are active at
the optimum (the only ones we ultimately need to enforce). Although
the actual active set is unknown until the solution is found, we can
estimate this set at each iteration. This subset of potentially active
constraints is called the working set. The working set is then updated at
each iteration.

Similar to the SQP developed in the previous section for equality
constraints, we can create an algorithm based on solving a sequence of
QPs that linearize the constraints.‡ We extend the equality constrained

https://dx.doi.org/10.1007/978-1-4614-1927-3_6
https://dx.doi.org/10.1007/978-1-4614-1927-3_6
https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1137/S0036144504446096
https://dx.doi.org/10.1137/S0036144504446096

5 Constrained Gradient-Based Optimization 191

§This is not a universal definition. For
example, the constraints in the working
set need not be active at G: in some ap-
proaches.

QP (Eq. 5.69) to include the inequality constraints as follows:

minimize
B

1
2 B

ᵀ�ℒ B + ∇GℒᵀB

subject to �ℎB + ℎ = 0
�6B + 6 ≤ 0 .

(5.76)

The determination of theworking set could happen in the inner loop,
that is, as part of the inequality constrained QP subproblem (Eq. 5.76).
Alternatively, we could choose a working set in the outer loop and
then solve the QP subproblem with only equality constraints (Eq. 5.69),
where the working-set constraints would be posed as equalities. The
former approach is more common and is discussed here. In that case,
we need consider only the active-set problem in the context of a QP.
Many variations on active-set methods exist; we outline just one such
approach based on a binding-direction method.

The general QP problem we need to solve is as follows:

minimize
G

1
2 G

ᵀ&G + @ᵀG
subject to �G + 1 = 0

�G + 3 ≤ 0 .

(5.77)

We assume that & is positive definite so that this problem is convex.
Here, & corresponds to the Lagrangian Hessian. Using an appropriate
quasi-Newton approximation (which we will discuss in Section 5.5.4)
ensures a positive definite Lagrangian Hessian approximation.

Consider iteration : in an SQP algorithm that handles inequality
constraints. At the end of the previous iteration, we have a design point
G: and a working set ,: . The working set in this approach is a set
of row indices corresponding to the subset of inequality constraints
that are active at G: .§ Then, we consider the corresponding inequality
constraints to be equalities, and we write:

�FG: + 3F = 0 , (5.78)

where �F and 3F correspond to the rows of the inequality constraints
specified in the working set.

The constraints in the working set, combined with the equality
constraints, must be linearly independent. Thus, we cannot include
more working-set constraints (plus equality constraints) than design
variables. Although the active set is unique, there can be multiple valid
choices for the working set.

5 Constrained Gradient-Based Optimization 192

& �ᵀ �ᵀF

� 0 0

�F 0 0

=G =ℎ =6F

=G

=ℎ

=6F

Fig. 5.39 Structure of the QP subprob-
lemwithin the inequality constrained
QP solution process.

Assume, for the moment, that the working set does not change at
nearby points (i.e., we ignore the constraints outside the working set).
We seek a step ? to update the design variables as follows: G:+1 = G: + ?.
We find ? by solving the following simplified QP that considers only
the working set:

minimize
?

1
2 (G: + ?)

ᵀ&(G: + ?) + @ᵀ(G: + ?)

subject to �(G: + ?) + 1 = 0
�F(G: + ?) + 3F = 0 .

(5.79)

We solve this QP by varying ?, so after multiplying out the terms
in the objective, we can ignore the terms that do not depend on ?. We
can also simplify the constraints because we know the constraints were
satisfied at the previous iteration (i.e., �G: + 1 = 0 and �FG: + 3F = 0).
The simplified problem is as follows:

minimize
?

1
2 ?

ᵀ&? + (@ +&ᵀG:)?

subject to �? = 0
�F? = 0 .

(5.80)

We now have an equality constrained QP that we can solve using the
methods from the previous section. Using Eq. 5.68, the KKT solution
to this problem is as follows:


& �ᵀ �ᵀ

F

� 0 0
�F 0 0



?
�
�


=


−@ −&ᵀG:

0
0


. (5.81)

Figure 5.39 shows the structure of the matrix in this linear system.
Let us consider the case where the solution of this linear system is

nonzero. Solving the KKT conditions in Eq. 5.80 ensures that all the
constraints in the working set are still satisfied at G: + ?. Still, there is no
guarantee that the step does not violate some of the constraints outside
of our working set. Suppose that �= and 3= define the constraints
outside of the working set. If

�=(G: + ?) + 3= ≤ 0 (5.82)

for all rows, all the constraints are still satisfied. In that case, we accept
the step ? and update the design variables as follows:

G:+1 = G: + ? . (5.83)

5 Constrained Gradient-Based Optimization 193

The working set remains unchanged as we proceed to the next iteration.
Otherwise, if some of the constraints are violated, we cannot take

the full step ? and reduce it the step length by
 as follows:

G:+1 = G: +
? . (5.84)

We cannot take the full step (
 = 1), but we would like to take as large
a step as possible while still keeping all the constraints feasible.

Let us consider how to determine the appropriate step size,
.
Substituting the step update (Eq. 5.84) into the equality constraints, we
obtain the following:

�(G: +
?) + 1 = 0 . (5.85)

We know that �G: + 1 = 0 from solving the problem at the previous
iteration. Also, we just solved ? under the condition that �? = 0.
Therefore, the equality constraints (Eq. 5.85) remain satisfied for any
choice of
. By the same logic, the constraints in our working set remain
satisfied for any choice of
 as well.

Now let us consider the constraints that are not in the working set.
We denote 28 as row 8 of the matrix �= (associated with the inequality
constraints outside of theworking set). If these constraints are to remain
satisfied, we require

2ᵀ8 (G: +
?) + 38 ≤ 0 . (5.86)

After rearranging, this condition becomes

2ᵀ8 ? ≤ −(2ᵀ8 G: + 38) . (5.87)

We do not divide through by 2ᵀ8 ? yet because the direction of the
inequality would change depending on its sign. We consider the two
possibilities separately. Because the QP constraints were satisfied at
the previous iteration, we know that 2ᵀ8 G: + 38 ≤ 0 for all 8. Thus, the
right-hand side is always positive. If 2ᵀ8 ? is negative, then the inequality
will be satisfied for any choice of
. Alternatively, if 2ᵀ8 ? is positive, we
can rearrange Eq. 5.87 to obtain the following:

8 ≤ −
(2ᵀ8 G: + 38)

2ᵀ8 ?
. (5.88)

This equation determines how large
 can be without causing one of
the constraints outside of the working set to become active. Because
multiple constraints may become active, we have to evaluate
 for each
one and choose the smallest
 among all constraints.

5 Constrained Gradient-Based Optimization 194

¶In practice, adding only one constraint
to the working set at a time (or remov-
ing only one constraint in other steps de-
scribed later) typically leads to faster con-
vergence.

A constraint for which
 < 1 is said to be blocking. In other words, if
we had included that constraint in our working set before solving the
QP, it would have changed the solution. We add one of the blocking
constraints to the working set, and proceed to the next iteration.¶

Now consider the case where the solution to Eq. 5.81 is ? = 0. If
all inequality constraint Lagrange multipliers are positive (�8 > 0), the
KKT conditions are satisfied and we have solved the original inequality
constrained QP. If one or more �8 values are negative, additional
iterations are needed. We find the �8 value that is most negative,
remove constraint 8 from the working set, and proceed to the next
iteration.

As noted previously, all the constraints in the reduced QP (the
equality constraints plus all working-set constraints) must be linearly
independent and thus [� �F]ᵀ has full row rank. Otherwise, there
would be no solution to Eq. 5.81. Therefore, the starting working set
might not include all active constraints at G0 and must instead contain
only a subset, such that linear independence is maintained. Similarly,
when adding a blocking constraint to the working set, we must again
check for linear independence. At a minimum, we need to ensure
that the length of the working set does not exceed =G . The complete
algorithm for solving an inequality constrained QP is shown in Alg. 5.4.

Tip 5.4 Some equality constraints can be posed as inequality con-straints
Equality constraints are less common in engineering design problems than

inequality constraints. Sometimes we pose a problem as an equality constraint
unnecessarily. For example, the simulation of an aircraft in steady-level flight
may require the lift to equal the weight. Formally, this is an equality constraint,
but it can also be posed as an inequality constraint (lift greater or equal to
weight). There is no advantage to having more lift than the required because
it increases drag, so the constraint is always active at the optimum. When
such a constraint is not active at the solution, it can be a helpful indicator that
something is wrong with the formulation, the optimizer, or the assumptions.
Although an equality constraint is more natural from the algorithm perspective,
the flexibility of the inequality constraint might allow the optimizer to explore
the design space more effectively.

Consider another example: a propeller design problem might require a
specified thrust. Although an equality constraint would likely work, it is more
constraining than necessary. If the optimal design were somehow able to
produce excess thrust, we would accept that design. Thus, we should not
formulate the constraint in an unnecessarily restrictive way.

5 Constrained Gradient-Based Optimization 195

Algorithm 5.4 Active-set solution method for an inequality constrained QP
Inputs:
&, @, �, 1, �, �: Matrices and vectors defining the QP (Eq. 5.77); Q must be positive defi-
nite
�: Tolerance used for termination and for determining whether constraint is active

Outputs:
G∗: Optimal point

: = 0
G: = G0
,: = 8 for all 8 where (28ᵀG: + 38) > −� and length(,:) ≤ =G One possible

initial working set
while true do

set �F = �8 ,∗ and 3F = 38 for all 8 ∈,: Select rows for working set
Solve the KKT system (Eq. 5.81)
if

?

 < � then
if � ≥ 0 then Satisfied KKT conditions

G∗ = G:
return

else
8 = argmin �
,:+1 =,: \ {8} Remove 8 from working set
G:+1 = G:

end if
else

 = 1 Initialize with optimum step
� = {} Blocking index
for 8 ∉,: do Check constraints outside of working set

if 2ᵀ8 ? > 0 then Potential blocking constraint

1 =

−(2ᵀ8 G:+38)
2ᵀ8 ?

28 is a row of �=
if
1 <
 then

 =
1
� = 8 Save or overwrite blocking index

end if
end if

end for
,:+1 =,: ∪ {�} Add � to working set (if linearly independent)
G:+1 = G: +
?

end if
: = : + 1

end while

5 Constrained Gradient-Based Optimization 196

G0

G∗

0 2 4

0

2

4

G1

G2

Fig. 5.40 Iteration history for the
active-set QP example.

Example 5.10 Inequality constrained QP
Let us solve the following problem using the active-set QP algorithm:

minimize
G1 ,G2

3G2
1 + G2

2 + 2G1G2 + G1 + 6G2

subject to 2G1 + 3G2 ≥ 4
G1 ≥ 0
G2 ≥ 0 .

Rewriting in the standard form (Eq. 5.77) yields the following:

& =

[
6 2
2 2

]
, @ =

[
1
6

]
, � =


−2 −3
−1 0
0 −1


, 3 =


4
0
0


.

We arbitrarily chose G = [3, 2] as a starting point. Because none of the
constraints are active, the initial working set is empty,, = {}. At each iteration,
we solve the QP formed by the equality constraints and any constraints in the
active set (treated as equality constraints). The sequence of iterations is detailed
as follows and is plotted in Fig. 5.40:

: = 1 The QP subproblem yields ? = [−1.75,−6.25] and � = [0, 0, 0]. Next,
we check whether any constraints are blocking at the new point G + ?.
Because all three constraints are outside of the working set, we check
all three. Constraint 1 is potentially blocking (2ᵀ8 ? > 0) and leads to

1 = 0.35955. Constraint 2 is also potentially blocking and leads to

1 = 1.71429. Finally, constraint 3 is also potentially blocking and leads
to
1 = 0.32. We choose the constraint with the smallest
, which is
constraint 3, and add it to our working set. At the end of the iteration,
G = [2.44, 0.0] and, = {3}.

: = 2 The new QP subproblem yields ? = [−2.60667, 0.0] and � = [0, 0, 5.6667].
Constraints 1 and 2 are outside theworking set. Constraint 1 is potentially
blocking and gives
1 = 0.1688; constraint 2 is also potentially blocking
and yields
1 = 0.9361. Because constraint 1 yields the smaller step, we
add it to the working set. At the end of the iteration, G = [2.0, 0.0] and
, = {1, 3}.

: = 3 The QP subproblem now yields ? = [0, 0] and � = [6.5, 0,−9.5]. Because
? = 0, we check for convergence. One of the Lagrange multipliers
is negative, so this cannot be a solution. We remove the constraint
associated with the most negative Lagrange multiplier from the working
set (constraint 3). At the end of the iteration, G is unchanged at G =
[2.0, 0.0], and, = {1}.

: = 4 The QP yields ? = [−1.5, 1.0] and � = [3, 0, 0]. Constraint 2 is potentially
blocking and yields
1 = 1.333 (which means it is not blocking because

1 > 1). Constraint 3 is also not blocking (2ᵀ8 ? < 0). None of the
1
values was blocking, so we can take the full step (
 = 1). The new G
point is G = [0.5, 1.0], and the working set is unchanged at, = {1}.

5 Constrained Gradient-Based Optimization 197

96. Gill et al., SNOPT: An SQP algorithm
for large-scale constrained optimization,
2005.

: = 5 The QP yields ? = [0, 0], � = [3, 0, 0]. Because ? = 0, we check for
convergence. All Lagrange multipliers are nonnegative, so the problem
is solved. The solution to the original inequality constrained QP is then
G∗ = [0.5, 1.0].

Because SQP solves a sequence of QPs, an effective approach is to
use the optimal G and active set from the previous QP as the starting
point and working set for the next QP. The algorithm outlined in this
section requires both a feasible starting point and a working set of
linearly independent constraints. Although the previous starting point
and working set usually satisfy these conditions, this is not guaranteed,
and adjustments may be necessary.

Algorithms to determine a feasible point are widely used (often by
solving a linear programming problem). There are also algorithms to
remove or add to the constraint matrix as needed to ensure full rank.96

Tip 5.5 Consider reformulating your constraints
There are often multiple mathematically equivalent ways to pose the

problem constraints. Reformulating can sometimes yield equivalent problems
that are significantly easier to solve. In some cases, it can help to add redundant
constraints to avoid areas of the design space that are not useful. Similarly, we
should consider whether the model that computes the objective and constraint
functions should be solved separately or posed as constraints at the optimizer
level (as we did in Eq. 3.33).

5.5.3 Merit Functions and Filters
Similar towhatwe did in unconstrained optimization, we do not directly
accept the step ? returned from solving the subproblem (Eq. 5.62 or
Eq. 5.76). Instead, we use ? as the first step length in a line search.

In the line search for unconstrained problems (Section 4.3), deter-
mining if a point was good enough to terminate the search was based
solely on comparing the objective function value (and the slope when
enforcing the strong Wolfe conditions). For constrained optimization,
we need to make some modifications to these methods and criteria.

In constrained optimization, objective function decrease and fea-
sibility often compete with each other. During a line search, a new
point may decrease the objective but increase the infeasibility, or it may
decrease the infeasibility but increase the objective. We need to take

https://dx.doi.org/10.1137/S0036144504446096
https://dx.doi.org/10.1137/S0036144504446096

5 Constrained Gradient-Based Optimization 198

97. Fletcher and Leyffer, Nonlinear pro-
gramming without a penalty function, 2002.

98. Benson et al., Interior-point methods for
nonconvex nonlinear programming: Filter
methods and merit functions, 2002.

99. Fletcher et al., A brief history of filter
methods, 2006.

‖See Section 9.2 for more details on the
concept of dominance.

these two metrics into account to determine the line search termination
criterion.

The Lagrangian is a function that accounts for the two metrics.
However, at a given iteration, we only have an estimate of the Lagrange
multipliers, which can be inaccurate.

One way to combine the objective value with the constraints in a
line search is to use merit functions, which are similar to the penalty
functions introduced in Section 5.4. Common merit functions include
functions that use the norm of constraint violations:

5̂ (G;�) = 5 (G) + �

6̄(G)

? , (5.89)

where ? is 1 or 2 and 6̄ are the constraint violations, defined as

6̄9(G) =
{
ℎ 9(G) for equality constraints
max(0, 69(G)) for inequality constraints .

(5.90)

The augmented Lagrangian from Section 5.4.1 can also be repurposed
for a constrained line search (see Eqs. 5.53 and 5.54).

Like penalty functions, one downside of merit functions is that it is
challenging to choose a suitable value for the penalty parameter �. This
parameter needs to be large to ensure feasibility. However, if it is too
large, a full Newton step might not be permitted. This might slow the
convergence unnecessarily. Using the augmented Lagrangian can help,
as discussed in Section 5.4.1. However, there are specific techniques
used in SQP line searches and various safeguarding techniques needed
for robustness.

Filter methods are an alternative to using penalty-based methods in a
line search.97 Filter methods interfere less with the full Newton step
and are effective for both SQP and interior-point methods (which are
introduced in Section 5.6).98,99 The approach is based on concepts from
multiobjective optimization, which is the subject of Chapter 9. In the
filter method, there are two objectives: decrease the objective function
and decrease infeasibility. A point is said to dominate another if its
objective is lower and the sum of its constraint violations is lower. The
filter consists of all the points that have been found to be non-dominated
in the line searches so far. The line search terminates when it finds a
point that is not dominated by any point in the current filter. That new
point is then added to the filter, and any points that it dominates are
removed from the filter.‖

This is only the basic concept. Robust implementation of a fil-
ter method requires imposing sufficient decrease conditions, not un-
like those in the unconstrained case, and several other modifications.
Fletcher et al.99 provide more details on filter methods.

https://dx.doi.org/10.1007/s101070100244
https://dx.doi.org/10.1007/s101070100244
https://dx.doi.org/10.1023/a:1020533003783
https://dx.doi.org/10.1023/a:1020533003783
https://dx.doi.org/10.1023/a:1020533003783
https://http://www.optimization-online.org/DB_FILE/2006/10/1489.pdf
https://http://www.optimization-online.org/DB_FILE/2006/10/1489.pdf

5 Constrained Gradient-Based Optimization 199

1

2

3

0 2 4 6 8
0

2

4

6

8

5 (G)

‖ 6̄‖1

Fig. 5.41Filtermethod example show-
ing three points in the filter (blue
dots); the shaded regions correspond
to all the points that are dominated by
the filter. The red dots illustrate three
different possible outcomes when
new points are considered.

Example 5.11 Using a filter
Afilter consists of pairs

(
5 (G), ‖ 6̄‖1

)
, where ‖ 6̄‖1 is the sumof the constraint

violations (Eq. 5.90). Suppose that the current filter contains the following
three points: {(2, 5), (3, 2), (7, 1)}. None of the points in the filter dominates any
other. These points are plotted as the blue dots in Fig. 5.41, where the shaded
regions correspond to all the points that are dominated by the points in the
filter. During a line search, a new candidate point is evaluated. There are three
possible outcomes. Consider the following three points that illustrate these
three outcomes (corresponding to the labeled points in Fig. 5.41):

1. (1, 4): This point is not dominated by any point in the filter. The step
is accepted, the line search ends, and this point is added to the filter.
Because this new point dominates one of the points in the filter, (2, 5),
that dominated point is removed from the filter. The current set in the
filter is now {(1, 4), (3, 2), (7, 1)}.

2. (1, 6): This point is not dominated by any point in the filter. The step is
accepted, the line search ends, and this new point is added to the filter.
Unlike the previous case, none of the points in the filter are dominated.
Therefore, no points are removed from the filter set, which becomes
{(1, 6), (2, 5), (3, 2), (7, 1)}.

3. (4, 3): This point is dominated by a point in the filter, (3, 2). The step
is rejected, and the line search continues by selecting a new candidate
point. The filter is unchanged.

5.5.4 Quasi-Newton SQP
In the discussion of the SQP method so far, we have assumed that we
have the Hessian of the Lagrangian �ℒ . Similar to the unconstrained
optimization case, theHessianmight not be available or be too expensive
to compute. Therefore, it is desirable to use a quasi-Newton approach
that approximates the Hessian, as we did in Section 4.4.4.

The difference now is that we need an approximation of the La-
grangian Hessian instead of the objective function Hessian. We denote
this approximation at iteration : as �̃ℒ: .

Similar to the unconstrained case, we can approximate �̃ℒ: using
the gradients of the Lagrangian and a quasi-Newton update, such as
the Broyden-–Fletcher-–Goldfarb-–Shanno (BFGS) update. Unlike in
unconstrained optimization, we do not want the inverse of the Hessian
directly. Therefore, we use the version of the BFGS formula that
computes the Hessian (Eq. 4.87):

�̃ℒ:+1 = �̃ℒ: −
�̃ℒ: B: B

ᵀ
: �̃ℒ:

Bᵀ: �̃ℒ: B:
+ H:H

ᵀ
:

Hᵀ: B:
, (5.91)

5 Constrained Gradient-Based Optimization 200

25. Powell, Algorithms for nonlinear con-
straints that use Lagrangian functions, 1978.
∗∗The damped BFGS update is not al-
ways the best approach. There are ap-
proaches built around other approxima-
tion methods, such as symmetric rank 1
(SR1).100 Limited-memory updates simi-
lar to L-BFGS (see Section 4.4.5) can be
used when storing a dense Hessian for
large problems is prohibitive.101

100. Fletcher, Practical Methods of Opti-
mization, 1987.

101. Liu and Nocedal, On the limited
memory BFGS method for large scale opti-
mization, 1989.

††A few popular SQP implementations
include SNOPT,96 Knitro,102 MATLAB’s
fmincon, and SLSQP.103 The first three
are commercial options, whereas SLSQP is
open source. There are interfaces in dif-
ferent programming languages for these
optimizers, including pyOptSparse (for
SNOPT and SLSQP).1

1. Wu et al., pyOptSparse: A Python frame-
work for large-scale constrained nonlinear
optimization of sparse systems, 2020.

102. Byrd et al., Knitro: An Integrated
Package for Nonlinear Optimization, 2006.

103. Kraft, A software package for sequential
quadratic programming, 1988.

where:
B: = G:+1 − G:
H: = ∇Gℒ(G:+1 ,�:+1) − ∇Gℒ(G: ,�:+1) .

(5.92)

The step in the design variable space, B: , is the step that resulted from
the latest line search. The Lagrange multiplier is fixed to the latest value
when approximating the curvature of the Lagrangian because we only
need the curvature in the space of the design variables.

Recall that for the QP problem (Eq. 5.76) to have a solution, �̃ℒ:
must be positive definite. To ensure a positive definite approximation,
we can use a damped BFGS update.25∗∗ This method replaces H with a
new vector A, defined as

A: = �:H: + (1 − �:)�̃ℒ: B: , (5.93)

where the scalar �: is defined as

�: =




1 if Bᵀ: H: ≥ 0.2Bᵀ: �̃ℒ: B:
0.8Bᵀ: �̃ℒ: B:

Bᵀ: �̃ℒ: B:−B
ᵀ
: H:

if Bᵀ: H: < 0.2Bᵀ: �̃ℒ: B: ,
(5.94)

which can range from 0 to 1. We then use the same BFGS update
formula (Eq. 5.91), except that we replace each H: with A: .

To better understand this update, let us consider the two extremes
for �. If �: = 0, then Eq. 5.93 in combination with Eq. 5.91 yields
�̃ℒ:+1 = �̃ℒ: ; that is, the Hessian approximation is unmodified. At the
other extreme, �: = 1 yields the full BFGS update formula (A: is set
to H:). Thus, the parameter �: provides a linear weighting between
keeping the current Hessian approximation and using the full BFGS
update.

The definition of �: (Eq. 5.94) ensures that �̃ℒ:+1 stays close enough
to �̃ℒ: and remains positive definite. The damping is activated when
the predicted curvature in the new latest step is below one-fifth of the
curvature predicted by the latest approximate Hessian. This could
happen when the function is flattening or when the curvature becomes
negative.

5.5.5 Algorithm Overview
We now put together the various pieces in a high-level description
of SQP with quasi-Newton approximations in Alg. 5.5.†† For the
convergence criterion, we can use an infinity norm of the KKT system
residual vector. For better control over the convergence, we can consider
two separate tolerances: one for the norm of the optimality and another

https://dx.doi.org/10.1007/bf01588967
https://dx.doi.org/10.1007/bf01588967
https://https://www.google.ca/books/edition/Practical_Methods_of_Optimization/_WuAvIx0EE4C
https://https://www.google.ca/books/edition/Practical_Methods_of_Optimization/_WuAvIx0EE4C
https://dx.doi.org/10.1007/bf01589116
https://dx.doi.org/10.1007/bf01589116
https://dx.doi.org/10.1007/bf01589116
https://dx.doi.org/10.21105/joss.02564
https://dx.doi.org/10.21105/joss.02564
https://dx.doi.org/10.21105/joss.02564
https://dx.doi.org/10.1007/0-387-30065-1_4
https://dx.doi.org/10.1007/0-387-30065-1_4
https://http://www.opengrey.eu/item/display/10068/147127
https://http://www.opengrey.eu/item/display/10068/147127

5 Constrained Gradient-Based Optimization 201

for the norm of the feasibility. For problems that only have equality
constraints, we can solve the corresponding QP (Eq. 5.62) instead.

Algorithm 5.5 SQP with quasi-Newton approximation
Inputs:
G0: Starting point
�opt: Optimality tolerance
�feas: Feasibility tolerance

Outputs:
G∗: Optimal point
5 (G∗): Corresponding function value

�0 = 0, �0 = 0 Initial Lagrange multipliers

init = 1 For line search
Evaluate functions (5 , 6, ℎ) and derivatives (∇ 5 , �6 , �ℎ)
∇Gℒ = ∇ 5 + �ᵀℎ � + �

ᵀ
6 �

: = 0
while ‖∇Gℒ‖∞ > �opt or ‖ℎ‖∞ > �feas do

if : = 0 or reset = true then
�̃ℒ0 = � Initialize to identity matrix or scaled version (Eq. 4.95)

else
Update �̃ℒ:+1 Compute damped BFGS (Eqs. 5.91 to 5.94)

end if
Solve QP subproblem (Eq. 5.76) for ?G , ?�

minimize 1
2 ?

ᵀ
G �̃ℒ?G + ∇Gℒᵀ?G

by varying ?G

subject to �ℎ?G + ℎ = 0
�6?G + 6 ≤ 0

�:+1 = �: + ?�

 = linesearch

(
?G ,
init

) Use merit function or filter (Section 5.5.3)
G:+1 = G: +
?: Update step
,:+1 =,: Active set becomes initial working set for next QP
Evaluate functions (5 , 6, ℎ) and derivatives (∇ 5 , �6 , �ℎ)
∇Gℒ = ∇ 5 + �ᵀℎ � + �

ᵀ
6 �

: = : + 1
end while

Example 5.12 SQP applied to equality constrained problem
We now solve Ex. 5.2 using the SQP method (Alg. 5.5). We start at

G0 = [2, 1] with an initial Lagrange multiplier � = 0 and an initial estimate

5 Constrained Gradient-Based Optimization 202

of the Lagrangian Hessian as �̃ℒ = � for simplicity. The line search uses an
augmented Lagrangian merit function with a fixed penalty parameter (� = 1)
and a quadratic bracketed search as described in Section 4.3.2. The choice
between a merit function and line search has only a small effect in this simple
problem. The gradient of the equality constraint is

�ℎ =
[1

2 G1 2G2
]
=

[
1 2

]
,

and differentiating the Lagrangian with respect to G yields

∇Gℒ =
[
1 + 1

2�G1
2 + 2�G2

]
=

[
1
2

]
.

The KKT system to be solved (Eq. 5.62) in the first iteration is

1 0 1
0 1 2
1 2 0



BG1

BG2

B�


=


−1
−2
−1


.

The solution of this system is B = [−0.2,−0.4,−0.8]. Using ? = [−0.2,−0.4], the
full step
 = 1 satisfies the strong Wolfe conditions, so for the new iteration we
have G1 = [1.8, 0.6], �1 = −0.8.

To update the approximate Hessian �̃ℒ using the damped BFGS update
(Eq. 5.93), we need to compare the values of Bᵀ0 H0 = −0.272 and Bᵀ0,0B0 =

0.2. Because Bᵀ: H: < 0.2Bᵀ: �̃ℒ: B: , we need to compute the scalar � = 0.339
using Eq. 5.94. This results in a partial BFGS update to maintain positive
definiteness. After a few iterations, � = 1 for the remainder of the optimization,
corresponding to a full BFGS update. The initial estimate for the Lagrangian
Hessian is poor (just a scaled identity matrix), so some damping is necessary.
However, the estimate is greatly improved after a few iterations. Using the
quasi-Newton update in Eq. 5.91, we get the approximate Hessian for the next
iteration as

�̃ℒ1 =

[
1.076 −0.275
−0.275 0.256

]
.

G0

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

: = 0, � = 0.00

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

: = 6, � = 0.95

G∗

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

: = 11, � = 1.41

Fig. 5.42 SQP algorithm iterations.We repeat this process for subsequent iterations, as shown in Figure 5.42.
The gray contours show the QP subproblem (Eq. 5.72) solved at each itera-
tion: the quadratic objective appears as elliptical contours and the linearized

5 Constrained Gradient-Based Optimization 203

0 5 10
10−8

10−5

10−2

101

:

‖∇Gℒ‖

Fig. 5.43 Convergence history of the
norm of the Lagrangian gradient.

constraint as a straight line. The starting point is infeasible, and the iterations
remain infeasible until the last few iterations.

This behavior is common for SQP because although it satisfies the linear
approximation of the constraints at each step, it does not necessarily satisfy the
constraints of the actual problem, which is nonlinear. As the constraint approx-
imation becomes more accurate near the solution, the nonlinear constraint is
then satisfied. Figure 5.43 shows the convergence of the Lagrangian gradient
norm, with the characteristic quadratic convergence at the end.

Example 5.13 SQP applied to inequality constrained problem
We now solve the inequality constrained version of the previous example

(Ex. 5.4) with the same initial conditions and general approach. The only
difference is that rather than solving the linear system of equations Eq. 5.62, we
have to solve an active-set QP problem at each iteration, as outlined in Alg. 5.4.
The iteration history and convergence of the norm of the Lagrangian gradient
are plotted in Figs. 5.44 and 5.45, respectively.

G0

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

: = 0

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

: = 3

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

: = 7

Fig. 5.44 Iteration history of SQP ap-
plied to an inequality constrained
problem, with the Lagrangian and
the linearized constraint overlaid
(with a darker infeasible region).

0 2 4 6 8
10−8

10−5

10−2

101

:

‖∇Gℒ‖

Fig. 5.45 Convergence history of the
norm of the Lagrangian gradient.

5 Constrained Gradient-Based Optimization 204

∗The name interior point stems from early
methods based on interior penalty meth-
ods that assumed that the initial pointwas
feasible. However, modern interior-point
methods can start with infeasible points.

Tip 5.6 How to handle maximum and minimum constraints
Constraints that take the maximum or minimum of a set of quantities

are often desired. For example, the stress in a structure may be evaluated at
many points, and we want to make sure the maximum stress does not exceed a
specified yield stress, such that

max(�) ≤ �yield .

However, the maximum function is not continuously differentiable (because
the maximum can switch elements between iterations), which may cause
difficultieswhenusing gradient-based optimization. The constraint aggregation
methods from Section 5.7 can enforce such conditions with a smooth function.
Nevertheless, it is challenging for an optimizer to find a point that satisfies the
KKT conditions because the information is reduced to one constraint.

Instead of taking the maximum, you should consider constraining the stress
at all =� points as follows

�9 ≤ �yield , 9 = 1, . . . , =� .

Now all constraints are continuously differentiable. The optimizer has =�
constraints instead of 1, but that generally provides more information and
makes it easier for the optimizer to satisfy the KKT conditions with more than
one Lagrange multiplier. Even though we have added more constraints, an
active set method makes this efficient because it considers only the critical
constraints.

5.6 Interior-Point Methods
Interior-point methods use concepts from both SQP and interior penalty
methods.∗ These methods form an objective similar to the interior
penalty but with the key difference that instead of penalizing the
constraints directly, they add slack variables to the set of optimization
variables and penalize the slack variables. The resulting formulation is
as follows:

minimize
G,B

5 (G) − �1
=6∑
9=1

ln B 9

subject to ℎ(G) = 0
6(G) + B = 0 .

(5.95)

This formulation turns the inequality constraints into equality con-
straints and thus avoids the combinatorial problem.

Similar to SQP, we apply Newton’s method to solve for the KKT
conditions. However, instead of solving the KKT conditions of the

5 Constrained Gradient-Based Optimization 205

original problem (Eq. 5.59), we solve the KKT conditions of the interior-
point formulation (Eq. 5.95).

These slack variables in Eq. 5.95 do not need to be squared, as was
done in deriving the KKT conditions, because the logarithm is only
defined for positive B values and acts as a barrier preventing negative
values of B (althoughwe need to prevent the line search from producing
negative B values, as discussed later). Because B is always positive,
that means that 6(G∗) < 0 at the solution, which satisfies the inequality
constraints.

Like penalty method formulations, the interior-point formulation
(Eq. 5.95) is only equivalent to the original constrained problem in the
limit, as �1 → 0. Thus, as in the penalty methods, we need to solve a
sequence of solutions to this problem where �1 approaches zero.

First, we form the Lagrangian for this problem as

ℒ(G,�, �, B) = 5 (G) − �14ᵀ ln B + ℎ(G)ᵀ� + (6(G) + B)ᵀ� , (5.96)

where ln B is an =6-vector whose components are the logarithms of each
component of B, and 4 = [1, . . . , 1] is an =6-vector of 1s introduced to
express the sum in vector form. By taking derivatives with respect to G,
�, �, and B, we derive the KKT conditions for this problem as

∇ 5 (G) + �ℎ(G)ᵀ� + �6(G)ᵀ� = 0
ℎ = 0

6 + B = 0
−�1(−14 + � = 0 ,

(5.97)

where (is a diagonal matrix whose diagonal entries are given by the
slack variable vector, and therefore (−1

:: = 1/B: . The result is a set of
=G + =ℎ + 2=6 equations and the same number of variables.

To get a system of equations that is more favorable for Newton’s
method, we multiply the last equation by (to obtain

∇ 5 (G) + �ℎ(G)ᵀ� + �6(G)ᵀ� = 0
ℎ = 0

6 + B = 0
−�14 + (� = 0 .

(5.98)

We now have a set of residual equations to which we can apply
Newton’s method, just like we did for SQP. Taking the Jacobian of the

5 Constrained Gradient-Based Optimization 206

�ℒ �ᵀℎ �ᵀ6 0

�ℎ 0 0 0

�6 0 0 �

0 0 � (−1Σ

=G =ℎ =6 =6

=G

=ℎ

=6

=6

Fig. 5.46 Structure and shape of the
interior-point system matrix from
Eq. 5.100.

residuals in Eq. 5.98, we obtain the linear system



�ℒ(G) �ℎ(G)ᵀ �6(G)ᵀ 0
�ℎ(G) 0 0 0
�6(G) 0 0 �

0 0 (Σ





BG
B�
B�
BB


= −



∇Gℒ(G,�, �)
ℎ(G)

6(G) + B
(� − �14


, (5.99)

where Σ is a diagonal matrix whose entries are given by �, and � is
the identity matrix. For numerical efficiency, we make the matrix
symmetric by multiplying the last equation by (−1 to get the symmetric
linear system, as follows:



�ℒ(G) �ℎ(G)ᵀ �6(G)ᵀ 0
�ℎ(G) 0 0 0
�6(G) 0 0 �

0 0 � (−1Σ





BG
B�
B�
BB


= −



∇Gℒ(G,�, �)
ℎ(G)

6(G) + B
� − �1(−14


. (5.100)

The advantage of this equivalent system is that we can use a linear
solver specialized for symmetric matrices, which is more efficient than
a solver for general linear systems. If we had applied Newton’s method
to the original KKT system (Eq. 5.97) and then made it symmetric, we
would have obtained a term with (−2, which would make the system
more challenging thanwith the (−1 term in Eq. 5.100. Figure 5.46 shows
the structure and block sizes of the matrix.

5.6.1 Modifications to the Basic Algorithm
We can reuse many of the concepts covered under SQP, including quasi-
Newton estimates of the Lagrangian Hessian and line searches with
merit functions or filters. Themerit function would usually be modified
to a form more consistent with the formulation used in Eq. 5.95. For
example, we could write a merit function as follows:

5̂ (G) = 5 (G) − �1
=6∑
8=1

ln B8 + 1
2�?

(‖ℎ(G)‖2 + ‖6(G) + B‖2) , (5.101)

where �1 is the barrier parameter from Eq. 5.95, and �? is the penalty
parameter. Additionally, we must enforce an
max in the line search so
that the implicit constraint on B > 0 remains enforced. The maximum
allowed step size can be computed prior to the line search because we
know the value of B and ?B and require that

B +
?B ≥ 0 . (5.102)

5 Constrained Gradient-Based Optimization 207

In practice, we enforce a fractional tolerance so that we do not get too
close to zero. For example, we could enforce the following:

B +
max?B = �B , (5.103)

where � is a small value (e.g., � = 0.005). The maximum step size is
the smallest positive value that satisfies this equation for all entries in
B. A possible algorithm for determining the maximum step size for
feasibility is shown in Alg. 5.6.

Algorithm 5.6 Maximum step size for feasibility
Inputs:
B: Current slack values
?B : Proposed step
�: Fractional tolerance (e.g., 0.005)

Outputs:

max: Maximum feasible step length

max = 1
for 8 = 1 to =6 do

 = (� − 1) B8
?B 8

if
 > 0 then

max = min(
max ,
)

end if
end for

The line search typically uses a simple backtracking approach
because we must enforce a maximum step length. After the line search,
we can update G and B as follows:

G:+1 = G: +
:?G , where
: ∈ (0,
max] (5.104)
B:+1 = B: +
:?B . (5.105)

The Lagrange multipliers � must also remain positive, so the pro-
cedure in Alg. 5.6 is repeated for � to find the maximum step length
for the Lagrange multipliers
�. Enforcing a maximum step size for
Lagrange multiplier updates was not necessary for the SQP method
because the QP subproblem handled the enforcement of nonnegative
Lagrangemultipliers. We then update both sets of Lagrangemultipliers
using this step size:

�:+1 = �: +
�?� (5.106)
�:+1 = �: +
�?� . (5.107)

5 Constrained Gradient-Based Optimization 208

104. Wächter and Biegler, On the imple-
mentation of an interior-point filter line-
search algorithm for large-scale nonlinear
programming, 2005.

105. Byrd et al., An interior point algorithm
for large-scale nonlinear programming, 1999.
†IPOPT is an open-source nonlinear
interior-pointmethod.106 The commercial
packages Knitro102 and fmincon men-
tioned earlier also include interior-point
methods.
106. Wächter and Biegler, On the imple-
mentation of a primal-dual interior point
filter line search algorithm for large-scale
nonlinear programming, 2006.

Finally, we need to update the barrier parameter �1 . The simplest
approach is to decrease it by a multiplicative factor:

�1 :+1 = ��1 : , (5.108)

where � is typically around 0.2. Better methods are adaptive based on
how well the optimizer is progressing. There are other implementation
details for improving robustness that can be found in the literature.104,105

The steps for a basic interior-point method are detailed in Alg. 5.7.†
This version focuses on a line search approach, but there are variations
of interior-point methods that use the trust-region approach.

Algorithm 5.7 Interior-point method with a quasi-Newton approximation
Inputs:
G0: Starting point
�opt: Optimality tolerance
�feas: Feasibility tolerance

Outputs:
G∗: Optimal point
5 (G∗): Optimal function value

�0 = 0; �0 = 0 Initial Lagrange multipliers
B0 = 1 Initial slack variables
�̃ℒ0 = � Initialize Hessian of Lagrangian approximation to identity matrix
: = 0
while ‖∇Gℒ‖∞ > �opt or ‖ℎ‖∞ > �feas do

Evaluate �ℎ , �6 , ∇Gℒ
Solve the KKT system (Eq. 5.100) for ?



�̃ℒ: �ᵀℎ �ᵀ6 0
�ℎ(G) 0 0 0
�6(G) 0 0 �

0 0 � (−1Σ





?G
?�
?�
?B


= −



∇Gℒ(G,�, �)
ℎ(G)

6(G) + B
� − �(−14



max = alphamax(B, ?B) Use Alg. 5.6

: = backtrack(?G , ?B ,
max) Line search (Alg. 4.2) with merit function (Eq. 5.101)
G:+1 = G: +
:?G Update design variables
B:+1 = B: +
:?B Update slack variables

� = alphamax(�, ?�)
�:+1 = �: +
�B� Update equality Lagrange multipliers
�:+1 = �: +
�B� Update inequality Lagrange multipliers
Update �̃ℒ:+1 Compute quasi-Newton approximation using Eq. 5.91
�1 = ��1 Reduce barrier parameter
: = : + 1

end while

https://dx.doi.org/10.1007/s10107-004-0559-y
https://dx.doi.org/10.1007/s10107-004-0559-y
https://dx.doi.org/10.1007/s10107-004-0559-y
https://dx.doi.org/10.1007/s10107-004-0559-y
https://dx.doi.org/10.1137/s1052623497325107
https://dx.doi.org/10.1137/s1052623497325107

5 Constrained Gradient-Based Optimization 209

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

107. Gill et al., On the performance of SQP
methods for nonlinear optimization, 2015.

5.6.2 SQP Comparisons and Examples
Both interior-point methods and SQP are considered state-of-the-art
approaches for solving nonlinear constrained optimization problems.
Each of these two methods has its strengths and weaknesses. The KKT
system structure is identical at each iteration for interior-point methods,
so we can exploit this structure for improved computational efficiency.
SQP is not as amenable to this because changes in the working set cause
the system’s structure to change between iterations. The downside of
the interior-point structure is that turning all constraints into equalities
means that all constraints must be included at every iteration, even if
they are inactive. In contrast, active-set SQP only needs to consider a
subset of the constraints, reducing the subproblem size.

Active-set SQP methods are generally more effective for medium-
scale problems, whereas interior-point methods are more effective
for large-scale problems. Interior-point methods are usually more
sensitive to the initial starting point and the scaling of the problem.
Therefore, SQPmethods are usuallymore suitable for solving sequences
of warm-started problems.79,107 These are just general guidelines; both
approaches should be considered and tested for a given problem of
interest.

Example 5.14 Numerical solution of graphical solution example
Recall the constrained problem with a quadratic objective and quadratic

constraints introduced in Ex. 5.1. Instead of finding an approximate solution
graphically or trying to solve this analytically, we can now solve this numerically
using SQP or the interior-point method. The resulting optimization paths are
shown in Fig. 5.47. These results are only illustrative; paths and iterations can
vary significantly with the starting point and algorithmic parameters.

G0 G∗

−2 0 2 4

−2

0

2

4

G1

G2

Sequential quadratic programming

G0 G∗

−2 0 2 4

−2

0

2

4

G1

G2

Interior-point method

Fig. 5.47 Numerical solution of prob-
lem solved graphically in Ex. 5.1.

https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-3-319-23699-5_5
https://dx.doi.org/10.1007/978-3-319-23699-5_5

5 Constrained Gradient-Based Optimization 210

G0

G∗

19 iterations

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

G1

G2

Fig. 5.48 Interior-point algorithm it-
erations.

Example 5.15 Interior-point method applied to inequality constrainedproblem
Here we solve Ex. 5.4 using the interior-point method (Alg. 5.7) starting

from G0 = [2, 1]. The initial Lagrange multiplier is � = 0, and the initial slack
variable is B = 1. Starting with a penalty parameter of � = 20 results in the
iterations shown in Fig. 5.48.

For the first iteration, differentiating the Lagrangian with respect to G yields

∇Gℒ(G1 , G2) =
[
1 + 1

2�G1
2 + 2�G2

]
=

[
1
2

]
,

and the gradient of the constraint is

∇6(G1 , G2) =
[1

2 G1
2G2

]
=

[
1
2

]
.

The interior-point system of equations (Eq. 5.100) at the starting point is



1 0 1 0
0 1 2 0
1 2 0 1
0 0 1 0





BG1

BG2

B�
BB


=



−1
−2
−2
20


.

The solution is B = [−21,−42, 20, 103]. Performing a line search in the direction
? = [−21,−42] yields G1 = [1.34375,−0.3125]. The Lagrange multiplier and
slack variable are updated to �1 = 20 and B1 = 104, respectively.

To update the approximate Hessian �̃ℒ: , we use the damped BFGS update
(Eq. 5.93) to ensure that �̃ℒ: is positive definite. By comparing Bᵀ0 H0 = 73.21
and Bᵀ0 �̃ℒ0 B0 = 2.15, we can see that Bᵀ: H: ≥ 0.2Bᵀ: �̃ℒ: B: , and therefore, we do
a full BFGS update with �0 = 1 and A0 = H0. Using the quasi-Newton update
(Eq. 5.91), we get the approximate Hessian:

�̃ℒ1 =

[
1.388 4.306
4.306 37.847

]
.

We reduce the barrier parameter � by a factor of 2 at each iteration. This process
is repeated for subsequent iterations.

The starting point is infeasible, but the algorithm finds a feasible point after
the first iteration. From then on, it approaches the optimum from within the
feasible region, as shown in Fig. 5.48.

Example 5.16 Constrained spring system
Consider the spring system from Ex. 4.17, which is an unconstrained

optimization problem. We can constrain the spring system by attaching two
cables as shown in Fig. 5.49, where ℓ21 = 9 m, ℓ22 = 6 m, H2 = 2 m, G21 = 7 m,
and G22 = 3 m.

5 Constrained Gradient-Based Optimization 211

:1 , ℓ1 :2 , ℓ2

ℓ21

ℓ22

H2

G21 G22

Fig. 5.49 Spring system constrained
by two cables.

Because the cables do not resist compression forces, they correspond to
inequality constraints, yielding the following problem:

minimize
G1 ,G2

1
2 :1

(√
(ℓ1 + G1)2 + G2

2 − ℓ1
)2
+ 1

2 :2

(√
(ℓ2 − G1)2 + G2

2 − ℓ2
)2
− <6G2

subject to
√(
G1 + G21

)2 + (
G2 + H2

)2 ≤ ℓ21√(
G1 − G22

)2 + (
G2 + H2

)2 ≤ ℓ22 .

The optimization paths for SQP and the interior-point method are shown in
Fig. 5.50.

ℓrope1ℓrope2

G0

G∗

−5 0 5 10 15
−8

−4

0

4

8

12

G1

G2

Sequential quadratic programming

ℓrope1ℓrope2

G0

G∗

−5 0 5 10 15
−8

−4

0

4

8

12

G1

G2

Interior-point method

Fig. 5.50 Optimization of constrained
spring system.

5.7 Constraint Aggregation
Aswill be discussed inChapter 6, somederivative computationmethods
are efficient for problemswithmany inputs and few outputs, and others
are advantageous for problems with few inputs and many outputs.
Thus, if we have many design variables and many constraints, there is
no efficient way to compute the required constraint Jacobian.

One workaround is to aggregate the constraints and solve the op-
timization problem with a new set of constraints. Each aggregation

5 Constrained Gradient-Based Optimization 212

108. Kreisselmeier and Steinhauser,
Systematic control design by optimizing a
vector performance index, 1979.

would have the form

6̄(G) ≡ 6̄(6(G)) ≤ 0 , (5.109)

where 6̄ is a scalar, and 6 is the vector of constraints we want to
aggregate. One of the properties we want for the aggregation function
is that if any of the original constraints are violated, then 6̄ > 0.

One way to aggregate constraints would be to define the aggregated
constraint function as the maximum of all constraints,

6̄(G) = max(6(G)) . (5.110)

If max(6(G)) ≤ 0, then we know that all of components of 6(G) ≤ 0.
However, the maximum function is not differentiable, so it is not
desirable for gradient-based optimization. In the rest of this section,
we introduce several viable functions for constraint aggregation that
are differentiable.

The Kreisselmeier–Steinhauser (KS) aggregation was one of the
first aggregation functions proposed for optimization and is defined as
follows:108

6̄KS(�, 6) = 1
�

ln ©­«
=6∑
9=1

exp(�69)ª®¬
, (5.111)

where � is an aggregation factor that determines how close this function
is to themaximum function (Eq. 5.110). As �→∞, 6̄KS(�, 6) → max(6).
However, as � increases, the curvature of 6̄ increases, which can cause
ill-conditioning in the optimization.

The exponential function disproportionately weighs the higher
positive values in the constraint vector, but it does so in a smooth way.
Because the exponential function can easily result in overflow, it is
preferable to use the alternate (but equivalent) form of the KS function,

6̄KS(�, 6) = max
9
69 + 1

�
ln ©­«

=6∑
9=1

exp
(
�

(
69 −max

9
69

))ª®¬
. (5.112)

The value of � should be tuned for each problem, but � = 100 works
well for many problems.

Example 5.17 Constrained spring system with aggregated constraints
Consider the constrained spring system from Ex. 5.16. Aggregating the two

constraints using the KS function, we can formulate a single constraint as

6̄KS(G1 , G2) = 1
�

ln
(
exp

(
�62(G1 , G2)

) + exp
(
�62(G1 , G2)

))
,

https://dx.doi.org/10.1016/s1474-6670(17)65584-8
https://dx.doi.org/10.1016/s1474-6670(17)65584-8

5 Constrained Gradient-Based Optimization 213

109. Duysinx and Bendsøe, Topology
optimization of continuum structures with
local stress constraints, 1998.

110. Kennedy and Hicken, Improved
constraint-aggregation methods, 2015.

where
61(G1 , G2) =

√(
G1 + G21

)2 + (
G2 + H2

)2 − ℓ21

62(G1 , G2) =
√(
G1 − G22

)2 + (
G2 + H2

)2 − ℓ22 .

Figure 5.51 shows the contour of 6̄KS = 0 for increasing values of the aggregation
parameter �.

ℓrope1ℓrope2

G∗

G∗KS

−2 0 2 4 6

2

4

6

8

G1

G2

�KS = 2, 5 ∗KS = −19.448

ℓrope1ℓrope2

G∗

G∗KS

−2 0 2 4 6

2

4

6

8

G1

G2

�KS = 10, 5 ∗KS = −21.653

ℓrope1ℓrope2

G∗

G∗KS

−2 0 2 4 6

2

4

6

8

G1

G2

�KS = 100, 5 ∗KS = −22.090

Fig. 5.51 KS function aggregation of
two constraints. The optimum of the
problem with aggregated constraints,
G∗KS, approaches the true optimum
as the aggregation parameter �KS in-
creases.

For the lowest value of �, the feasible region is reduced, resulting in a
conservative optimum. For the highest value of �, the optimum obtained
with constraint aggregation is graphically indistinguishable, and the objective
function value approaches the true optimal value of −22.1358.

The ?-norm aggregation function is another option for aggregation
and is defined as follows:109

6̄%# (�) = max
9
|69 | ©­«

=6∑
9=1

���� 69
max9 69

����
�ª®¬

1
�

. (5.113)

The absolute value in this equation can be an issue if 6 can take both
positive and negative values because the function is not differentiable
in regions where 6 transitions from positive to negative.

A class of aggregation functions known as induced functions was
designed to provide more accurate estimates of max(6) for a given
value of � than the KS and induced norm functions.110 There are two
main types of induced functions: one uses exponentials, and the other
uses powers. The induced exponential function is given by

6IE(�) =
∑=6
9=1 69 exp(�69)∑=6
9=1 exp(�69)

. (5.114)

https://dx.doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
https://dx.doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
https://dx.doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
https://dx.doi.org/10.1016/j.cma.2015.02.017
https://dx.doi.org/10.1016/j.cma.2015.02.017

5 Constrained Gradient-Based Optimization 214

The induced power function is given by

6IP(�) =
∑=6
9=1 6

�+1
8∑=6

9=1 6
�
8

. (5.115)

The induced power function is only applicable if 69 ≥ 0 for 9 = 1, . . . , =6 .

5.8 Summary
Most engineering design problems are constrained. When formulating
a problem, practitioners should be critical of their choice of objective
function and constraints. Metrics that should be constraints are often
wrongly formulated as objectives. A constraint should not limit the
design unnecessarily and should reflect the underlying physical reason
for that constraint as much as possible.

The first-order optimality conditions for constrained problems—the
KKT conditions—require the gradient of the objective to be a linear
combination of the gradients of the constraints. This ensures that there
is no feasible descent direction. Each constraint is associated with
a Lagrange multiplier that quantifies how significant that constraint
is at the optimum. For inequality constraints, a Lagrange multiplier
that is zero means that the corresponding constraint is inactive. For
inequality constraints, slack variables quantify how close a constraint
is to becoming active; a slack variable that is zero means that the
corresponding constraint is active. Lagrange multipliers and slack
variables are unknowns that need to be solved together with the
design variables. The complementary slackness condition introduces a
combinatorial problem that is challenging to solve.

Penalty methods solve constrained problems by adding a metric
to the objective function quantifying how much the constraints are
violated. These methods are helpful as a conceptual model and are
used in gradient-free optimization algorithms (Chapter 7). However,
penalty methods only find approximate solutions and are subject to
numerical issues when used with gradient-based optimization.

Methods based on the KKT conditions are preferable. The most
widely used among such methods are SQP and interior-point methods.
These methods apply Newton’s method to the KKT conditions. One
primary difference between these two methods is in the treatment of
inequality constraints. SQP methods distinguish between active and
inactive constraints, treating potentially active constraints as equality
constraints and ignoring the potentially inactive ones. Interior-point
methods add slack variables to force all constraints to behave like
equality constraints.

5 Constrained Gradient-Based Optimization 215

Problems
5.1 Answer true or false and correct the false statements.

a. Penalty methods are among the most effective methods for
constrained optimization.

b. For an equality constraint in =-dimensional space, all feasible
directions about a point are perpendicular to the constraint
gradient at that point and define a hyperplane with dimen-
sion = − 1.

c. The feasible directions about a point on an inequality con-
straint define an open half-space whose dividing hyperplane
is perpendicular to the gradient of the constraint at that
point.

d. A point is optimal if there is only one feasible direction that
is also a descent direction.

e. For an inequality constrained problem, if we replace the
inequalities that are active at the optimum with equality
constraints and ignore the inactive constraints, we get the
same optimum.

f. For a point to be optimal, the Lagrange multipliers for both
the equality constraint and the active inequality constraints
must be positive.

g. The complementary slackness conditions are easy to solve
for because either the Lagrangemultiplier is zero or the slack
variable is zero.

h. At the optimum of a constrained problem, the Hessian of
the Lagrangian function must be positive semidefinite.

i. The Lagrange multipliers represent the change in the objec-
tive functionwewould get for a perturbation in the constraint
value.

j. SQP seeks to find the solution of the KKT system.
k. Interior-point methods must start with a point in the interior

of the feasible region.
l. Constraint aggregation combines multiple constraints into a

single constraint that is equivalent.

5.2 Let us modify Ex. 5.2 so that the equality constraint is the negative
of the original one—that is,

ℎ(G1 , G2) = −1
4 G

2
1 − G2

2 + 1 = 0 .

5 Constrained Gradient-Based Optimization 216

ℓ

'

C

�

Fig. 5.52 Slender tubular column in
compression.

Classify the critical points and compare them with the original
solution. What does that tell you about the significance of the
Lagrange multiplier sign?

5.3 Similar to the previous exercise, consider Ex. 5.4 and modify it
so that the inequality constraint is the negative of the original
one—that is,

ℎ(G1 , G2) = −1
4 G

2
1 − G2

2 + 1 ≤ 0 .

Classify the critical points and compare them with the original
solution.

5.4 Consider the following optimization problem:

minimize G2
1 + 3G2

2 + 4
by varying G1 , G2

subject to G2 ≥ 1
G2

1 + 4G2
2 ≤ 4 .

(5.116)

Find the optimum analytically.

5.5 Find the rectangle of maximum area that can be inscribed in an
ellipse. Give your answer in terms of the ratio of the two areas.
Check that your answer is intuitively correct for the special case
of a rectangle inscribed in a circle.

5.6 In Section 2.1, we mentioned that Euclid showed that among
rectangles of a given perimeter, the square has the largest area.
Formulate the problem and solve it analytically. What are the
units in this problem, and what is the physical interpretation of
the Lagrange multiplier? Exploration: Show that if you minimize
the perimeter with an area constrained to the optimal value you
found previously, you get the same solution.

5.7 Column in compression. Consider a thin-walled tubular column
subjected to a compression force, as shown in Fig. 5.52. We want
to minimize the mass of the column while ensuring that the
structure does not yield or buckle under a compression force of
magnitude �. The design variables are the radius of the tube (')
and the wall thickness (C). This design optimization problem can

5 Constrained Gradient-Based Optimization 217

1 = 125 mm

ℎ = 250 mmCF

C1

C1

% = 100 kN

ℓ = 1 m

Fig. 5.53 Cantilever beam with H sec-
tion.

be stated as follows:
minimize 2�ℓ�'C mass

by varying ', C radius, wall thickness

subject to �
2�'C − �yield ≤ 0 yield stress

� − �3�'3C
4ℓ 2 ≤ 0 buckling load

In the formula for the mass in this objective, � is the material
density, and we assume that C � '. The first constraint is the
compressive stress, which is simply the force divided by the cross-
sectional area. The second constraint uses Euler’s critical buckling
load formula, where � is the material Young’s modulus, and the
second moment of area is replaced with the one corresponding
to a circular cross section (� = �'3C).
Find the optimum ' and C as a function of the other parameters.
Pick reasonable values for theparameters, andverify your solution
graphically. Plot the gradients of the objective and constraints at
the optimum, and verify the Lagrange multipliers graphically.

5.8 Beam with H section. Consider a cantilevered beam with an H-
shaped cross section composed of a web and flanges subject to a
transverse load, as shown in Fig. 5.53. The objective is to minimize
the structural weight by varying the web thickness CF and the
flange thickness C1 , subject to stress constraints. The other cross-
sectional parameters are fixed; the web height ℎ is 250 mm, and
the flange width 1 is 125 mm. The axial stress in the flange and
the shear stress in the web should not exceed the corresponding
yield values (�yield = 200 MPa, and �yield = 116 MPa, respectively).
The optimization problem can be stated as follows:

minimize 21C1 + ℎCF mass
by varying C1 , CF flange and web thicknesses

subject to %ℓ ℎ
2� − �yield ≤ 0 axial stress

1.5%
ℎCF
− �yield ≤ 0 shear stress

The second moment of area for the H section is

� =
ℎ3

12 CF +
1
6 C

3
1 +

ℎ21
2 C1 .

Find the optimal values of C1 and CF by solving the KKT conditions
analytically. Plot the objective contours and constraints to verify
your result graphically.

5 Constrained Gradient-Based Optimization 218

ℓ3

Fig. 5.54 Ellipsoid fuel tank.

5.9 Penalty method implementation. Program one or more penalty
methods from Section 5.4.

a. Solve the constrained problem from Ex. 5.6 as a first test of
your implementation. Use an existing software package for
the optimization subproblem or the unconstrained optimizer
you implemented in Prob. 4.9. How far can you push the
penalty parameter until the optimizer fails? How close can
you get to the exact optimum? Try different starting points
and verify that the algorithm always converges to the same
optimum.

b. Solve Prob. 5.3.

c. Solve Prob. 5.11.

d. Exploration: Solve any other problem from this section or a
problem of your choosing.

5.10 Constrained optimizer implementation. Program an SQP or interior-
point algorithm. Youmay repurpose the BFGS algorithm that you
implemented in Prob. 4.9. For SQP, start by implementing only
equality constraints, reformulating test problems with inequality
constraints as problems with only equality constraints.

a. Reproduce the results fromEx. 5.12 (SQP) or Ex. 5.15 (interior
point).

b. Solve Prob. 5.3.

c. Solve Prob. 5.11.

d. Compare the computational cost, precision, and robustness
of your optimizer with those of an existing software package.

5.11 Aircraft fuel tank. A jet aircraft needs to carry a streamlined
external fuel tank with a required volume. The tank shape is
approximated as an ellipsoid (Fig. 5.54). We want to minimize the
drag of the fuel tank by varying its length and diameter—that is:

minimize �(ℓ , 3)
by varying ℓ , 3

subject to +req −+(ℓ , 3) ≤ 0 .

The drag is given by

� =
1
2�E

2��(,

5 Constrained Gradient-Based Optimization 219

†This is a well-known optimization prob-
lem formulated by Schmit32 when he first
proposed integrating numerical optimiza-
tion with finite-element structural analy-
sis.
32. Schmit, Structural design by systematic
synthesis, 1960.

where the air density is � = 0.55 kg/m3, and the aircraft speed is
E = 300 m/s. The drag coefficient of an ellipsoid can be estimated
as∗

�� = � 5

[
1 + 1.5

(
3
ℓ

)3/2
+ 7

(
3
ℓ

)3
]
.

We assume a friction coefficient of � 5 = 0.0035. The drag is
proportional to the surface area of the tank, which, for an ellipsoid,
is

(=
�
2 3

2
(
1 + ℓ

34
arcsin 4

)
,

where 4 =
√

1 − 32/ℓ 2. The volume of the fuel tank is

+ =
�
6 3

2ℓ ,

and the required volume is +req = 2.5 m3.

Find the optimum tank length and diameter numerically using
your own optimizer or a software package. Verify your solution
graphically by plotting the objective function contours and the
constraint.

5.12 Solve a variation of Ex. 5.16 where we replace the system of cables
with a cable and a rod that resists both tension and compression.
The cable is positioned above the spring, as shown in Fig. 5.55,
where G2 = 2 m, and H2 = 3 m, with a maximum length of
ℓ2 = 7.0 m. The rod is positioned at GA = 2 m and HA = 4 m,
with a length of ℓA = 4.5 m. How does this change the problem

:1 , ℓ1 :2 , ℓ2

ℓ2

ℓA

H2

G2

HA

GA

Fig. 5.55 Spring system constrained
by two cables.

formulation? Does the optimum change?

5.13 Three-bar truss. Consider the truss shown in Fig. 5.56. The truss is
subjected to a load %, and we want to minimize the mass of the
structure subject to stress and buckling constraints.† The axial

5 Constrained Gradient-Based Optimization 220

1 2 3

% = 500 kN

ℓ = 0.5 m ℓ

ℓ

� = 55 deg

Fig. 5.56 Three-bar truss elements.

stresses in each bar are

�1 =
1√
2

(
% cos�
�>

+ % sin�

�> +
√

2�<

)

�2 =

√
2% sin�

�> +
√

2�<

�3 =
1√
2

(
% sin�

�> +
√

2�<
− % cos�

�>

)
,

where �> is the cross-sectional area of the outer bars 1 and 3,
and �< is the cross-sectional area of the middle bar 2. The full
optimization problem for the three-bar truss is as follows:

minimize �
(
ℓ (2
√

2�> + �<)
)

mass

by varying �> , �< cross-sectional areas
subject to �min − �> ≤ 0 area lower bound

�min − �< ≤ 0
�yield − �1 ≤ 0 stress constraints
�yield − �2 ≤ 0
�yield − �3 ≤ 0

− �1 − �2���>
2ℓ 2 ≤ 0 buckling constraints

− �2 − �2���<
2ℓ 2 ≤ 0

− �3 − �2���>
2ℓ 2 ≤ 0

In the buckling constraints, � relates the secondmoment of area to
the area (� = ��2) and is dependent on the cross-sectional shape
of the bars. Assuming a square cross section, � = 1/12. The bars
are made out of an aluminum alloy with the following properties:
� = 2710 kg/m3, � = 69 GPa, �yield = 110 MPa.

Find the optimal bar cross-sectional areas using your own opti-
mizer or a software package. Which constraints are active? Verify
your result graphically. Exploration: Try different combinations
of unit magnitudes (e.g., Pa versus MPa for the stresses) for the
functions of interest and the design variables to observe the effect
of scaling.

5.14 Solve the same three-bar truss optimization problem in Prob. 5.13
by aggregating all the constraints into a single constraint. Try

5 Constrained Gradient-Based Optimization 221

different aggregation parameters and see how close you can get
to the solution you obtained for Prob. 5.13.

5.15 Ten-bar truss.Consider the 10-bar truss structure described in
Appendix D.2.2. The full design optimization problem is as
follows:

minimize �
10∑
8=1

�8ℓ8 mass

by varying �8 , 8 = 1, . . . , 10 cross-sectional areas
subject to �8 ≥ �min minimum area

|�8 | ≤ �H 8 8 = 1, . . . , 10 stress constraints

Find the optimal mass and corresponding cross-sectional areas
using your own optimizer or a software package. Show a conver-
gence plot. Report the number of function evaluations and the
number of major iterations. Exploration: Restart from different
starting points. Do you get more than one local minimum? What
can you conclude about the multimodality of the design space?

5.16 Solve the same 10-bar truss optimization problem of Prob. 5.15
by aggregating all the constraints into a single constraint. Try
different aggregation parameters and see how close you can get
to the solution you obtained for Prob. 5.15.

5.17 Consider the aircraft wing design problem described in Ap-
pendix D.1.6. Now we will add a constraint on the bending stress
at the root of the wing, as described in Ex. 1.3.
We derive the bending stress using the one-dimensional beam
bending theory. Assuming that the lift distribution is uniform,
the load per unit length is !/1. We can consider the wing as a
cantilever of length 1/2. The bending moment at the wing root is

" =
(!/1)(1/2)2

2 =
!1
8 .

Now we assume that the wing structure has the H-shaped cross
section from Prob. 5.8 with a constant thickness of CF = C1 = 4 mm.
We relate the cross-section height ℎsec and width 1sec to the chord
as ℎsec = 0.12 and 1sec = 0.42. With these assumptions, we can
compute the second moment of area � in terms of 2.
The maximum bending stress is then

�max =
"ℎsec

2� .

5 Constrained Gradient-Based Optimization 222

Considering the safety factor of 1.5 and the ultimate load factor
of 2.5, the stress constraint is

2.5�max −
�yield

1.5 ≤ 0 ,

where �yield = 200 MPa.

Solve this problem and compare the solution with the uncon-
strained optimum. Plot the objective contours and constraint to
verify your result graphically.

Optimizer

Model

Derivative
Computation

G

5 , 6

∇ 5 , �6

Fig. 6.1 Efficient derivative computa-
tion is crucial for the overall efficiency
of gradient-based optimization.

6Computing Derivatives
The gradient-based optimization methods introduced in Chapters 4
and 5 require the derivatives of the objective and constraints with
respect to the design variables, as illustrated in Fig. 6.1. Derivatives
also play a central role in other numerical algorithms. For example, the
Newton-basedmethods introduced in Section 3.8 require the derivatives
of the residuals.

The accuracy and computational cost of the derivatives are critical for
the success of thesemethods. Gradient-basedmethods are only efficient
when the derivative computation is also efficient. The computation of
derivatives can be the bottleneck in the overall optimization procedure,
especially when the model solver needs to be called repeatedly. This
chapter introduces the various methods for computing derivatives and
discusses the relative advantages of each method.

By the end of this chapter you should be able to:

1. List the methods for computing derivatives.

2. Explain the pros and cons of these methods.

3. Implement the methods for some computational models.

4. Understand how the methods are connected through the
unified derivatives equation.

6.1 Derivatives, Gradients, and Jacobians
The derivatives we focus on are first-order derivatives of one or more
functions of interest (5) with respect to a vector of variables (G). In
the engineering optimization literature, the term sensitivity analysis is
often used to refer to the computation of derivatives, and derivatives
are sometimes referred to as sensitivity derivatives or design sensitivities.
Although these terms are not incorrect, we prefer to use the more
specific and concise term derivative.

223

6 Computing Derivatives 224

For the sake of generality, we do not specifywhich functionswewant
to differentiate in this chapter (which could be an objective, constraints,
residuals, or any other function). Instead, we refer to the functions
being differentiated as the functions of interest and represent them as a
vector-valued function, 5 = [51 , 52 , . . . , 5= 5]. Neither do we specify the
variables with respect to which we differentiate (which could be design
variables, state variables, or any other independent variable).

The derivatives of all the functions of interest with respect to all the
variables form a Jacobian matrix,

� 5 =
% 5
%G

=


∇ 51ᵀ
...

∇ 5= 5 ᵀ


=



% 51
%G1

· · · % 51
%G=G

...
. . .

...
% 5= 5
%G1

· · · % 5= 5
%G=G

︸ ︷︷ ︸
(= 5 ×=G)

, (6.1)

which is an (= 5 ×=G) rectangular matrix where each row corresponds to
the gradient of each function with respect to all the variables. Row 8 of
the Jacobian is the gradient of function 58 . Each column in the Jacobian
is called the tangent with respect to a given variable G 9 . The Jacobian
can be related to the ∇ operator as follows:

� 5 = 5∇ᵀ =

51
...
5= 5


[
%

%G1
. . .

%

%G=G

]
=



% 51
%G1

· · · % 51
%G=G

...
. . .

...
% 5= 5
%G1

· · · % 5= 5
%G=G


. (6.2)

Example 6.1 Jacobian of a vector-valued function
Consider the following function with two variables and two functions of

interest:

5 (G) =
[
51(G1 , G2)
52(G1 , G2)

]
=

[
G1G2 + sin G1
G1G2 + G2

2

]
.

We can differentiate this symbolically to obtain exact reference values:

% 5
%G

=

[
G2 + cos G1 G1

G2 G1 + 2G2

]
.

We evaluate this at G = (�/4, 2), which yields

% 5
%G

=

[
2.707 0.785
2.000 4.785

]
.

6 Computing Derivatives 225

6.2 Overview of Methods for Computing Derivatives
We can classify the methods for computing derivatives according to the
representation used for the numerical model. There are three possible
representations, as shown in Fig. 6.2. In one extreme, we know nothing
about the model and consider it a black box where we can only control
the inputs and observe the outputs (Fig. 6.2, left). In this chapter, we
often refer to G as the input variables and 5 as the output variables. When
this is the case, we can only compute derivatives using finite differences
(Section 6.4).

In the other extreme, we have access to the source code used to
compute the functions of interest and perform the differentiation line by
line (Fig. 6.2, right). This is the essence of the algorithmic differentiation
approach (Section 6.6). The complex-stepmethod (Section 6.5) is related
to algorithmic differentiation, as explained in Section 6.6.5.

In the intermediate case, we consider the model residuals and
states (Fig. 6.2, middle), which are the quantities required to derive
and implement implicit analytic methods (Section 6.7). When the
model can be represented with multiple components, we can use a
coupled derivative approach (Section 13.3)where any of these derivative
computation methods can be used for each component.

Solver

A(G, D) = 0

5 (G, D)

G

5

Black box:
Finite differencing

Solver

A(D; G)

5 (G, D)

G

5

D
D

A

Residuals and states:
Implicit analytic differentiation

Solver

A(G, D) = 0

5 (G, D)

E1 = G

E2 = E2(E1)
E3 = E3(E1 , E2)

...

5 = E=(E1 , . . .)

G

5

Lines of code:
Algorithmic differentiation

Fig. 6.2Derivative computationmeth-
ods can consider three different levels
of information: function values (left),
model states (middle), and lines of
code (right).

Tip 6.1 Identify and mitigate the sources of numerical noise
As mentioned in Tip 3.2, it is vital to determine the level of numerical noise

in your model. This is especially important when computing derivatives of the
model because taking the derivative can amplify the noise. There are several
common sources of model numerical noise, some of which we can mitigate.

Iterative solvers can introduce numerical noise when the convergence
tolerance is too high or when they have an inherent limit in their precision
(see Section 3.5.3). When we do not have enough precision, we can reduce the
convergence tolerance or increase the iteration limit.

Another possible source of error is file input and output. Many legacy

6 Computing Derivatives 226

∗Here, 5 is the difference between the ec-
centric andmean anomalies, G is themean
anomaly, and the eccentricity is set to 1.
For more details, see Probs. 3.6 and 6.6.

codes are driven by reading and writing input and output files. However, the
numbers in the files usually have fewer digits than the code’s working precision.
The ideal solution is to modify the code to be called directly and pass the data
through memory. Another solution is to increase the precision in the files.

6.3 Symbolic Differentiation
Symbolic differentiation is well known and widely used in calculus, but
it is of limited use in the numerical optimization of most engineering
models. Except for the most straightforward cases (e.g., Ex. 6.1), many
engineering models involve a large number of operations, utilize loops
and various conditional logic, are implicitly defined, or involve itera-
tive solvers (see Chapter 3). Although the mathematical expressions
within these iterative procedures is explicit, it is challenging, or even
impossible, to use symbolic differentiation to obtain closed-form math-
ematical expressions for the derivatives of the procedure. Even when
it is possible, these expressions are almost always computationally
inefficient.

Example 6.2 Symbolic differentiation leading to expression swell
Kepler’s equation describes the orbit of a body under gravity, as briefly

discussed in Section 2.2. The following implicit equation can be obtained from
Kepler’s equation:∗

5 = sin(G + 5) .
Thus, 5 is an implicit function of G. As a simple numerical procedure, we use
fixed-point iteration to determine the value of 5 for a given input G. That means
we start with a guess for 5 on the right-hand side of that expression to estimate
a new value for 5 , and repeat. In this case, convergence typically happens in
about 10 iterations. Arbitrarily, we choose G as the initial guess for 5 , resulting
in the following computational procedure:

Input: G
5 = G
for 8 = 1 to 10 do

5 = sin(G + 5)
end for

return 5

Now that we have a computational procedure, we would like to compute the
derivative d 5 /dG. We can use a symbolic math toolbox to find the following
closed-form expression for this derivative:

6 Computing Derivatives 227

dfdx =

cos(x + sin(x + sin(x + sin(x + sin(x + sin(x + sin(x + sin(x + sin(x +

sin(2*x))))))))))*(cos(x + sin(x + sin(x + sin(x + sin(x + sin(x +

sin(x + sin(x + sin(2*x)))))))))*(cos(x + sin(x + sin(x + sin(x +

sin(x + sin(x + sin(x + sin(2*x))))))))*(cos(x + sin(x + sin(x + sin

(x + sin(x + sin(x + sin(2*x)))))))*(cos(x + sin(x + sin(x + sin(x +

sin(x + sin(2*x))))))*(cos(x + sin(x + sin(x + sin(x + sin(2*x)))))

*(cos(x + sin(x + sin(x + sin(2*x))))*(cos(x + sin(x + sin(2*x)))*(

cos(x + sin(2*x))*(2*cos(2*x) + 1) + 1) + 1) + 1) + 1) + 1) + 1) +

1) + 1)

This expression is long and is full of redundant calculations. This problem
becomes exponentiallyworse as the number of iterations in the loop is increased,
so this approach is intractable for computational models of even moderate
complexity—this is known as expression swell. Therefore, we dedicate the rest
of this chapter to methods for computing derivatives numerically.

Symbolic differentiation is still valuable for obtaining derivatives
of simple explicit components within a larger model. Furthermore,
algorithmdifferentiation (discussed in a later section) relies on symbolic
differentiation to differentiate each line of code in the model.

6.4 Finite Differences
Because of their simplicity, finite-difference methods are a popular
approach to computing derivatives. They are versatile, requiring
nothing more than function values. Finite differences are the only
viable option when we are dealing with black-box functions because
they do not require any knowledge about how the function is evaluated.
Most gradient-based optimization algorithms perform finite differences
by default when the user does not provide the required gradients.
However, finite differences are neither accurate nor efficient.

6.4.1 Finite-Difference Formulas
Finite-difference approximations are derived by combining Taylor
series expansions. It is possible to obtain finite-difference formulas
that estimate an arbitrary order derivative with any order of truncation
error by using the right combinations of these expansions. The simplest
finite-difference formula can be derived directly from a Taylor series
expansion in the 9th direction,

5 (G + ℎ4̂ 9) = 5 (G) + ℎ % 5
%G 9
+ ℎ

2

2!
%2 5

%G 92
+ ℎ

3

3!
%3 5

%G 93
+ . . . , (6.3)

6 Computing Derivatives 228

G

5 (G)

G + ℎ

5 (G + ℎ)
True derivative

Forward FD
estimate

Fig. 6.3 Exact derivative compared
with a forward finite-difference ap-
proximation (Eq. 6.4).

G

5 (G)

G + ℎ

5 (G + ℎ)

G − ℎ

5 (G − ℎ)

True derivative

Central FD
estimate

Fig. 6.4 Exact derivative compared
with a central finite-difference ap-
proximation (Eq. 6.8).

where 4̂ 9 is the unit vector in the 9th direction. Solving this for the first
derivative, we obtain the finite-difference formula,

% 5
%G 9

=
5 (G + ℎ4̂ 9) − 5 (G)

ℎ
+ O(ℎ) , (6.4)

where ℎ is a small scalar called the finite-difference step size. This
approximation is called the forward difference and is directly related to
the definition of a derivative because

% 5
%G 9

= lim
ℎ→0

5 (G + ℎ4̂ 9) − 5 (G)
ℎ

≈ 5 (G + ℎ4̂ 9) − 5 (G)
ℎ

. (6.5)

The truncation error is O(ℎ), and therefore this is a first-order approx-
imation. The difference between this approximation and the exact
derivative is illustrated in Fig. 6.3.

The backward-difference approximation can be obtained by replac-
ing ℎ with −ℎ to yield

% 5
%G 9

=
5 (G) − 5 (G − ℎ4̂ 9)

ℎ
+ O(ℎ) , (6.6)

which is also a first-order approximation.
Assuming each function evaluation yields the full vector 5 , the

previous formulas compute the 9th column of the Jacobian in Eq. 6.1.
To compute the full Jacobian, we need to loop through each direction
4̂ 9 , add a step, recompute 5 , and compute a finite difference. Hence, the
cost of computing the complete Jacobian is proportional to the number
of input variables of interest, =G .

For a second-order estimate of the first derivative, we can use the
expansion of 5 (G − ℎ4̂ 9) to obtain

5 (G − ℎ4̂ 9) = 5 (G) − ℎ % 5
%G 9
+ ℎ

2

2!
%2 5

%G 92
− ℎ

3

3!
%3 5

%G 93
+ (6.7)

Then, if we subtract this from the expansion in Eq. 6.3 and solve the
resulting equation for the derivative of 5 , we get the central-difference
formula,

% 5
%G 9

=
5 (G + ℎ4̂ 9) − 5 (G − ℎ4̂ 9)

2ℎ + O(ℎ2). (6.8)

The stencil of points for this formula is shown in Fig. 6.4, where we can
see that this estimate is closer to the actual derivative than the forward
difference.

Even more accurate estimates can be derived by combining differ-
ent Taylor series expansions to obtain higher-order truncation error

6 Computing Derivatives 229

terms. This technique is widely used in finite-difference methods
for solving differential equations, where higher-order estimates are
desirable.However, finite-precision arithmetic eventually limits the
achievable accuracy for our purposes (as discussed in the next section).
With double-precision arithmetic, there are not enough significant
digits to realize a significant advantage beyond central difference.

We can also estimate second derivatives (or higher) by combining
Taylor series expansions. For example, adding the expansions for
5 (G+ ℎ) and 5 (G− ℎ) cancels out the first derivative and third derivative
terms, yielding the second-order approximation to the second-order
derivative,

%2 5

%G 92
=
5 (G + 2ℎ4̂ 9) − 2 5 (G) + 5 (G − 2ℎ4̂ 9)

4ℎ2 + O (
ℎ2) . (6.9)

The finite-differencemethod can also be used to compute directional
derivatives, which are the scalar projection of the gradient into a given
direction. To do this, instead of stepping in orthogonal directions to get
the gradient, we need to step in the direction of interest, ?, as shown in
Fig. 6.5. Using the forward difference, for example,

∇? 5 = 5 (G + ℎ?) − 5 (G)
ℎ

+ O(ℎ) . (6.10)

One application of directional derivatives is to compute the slope in
line searches (Section 4.3).

?

G
G + ℎ?

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

G1

G2

ℎ

5 (G)
5 (G + ℎ?)∇? 5

0

2

4

6

8

10

5

Fig. 6.5 Computing a directional
derivative using a forward finite dif-
ference.

6.4.2 The Step-Size Dilemma
When estimating derivatives using finite-difference formulas, we are
faced with the step-size dilemma. Because each estimate has a truncation
error of O(ℎ) (or O(ℎ2) when second order), we would like to choose
as small of a step size as possible to reduce this error. However, as the

6 Computing Derivatives 230

10−1

10−8

10−15
ℎ

10−16

0 1 2 3

0

5

10

G

5

Fig. 6.6 The forward-difference
derivative initially improves as the
step decreases but eventually gives
a zero derivative for a small enough
step size.

Forward
difference Central

difference

10−2510−1710−910−1
10−12

10−8

10−4

100

ℎ

�

Fig. 6.7 As the step size ℎ decreases,
the total error in the finite-difference
estimates initially decreases because
of a reduced truncation error. How-
ever, subtractive cancellation takes
over when the step is small enough
and eventually yields an entirely
wrong derivative.

step size reduces, subtractive cancellation (a roundoff error introduced in
Section 3.5.1) becomes dominant. Given the opposing trends of these
errors, there is an optimal step size for which the sum of the two errors
is at a minimum.

Theoretically, the optimal step size for the forward finite difference
is approximately √� 5 , where � 5 is the precision of 5 . The error bound
is also about √� 5 . For the central difference, the optimal step size scales
approximately with �1/3

5 , with an error bound of �2/3
5 . These step and

error bound estimates are just approximate and assume well-scaled
problems.

Example 6.3 Accuracy of finite differences
To demonstrate the step-size dilemma, consider the following function:

5 (G) = 4G√
sin3 G + cos3 G

.

The exact derivative at G = 1.5 is computed to 16 digits based on symbolic
differentiation as a reference value.

In Fig. 6.6, we show the derivatives given by the forward difference, where
we can see that as we decrease the step size, the derivative approaches the exact
value, but then it worsens and becomes zero for a small enough step size.

We plot the relative error of the forward- and central-difference formulas for
a decreasing step size in Fig. 6.7. As the step decreases, the forward-difference
estimate initially converges at a linear rate because its truncation error is O(ℎ),
whereas the central difference converges quadratically. However, as the step
reduces below a particular value (about 10−8 for the forward difference and 10−5

for the central difference), subtractive cancellation errors become increasingly
significant. These values match the theoretical predictions for the optimal step
and error bounds whenwe set � 5 = 10−16. When ℎ is so small that no difference
exists in the output (for steps smaller than 10−16), the finite-difference estimates
yield zero (and � = 1), which corresponds to 100 percent error.

Table 6.1 lists the data for the forward difference, where we can see the
number of digits in the difference Δ 5 decreasing with decreasing step size until
the difference is zero (for ℎ = 10−17).

Tip 6.2 When using finite differencing, always perform a step-sizestudy
In practice, most gradient-based optimizers use finite differences by default

to compute the gradients. Given the potential for inaccuracies, finite differences
are often the culprit in cases where gradient-based optimizers fail to converge.
Although some of these optimizers try to estimate a good step size, there is
no substitute for a step-size study by the user. The step-size study must be

6 Computing Derivatives 231

ℎ 5 (G + ℎ) Δ 5 d 5 /dG
10−1 4.9562638252880662 0.4584837713419043 4.58483771
10−2 4.5387928890592475 0.0410128351130856 4.10128351
10−4 4.4981854440562818 0.0004053901101200 4.05390110
10−6 4.4977841073787870 0.0000040534326251 4.05343263
10−8 4.4977800944804409 0.0000000405342790 4.05342799
10−10 4.4977800543515052 0.0000000004053433 4.05344203
10−12 4.4977800539502155 0.0000000000040536 4.05453449
10−14 4.4977800539462027 0.0000000000000409 4.17443857
10−16 4.4977800539461619 0.0000000000000000 0.00000000
10−18 4.4977800539461619 0.0000000000000000 0.00000000

Exact 4.4977800539461619 4.05342789

Table 6.1 Subtractive cancellation
leads to a loss of precision and, ul-
timately, inaccurate finite-difference
estimates.

2 − 1 · 10−6 2.0

0.5369
−2 · 10−8

0.5369

0.5369
+2 · 10−8

2 + 1 · 10−6

G

5

Fig. 6.8Finite-differencingnoisy func-
tions can either smooth the derivative
estimates or result in estimates with
the wrong trends.

performed for all variables and does not necessarily apply to the whole design
space. Therefore, repeating this study for other values of G might be required.

Because we do not usually know the exact derivative, we cannot plot the
error as we did in Fig. 6.7. However, we can always tabulate the derivative
estimates as we did in Table 6.1. In the last column, we can see from the pattern
of digits that match the previous step size that ℎ = 10−8 is the best step size in
this case.

Finite-difference approximations are sometimes used with larger
steps than would be desirable from an accuracy standpoint to help
smooth out numerical noise or discontinuities in the model. This
approach sometimes works, but it is better to address these problems
within the model whenever possible. Figure 6.8 shows an example of
this effect. For this noisy function, the larger step ignores the noise and
gives the correct trend, whereas the smaller step results in an estimate
with the wrong sign.

6.4.3 Practical Implementation
Algorithm 6.1 details a procedure for computing a Jacobian using
forward finite differences. It is usually helpful to scale the step size
based on the value of G 9 , unless G 9 is too small. Therefore, we combine
the relative and absolute quantities to obtain the following step size:

ΔG 9 = ℎ
(
1 + |G 9 |

)
. (6.11)

This is similar to the expression for the convergence criterion in Eq. 4.24.
Although the absolute step size usually differs for each G 9 , the relative
step size ℎ is often the same and is user-specified.

6 Computing Derivatives 232

∗This method originated with the work
of Lyness and Moler,112 who developed
formulas that use complex arithmetic for
computing the derivatives of real func-
tions of arbitrary order with arbitrary or-
der truncation error, much like the Tay-
lor series combination approach in finite
differences. Later, Squire and Trapp49 ob-
served that the simplest of these formulas
was convenient for computing first deriva-
tives.
49. Squire and Trapp, Using complex vari-
ables to estimate derivatives of real functions,
1998.
112. Lyness and Moler, Numerical differen-
tiation of analytic functions, 1967.

Algorithm 6.1 Forward finite-difference gradient computation of a vector-valued function 5 (G)
Inputs:
G: Point about which to compute the gradient
5 : Vector of functions of interest

Outputs:
�: Jacobian of 5 with respect to G

50 = 5 (G) Evaluate reference values
ℎ = 10−6 Relative step size (value should be tuned)
for 9 = 1 to =G do

ΔG = ℎ(1 + |G 9 |) Step size should be scaled but not smaller than ℎ
G 9 = G 9 + ΔG Modify in place for efficiency, but copying vector is also an option
5+ = 5 (G) Evaluate function at perturbed point
�∗, 9 =

5+ − 50
ΔG

Finite difference yields one column of Jacobian at a time
G 9 = G 9 − ΔG Do not forget to reset!

end for

6.5 Complex Step
The complex-step derivative approximation, strangely enough, com-
putes derivatives of real functions using complex variables. Unlike
finite differences, the complex-stepmethod requires access to the source
code and cannot be applied to black-box components. The complex-step
method is accurate but no more efficient than finite differences because
the computational cost still scales linearly with the number of variables.

6.5.1 Theory
The complex-step method can also be derived using a Taylor series
expansion. Rather than using a real step ℎ, as we did to derive the
finite-difference formulas, we use a pure imaginary step, 8ℎ.∗ If 5 is a
real function in real variables and is also analytic (differentiable in the
complex domain), we can expand it in a Taylor series about a real point
G as follows:

5 (G + 8ℎ4̂ 9) = 5 (G) + 8ℎ % 5
%G 9
− ℎ

2

2
%2 5

%G 92
− 8 ℎ

3

6
%3 5

%G 93
+ (6.12)

Taking the imaginary parts of both sides of this equation, we have

Im
(
5 (G + 8ℎ4̂ 9)

)
= ℎ

% 5
%G 9
− ℎ

3

6
%3 5

%G 93
+ (6.13)

https://dx.doi.org/10.1137/S003614459631241X
https://dx.doi.org/10.1137/S003614459631241X
https://dx.doi.org/10.1137/0704019
https://dx.doi.org/10.1137/0704019

6 Computing Derivatives 233

†This approximation can also be derived
from one of the Cauchy–Riemann equa-
tions, which are fundamental in complex
analysis and express complex differentia-
bility.50

50. Martins et al., The complex-step deriva-
tive approximation, 2003.

113. Lantoine et al., Using multicomplex
variables for automatic computation of high-
order derivatives, 2012.

114. Fike and Alonso, Automatic differenti-
ation through the use of hyper-dual numbers
for second derivatives, 2012.

Dividing this by ℎ and solving for % 5 /%G 9 yields the complex-step
derivative approximation,†

% 5
%G 9

=
Im

(
5 (G + 8ℎ4̂ 9)

)
ℎ

+ O(ℎ2) , (6.14)

which is a second-order approximation. To use this approximation, we
must provide a complex number with a perturbation in the imaginary
part, compute the original function using complex arithmetic, and take
the imaginary part of the output to obtain the derivative.

In practical terms, this means that we must convert the function
evaluation to take complex numbers as inputs and compute complex
outputs. Because we have assumed that 5 (G) is a real function of a
real variable in the derivation of Eq. 6.14, the procedure described
here does not work for models that already involve complex arithmetic.
In Section 6.5.2, we explain how to convert programs to handle the
required complex arithmetic for the complex-step method to work in
general. The complex-step method has been extended to compute exact
second derivatives as well.113,114

Unlike finite differences, this formula has no subtraction operation
and thus no subtractive cancellation error. The only source of numerical
error is the truncation error. However, the truncation error can be
eliminated if ℎ is decreased to a small enough value (say, 10−200). Then,
the precision of the complex-step derivative approximation (Eq. 6.14)
matches the precision of 5 . This is a tremendous advantage over the
finite-difference approximations (Eqs. 6.4 and 6.8).

Like the finite-difference approach, each evaluation yields a column
of the Jacobian (% 5 /%G 9), and the cost of computing all the derivatives is
proportional to the number of design variables. The cost of the complex-
step method is comparable to that of a central difference because we
compute a real and an imaginary part for every number in our code.

If we take the real part of the Taylor series expansion (Eq. 6.12), we
obtain the value of the function on the real axis,

5 (G) = Re
(
5 (G + 8ℎ4̂ 9)

) + O(ℎ2) . (6.15)

Similar to the derivative approximation, we can make the truncation
error disappear by using a small enough ℎ. This means that no separate
evaluation of 5 (G) is required to get the original real value of the
function; we can simply take the real part of the complex evaluation.

What is a “small enough ℎ”? When working with finite-precision
arithmetic, the error can be eliminated entirely by choosing an ℎ so small
that all ℎ2 terms become zero because of underflow (i.e., ℎ2 is smaller

https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1145/2168773.2168774
https://dx.doi.org/10.1145/2168773.2168774
https://dx.doi.org/10.1145/2168773.2168774
https://dx.doi.org/10.1007/978-3-642-30023-3_15
https://dx.doi.org/10.1007/978-3-642-30023-3_15
https://dx.doi.org/10.1007/978-3-642-30023-3_15

6 Computing Derivatives 234

than the smallest representable number, which is approximately 10−324

when using double precision; see Section 3.5.1). Eliminating these
squared terms does not affect the accuracy of the derivative carried in
the imaginary part because the squared terms only appear in the error
terms of the complex-step approximation.

At the same time, ℎmust be large enough that the imaginary part (ℎ ·
% 5 /%G) does not underflow. Suppose that� is the smallest representable
number. Then, the two requirements result in the following bounds:

�

����% 5%G
����
−1

< ℎ <
√
� . (6.16)

A step size of 10−200 works well for double-precision functions.

Example 6.4 Complex-step accuracy compared with finite differences
To show how the complex-step method works, consider the function in

Ex. 6.3. In addition to the finite-difference relative errors from Fig. 6.7, we plot
the complex-step error in Fig. 6.9.

Forward difference Central
difference

Complex step

10−1 10−4 10−8 10−12 10−16 10−20
10−17

10−14

10−11

10−8

10−5

10−2

101

Step size, ℎ

Re
la
tiv

e
er
ro
r,
�

10−200 10−321

Fig. 6.9 Unlike finite differences, the
complex-stepmethod is not subject to
subtractive cancellation. Therefore,
the error is the same as that of the
function evaluation (machine zero in
this case).

The complex-step estimate converges quadratically with decreasing step
size, as predicted by the truncation error term. The relative error reduces
to machine precision at around ℎ = 10−8 and stays at that level. The error
eventually increases when ℎ is so small that the imaginary parts get affected by
underflow (around ℎ = 10−308 in this case).

The real parts and the derivatives of the complex evaluations are listed
in Table 6.2. For a small enough step, the real part is identical to the original
real function evaluation, and the complex-step method yields derivatives that
match to machine precision.

Comparing the best accuracy of each of these approaches, we can see that

6 Computing Derivatives 235

ℎ Re
(
5
)

Im
(
5
) /ℎ

10−1 4.4508662116993065 4.0003330384671729
10−2 4.4973069409015318 4.0528918144659292
10−4 4.4977800066307951 4.0534278402854467
10−6 4.4977800539414297 4.0534278938932582
10−8 4.4977800539461619 4.0534278938986201
10−10 4.4977800539461619 4.0534278938986201
10−12 4.4977800539461619 4.0534278938986201
10−14 4.4977800539461619 4.0534278938986210
10−16 4.4977800539461619 4.0534278938986201
10−18 4.4977800539461619 4.0534278938986210
10−200 4.4977800539461619 4.0534278938986201

Exact 4.4977800539461619 4.0534278938986201

Table 6.2 For a small enough step, the
real part of the complex evaluation is
identical to the real evaluation, and
the derivative matches to machine
precision.

50. Martins et al., The complex-step deriva-
tive approximation, 2003.

by using finite differences, we only achieve a fraction of the accuracy that is
obtained by using the complex-step approximation.

6.5.2 Complex-Step Implementation
We can use the complex-step method even when the evaluation of 5 in-
volves the solution of numerical models through computer programs.50
The outer loop for computing the derivatives of multiple functions
with respect to all variables (Alg. 6.2) is similar to the one for finite
differences. A reference function evaluation is not required, but now
the function must handle complex numbers correctly.

Algorithm 6.2 Computing the gradients of a vector-valued function 5 (G) us-ing the complex-step method
Inputs:
G: Point about which to compute the gradient
5 : Function of interest

Outputs:
�: Jacobian of 5 about point G

ℎ = 10−200 Typical “small enough” step size
for 9 = 1 to =G do

G 9 = G 9 + 8ℎ Add complex step to variable 9
5+ = 5 (G) Evaluate function with complex perturbation
�∗, 9 =

Im(5+)
ℎ

Extract derivatives from imaginary part
G 9 = G 9 − 8ℎ Reset perturbed variable

end for

https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1145/838250.838251

6 Computing Derivatives 236

(G + 8H)

|I |

G

H

Re [I]

Im [I]

Fig. 6.10 The usual definition of a
complex absolute value returns a real
number (the length of the vector),
which is not compatible with the
complex-step method.

+1−1

G

5

Fig. 6.11 The absolute value func-
tion needs to be redefined such that
the imaginary part yields the correct
derivatives.

The complex-step method can be applied to any model, but modi-
fications might be required. We need the source code for the model
to make sure that the program can handle complex numbers and the
associated arithmetic, that it handles logical operators consistently, and
that certain functions yield the correct derivatives.

First, the programmay need to bemodified to use complex numbers.
In programming languages like Fortran or C, this involves changing
real-valued type declarations (e.g., double) to complex type declarations
(e.g., double complex). In some languages, such as MATLAB, Python,
and Julia, this is unnecessary because functions are overloaded to
automatically accept either type.

Second, some changes may be required to preserve the correct
logical flow through the program. Relational logic operators (e.g.,
“greater than”, “less than”, “if”, and “else”) are usually not defined
for complex numbers. These operators are often used in programs,
together with conditional statements, to redirect the execution thread.
The original algorithm and its “complexified” version should follow
the same execution thread. Therefore, defining these operators to
compare only the real parts of the arguments is the correct approach.
Functions that choose one argument, such as the maximum or the
minimum values, are based on relational operators. Following the
previous argument, we should determine the maximum and minimum
values based on the real parts alone.

Third, some functions need to be redefined for complex arguments.
The most common function that needs to be redefined is the absolute
value function. For a complex number, I = G + 8H, the absolute value is
defined as

|I | =
√
G2 + H2 , (6.17)

as shown in Fig. 6.10. This definition is not complex analytic, which is
required in the derivation of the complex-step derivative approximation.

As shown in Fig. 6.11, the correct derivatives for the real absolute
value function are +1 and −1, depending on whether G is greater than
or less than zero. The following complex definition of the absolute
value yields the correct derivatives:

abs(G + 8H) =
{
−G − 8H, if G < 0
+G + 8H, if G ≥ 0 .

(6.18)

Setting the imaginary part to H = ℎ and dividing by ℎ corresponds
to the slope of the absolute value function. There is an exception at
G = 0, where the function is not analytic, but a derivative does not

6 Computing Derivatives 237

‡Formore details on the problematic func-
tions and how to implement the complex-
step method in various programming lan-
guages, see Martins et al.50 A summary,
implementation guide, and scripts are
available at: http://bit.ly/complexstep

50. Martins et al., The complex-step deriva-
tive approximation, 2003.

Re
(
5
)

Im
(
5
)

0 50 100 150 200 250
10−14

10−9

10−4

101

Iterations

�

Fig. 6.12 The imaginary parts of the
variables often lag relative to the real
parts in iterative solvers.

115. Griewank, Evaluating Derivatives,
2000.
116. Naumann, The Art of Differentiating
Computer Programs—An Introduction to
Algorithmic Differentiation, 2011.

exist in any case. We use the “greater or equal” in the logic so that the
approximation yields the correct right-sided derivative at that point.

Tip 6.3 Test complexified code by running it with ℎ = 0

Once you have made your code complex, the first test you should perform
is to run your code with no imaginary perturbation and verify that no variable
ends up with a nonzero imaginary part. If any number in the code acquires a
nonzero imaginary part, something is wrong, and you must trace the source of
the error. This is a necessary but not sufficient test.

Depending on the programming language, we may need to redefine
some trigonometric functions. This is because some default imple-
mentations, although correct, do not maintain accurate derivatives for
small complex-step sizes. We must replace these with mathematically
equivalent implementations that avoid numerical issues.

Fortunately, we can automate most of these changes by using scripts
to process the codes, and in most programming languages, we can
easily redefine functions using operator overloading.‡

Tip 6.4 Check the convergence of the imaginary part
When the solver that computes 5 is iterative, it might be necessary to change

the convergence criterion so that it checks for the convergence of the imaginary
part, in addition to the existing check on the real part. The imaginary part,
which contains the derivative information, often lags relative to the real part
in terms of convergence, as shown in Fig. 6.12. Therefore, if the solver only
checks for the real part, it might yield a derivative with a precision lower
than the function value. In this example, 5 is the drag coefficient given by a
computational fluid dynamics solver and � is the relative error for each part.

6.6 Algorithmic Differentiation
Algorithmic differentiation (AD)—also known as computational differenti-
ation or automatic differentiation—is a well-known approach based on the
systematic application of the chain rule to computer programs.115,116
The derivatives computed with AD can match the precision of the
function evaluation. The cost of computing derivatives with AD can
be proportional to either the number of variables or the number of
functions, depending on the type of AD, making it flexible.

Another attractive feature of AD is that its implementation is largely
automatic, thanks to various AD tools. To explain AD, we start by

http://bit.ly/complexstep
https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1137/1.9780898717761
https://https://books.google.ca/books/about/The_Art_of_Differentiating_Computer_Prog.html?id=OgQuUR4nLu0C
https://https://books.google.ca/books/about/The_Art_of_Differentiating_Computer_Prog.html?id=OgQuUR4nLu0C
https://https://books.google.ca/books/about/The_Art_of_Differentiating_Computer_Prog.html?id=OgQuUR4nLu0C

6 Computing Derivatives 238

E1

E2

E=−1

E=

G

5

E

Fig. 6.13 AD considers all the vari-
ables in the code, where the inputs G
are among the first variables, and the
outputs 5 are among the last.

E1 E2 E3 E4

×3

Code with loop

E1 E2 . . . E9 E10

Unrolled loop

Fig. 6.14 Unrolling of loops is a use-
ful mental model to understand the
derivative propagation in the AD of
general code.

outlining the basic theory with simple examples. Then we explore how
the method is implemented in practice with further examples.

6.6.1 Variables and Functions as Lines of Code
The basic concept of AD is as follows. Even long, complicated codes
consist of a sequence of basic operations (e.g., addition, multiplication,
cosine, exponentiation). Each operation can be differentiated symboli-
cally with respect to the variables in the expression. AD performs this
symbolic differentiation and adds the code that computes the deriva-
tives for each variable in the code. The derivatives of each variable
accumulate in what amounts to a numerical version of the chain rule.

The fundamental building blocks of a code are unary and binary
operations. These operations can be combined to obtain more elab-
orate explicit functions, which are typically expressed in one line of
computer code. We represent the variables in the computer code as
the sequence E = [E1 , . . . , E8 , . . . , E=], where = is the total number of
variables assigned in the code. One or more of these variables at the
start of this sequence are given and correspond to G, and one or more
of the variables toward the end of the sequence are the outputs of
interest, 5 , as illustrated in Fig. 6.13. In general, a variable assignment
corresponding to a line of code can involve any other variable, including
itself, through an explicit function,

E8 = E8(E1 , E2 , . . . , E8 , . . . , E=) . (6.19)

Except for the most straightforward codes, many of the variables in the
code are overwritten as a result of iterative loops.

To understand AD, it is helpful to imagine a version of the code
where all the loops are unrolled. Instead of overwriting variables, we
create new versions of those variables, as illustrated in Fig. 6.14. Then,
we can represent the computations in the code in a sequence with no
loops such that each variable in this larger set only depends on previous
variables, and then

E8 = E8(E1 , E2 , . . . , E8−1) . (6.20)

Given such a sequence of operations and the derivatives for each
operation, we can apply the chain rule to obtain the derivatives for
the entire sequence. Unrolling the loops is just a mental model for
understanding how the chain rule operates, and it is not explicitly done
in practice.

The chain rule can be applied in two ways. In the forward mode, we
choose one input variable and work forward toward the outputs until

6 Computing Derivatives 239

Seeded input, ¤E 9

G 5

Fig. 6.15 The forward mode propa-
gates derivatives to all the variables
that depend on the seeded input vari-
able.

we get the desired total derivative. In the reverse mode, we choose one
output variable and work backward toward the inputs until we get the
desired total derivative.

6.6.2 Forward-Mode AD
The chain rule for the forward mode can be written as

dE8
dE 9

=
8−1∑
:=9

%E8
%E:

dE:
dE 9

, (6.21)

where each partial derivative is obtained by symbolically differentiating
the explicit expression for E8 . The total derivatives are the derivatives
with respect to the chosen input E 9 , which can be computed using this
chain rule.

Using the forward mode, we evaluate a sequence of these expres-
sions by fixing 9 in Eq. 6.21 (effectively choosing one input E 9) and
incrementing 8 to get the derivative of each variable E8 . We only need
to sum up to 8 − 1 because of the form of Eq. 6.20, where each E8 only
depends on variables that precede it.

For a more convenient notation, we define a new variable that
represents the total derivative of variable 8 with respect to a fixed input
9 as ¤E8 ≡ dE8/dE 9 and rewrite the chain rule as

¤E8 =
8−1∑
:=9

%E8
%E:
¤E: . (6.22)

The chosen input 9 corresponds to the seed, which we set to ¤E 9 = 1 (using
the definition for ¤E 9 , we see that means setting dE 9/dE 9 = 1). This chain
rule then propagates the total derivatives forward, as shown in Fig. 6.15,
affecting all the variables that depend on the seeded variable.

Once we are done applying the chain rule (Eq. 6.22) for the chosen
input variable E 9 , we end up with the total derivatives dE8/dE 9 for all
8 > 9. The sum in the chain rule (Eq. 6.22) only needs to consider the
nonzero partial derivative terms. If a variable : does not explicitly
appear in the expression for E8 , then %E8/%E: = 0, and there is no need
to consider the corresponding term in the sum. In practice, this means
that only a small number of terms is considered for each sum.

Suppose we have four variables E1 , E2 , E3, and E4, and G ≡ E1, 5 ≡ E4,
and we want d 5 /dG. We assume that each variable depends explicitly
on all the previous ones. Using the chain rule (Eq. 6.22), we set 9 = 1
(because we want the derivative with respect to G ≡ E1) and increment

6 Computing Derivatives 240

in 8 to get the sequence of derivatives:

¤E1 = 1

¤E2 =
%E2
%E1
¤E1

¤E3 =
%E3
%E1
¤E1 + %E3

%E2
¤E2

¤E4 =
%E4
%E1
¤E1 + %E4

%E2
¤E2 + %E4

%E3
¤E3 ≡ d 5

dG .

(6.23)

In each step, we just need to compute the partial derivatives of the
current operation E8 and then multiply using the total derivatives ¤E
that have already been computed. We move forward by evaluating the
partial derivatives of E in the same sequence to evaluate the original
function. This is convenient because all of the unknowns are partial
derivatives, meaning that we only need to compute derivatives based
on the operation at hand (or line of code).

In this abstract example with four variables that depend on each
other sequentially, the Jacobian of the variables with respect to them-
selves is as follows:

�E =



1 0 0 0
dE2
dE1

1 0 0
dE3
dE1

dE3
dE2

1 0
dE4
dE1

dE4
dE2

dE4
dE3

1


. (6.24)

By setting the seed ¤E1 = 1 and using the forward chain rule (Eq. 6.22), we
have computed the first column of �E from top to bottom. This column
corresponds to the tangent with respect to E1. Using forward-mode
AD, obtaining derivatives for other outputs is free (e.g., dE3/dE1 ≡ ¤E3
in Eq. 6.23).

However, if we want the derivatives with respect to additional
inputs, we would need to set a different seed and evaluate an entire
set of similar calculations. For example, if we wanted dE4/dE2, we
would set the seed as ¤E2 = 1 and evaluate the equations for ¤E3 and ¤E4,
where we would now have dE4/dE2 = ¤E4. This would correspond to
computing the second column in �E (Eq. 6.24).

Thus, the cost of the forward mode scales linearly with the number
of inputs we are interested in and is independent of the number of
outputs.

6 Computing Derivatives 241

Example 6.5 Forward-mode AD
Consider the function with two inputs and two outputs from Ex. 6.1. We

could evaluate the explicit expressions in this function using only two lines of
code. However, to make the AD process more apparent, we write the code such
that each line has a single unary or binary operation, which is how a computer
ends up evaluating the expression:

E1 = E1(E1) = G1

E2 = E2(E2) = G2

E3 = E3(E1 , E2) = E1E2

E4 = E4(E1) = sin E1

E5 = E5(E3 , E4) = E3 + E4 = 51

E6 = E6(E2) = E2
2

E7 = E7(E3 , E6) = E3 + E6 = 52 .

Using the forwardmode, set the seed ¤E1 = 1, and ¤E2 = 0 to obtain the derivatives
with respect to G1. When using the chain rule (Eq. 6.22), only one or two partial
derivatives are nonzero in each sum because the operations are either unary
or binary in this case. For example, the addition operation that computes
E5 does not depend explicitly on E2, so %E5/%E2 = 0. To further elaborate,
when evaluating the operation E5 = E3 + E4, we do not need to know how E3
was computed; we just need to know the value of the two numbers we are
adding. Similarly, when evaluating the derivative %E5/%E2, we do not need
to know how or whether E3 and E4 depended on E2; we just need to know
how this one operation depends on E2. So even though symbolic derivatives
are involved in individual operations, the overall process is distinct from
symbolic differentiation. We do not combine all the operations and end up
with a symbolic derivative. We develop a computational procedure to compute
the derivative that ends up with a number for a given input—similar to the
computational procedure that computes the functional outputs and does not
produce a symbolic functional output.

Say we want to compute d 52/dG1, which in our example corresponds to
dE7/dE1. The evaluation point is the same as in Ex. 6.1: G = (�/4, 2). Using the
chain rule (Eq. 6.22) and considering only the nonzero partial derivative terms,
we get the following sequence:

¤E1 = 1
¤E2 = 0

¤E3 =
%E3
%E1
¤E1 + %E3

%E2
¤E2 = E2 · ¤E1 + E1 · 0 = 2

¤E4 =
%E4
%E1
¤E1 = cos E1 · ¤E1 = 0.707 . . .

¤E5 =
%E5
%E3
¤E3 + %E5

%E4
¤E4 = 1 · ¤E3 + 1 · ¤E4 = 2.707 . . . ≡ % 51

%G1

6 Computing Derivatives 242

1 ¤E1

¤E2

¤E3

¤E4

¤E5

¤E6

¤E7

¤E1

¤E2

¤E3

¤E4

¤E5

¤E6

¤E7

=

Fig. 6.16 Dependency used in the
forward chain rule propagation in
Eq. 6.25. The forward mode is equiv-
alent to solving a lower triangular sys-
tem by forward substitution, where
the system is sparse.

¤E6 =
%E6
%E2
¤E2 = 2E2 · ¤E2 = 0

¤E7 =
%E7
%E3
¤E3 + %E7

%E6
¤E6 = 1 · ¤E3 + 1 · ¤E6 = 2 ≡ % 52

%G1
.

(6.25)

This sequence is illustrated in matrix form in Fig. 6.16. The procedure is
equivalent to performing forward substitution in this linear system.

We now have a procedure (not a symbolic expression) for computing d 52/dG1
for any (G1 , G2). The dependencies of these operations are shown in Fig. 6.17 as
a computational graph.

Although we set out to compute d 52/dG1, we also obtained d 51/dG1 as a
by-product. We can obtain the derivatives for all outputs with respect to one
input for the same cost as computing the outputs. If we wanted the derivative
with respect to the other input, d 51/dG2, a new sequence of calculations would
be necessary.

G1
E1 = G1
¤E1 = 1

E4 = sin E1
¤E4 = ¤E1 cos E1

E5 = E3 + E4
¤E5 = ¤E3 + ¤E4

51 = E5

% 51
%G1

= ¤E5

G2
E2 = G2
¤E2 = 0

E6 = E2
2¤E6 = 2 ¤E2

E7 = E3 + E6
¤E7 = ¤E3 + ¤E6

52 = E7

% 52
%G1

= ¤E7

E3 = E1E2
¤E3 = ¤E1E2 + E1 ¤E2

51

% 51
%G1

52

% 52
%G1

Fig. 6.17 Computational graph for
the numerical example evaluations,
showing the forward propagation of
the derivative with respect to G1.

So far, we have assumed that we are computing derivatives with
respect to each component of G. However, just like for finite differences,
we can also compute directional derivatives using forward-mode AD.
We do so by setting the appropriate seed in the ¤E’s that correspond to
the inputs in a vectorized manner. Suppose we have G ≡ [E1 , . . . , E=G].
To compute the derivative with respect to G 9 , we would set the seed
as the unit vector ¤E = 4̂ 9 and follow a similar process for the other
elements. To compute a directional derivative in direction ?, we would
set the seed as ¤E = ?/

?

.
Tip 6.5 Use a directional derivative for quick verification

We can use a directional derivative in arbitrary directions to verify the
gradient computation. The directional derivative is the scalar projection of
the gradient in the chosen direction, that is, ∇ 5 ᵀ?. We can use the directional
derivative to verify the gradient computed by some other method, which is
especially useful when the evaluation of 5 is expensive and we have many
gradient elements. We can verify a gradient by projecting it into some direction

6 Computing Derivatives 243

Seeded output, Ē8

GG 5

Fig. 6.18 The reverse mode propa-
gates derivatives to all the variables
on which the seeded output variable
depends.

(say, ? = [1, . . . , 1]) and then comparing it to the directional derivative in that
direction. If the result matches the reference, then all the gradient elements are
most likely correct (it is good practice to try a couple more directions just to be
sure). However, if the result does not match, this directional derivative does
not reveal which gradient elements are incorrect.

6.6.3 Reverse-Mode AD
The reverse mode is also based on the chain rule but uses the alternative
form:

dE8
dE 9

=
8∑

:=9+1

%E:
%E 9

dE8
dE:

, (6.26)

where the summation happens in reverse (starts at 8 and decrements to
9 + 1). This is less intuitive than the forward chain rule, but it is equally
valid. Here, we fix the index 8 corresponding to the output of interest
and decrement 9 until we get the desired derivative.

Similar to the forward-mode total derivative notation (Eq. 6.22), we
define a more convenient notation for the variables that carry the total
derivatives with a fixed 8 as Ē 9 ≡ dE8/dE 9 , which are sometimes called
adjoint variables. Then we can rewrite the chain rule as

Ē 9 =
8∑

:=9+1

%E:
%E 9

Ē: . (6.27)

This chain rule propagates the total derivatives backward after setting
the reverse seed Ē8 = 1, as shown in Fig. 6.18. This affects all the
variables on which the seeded variable depends.

The reverse-mode variables Ē represent the derivatives of one output,
8, with respect to all the input variables (instead of the derivatives of all
the outputs with respect to one input, 9, in the forward mode). Once
we are done applying the reverse chain rule (Eq. 6.27) for the chosen
output variable E8 , we end up with the total derivatives dE8/dE 9 for all
9 < 8.

Applying the reverse mode to the same four-variable example as
before, we get the following sequence of derivative computations (we
set 8 = 4 and decrement 9):

Ē4 = 1

Ē3 =
%E4
%E3

Ē4

6 Computing Derivatives 244

Ē2 =
%E3
%E2

Ē3 + %E4
%E2

Ē4

Ē1 =
%E2
%E1

Ē2 + %E3
%E1

Ē3 + %E4
%E1

Ē4 ≡ d 5
dG .

(6.28)

The partial derivatives of E must be computed for E4 first, then E3, and
so on. Therefore, we have to traverse the code in reverse. In practice,
not every variable depends on every other variable, so a computational
graph is created during code evaluation. Then, when computing the
adjoint variables, we traverse the computational graph in reverse. As
before, the derivatives we need to compute in each line are only partial
derivatives.

Recall the Jacobian of the variables,

�E =



1 0 0 0
dE2
dE1

1 0 0
dE3
dE1

dE3
dE2

1 0
dE4
dE1

dE4
dE2

dE4
dE3

1


. (6.29)

By setting Ē4 = 1 and using the reverse chain rule (Eq. 6.27), we have
computed the last row of �E from right to left. This row corresponds
to the gradient of 5 ≡ E4. Using the reverse mode of AD, obtaining
derivatives with respect to additional inputs is free (e.g., dE4/dE2 ≡ Ē2
in Eq. 6.28).

However, if we wanted the derivatives of additional outputs, we
would need to evaluate a different sequence of derivatives. For example,
if wewanted dE3/dE1, wewould set Ē3 = 1 and evaluate the expressions
for Ē2 and Ē1 in Eq. 6.28, where dE3/3E1 ≡ Ē1. Thus, the cost of
the reverse mode scales linearly with the number of outputs and is
independent of the number of inputs.

One complication with the reverse mode is that the resulting se-
quence of derivatives requires the values of the variables, starting with
the last ones and progressing in reverse. For example, the partial deriva-
tive in the second operation of Eq. 6.28 might involve E3. Therefore, the
code needs to run in a forward pass first, and all the variables must be
stored for use in the reverse pass, which increases memory usage.

Example 6.6 Reverse-mode AD
Suppose we want to compute % 52/%G1 for the function from Ex. 6.5. First,

we need to run the original code (a forward pass) and store the values of all
the variables because they are necessary in the reverse chain rule (Eq. 6.26)
to compute the numerical values of the partial derivatives. Furthermore, the

6 Computing Derivatives 245

reverse chain rule requires the information on all the dependencies to determine
which partial derivatives are nonzero. The forward pass and dependencies are
represented by the computational graph shown in Fig. 6.19.

G1 E1 = G1 E4 = sin E1 E5 = E3 + E4 51 = E5

G2 E2 = G2 E6 = E2
2 E7 = E3 + E6 52 = E7

E3 = E1E2

51

52

Fig. 6.19Computational graph for the
function.

Using the chain rule (Eq. 6.26) and setting the seed for the desired variable
Ē7 = 1, we get

Ē7 = 1

Ē6 =
%E7
%E6

Ē7 = Ē7 = 1

Ē5 = = = 0

Ē4 =
%E5
%E4

Ē5 = Ē5 = 0

Ē3 =
%E7
%E3

Ē7 + %E5
%E3

Ē5 = Ē7 + Ē5 = 1

Ē2 =
%E6
%E2

Ē6 + %E3
%E2

Ē3 = 2E2Ē6 + E1Ē3 = 4.785 =
% 52
%G2

Ē1 =
%E4
%E1

Ē4 + %E3
%E1

Ē3 = (cos E1)Ē4 + E2Ē3 = 2 =
% 52
%G1

.

(6.30)

After running the forward evaluation and storing the elements of E, we can run
the reverse pass shown in Fig. 6.20. This reverse pass is illustrated in matrix
form in Fig. 6.21. The procedure is equivalent to performing back substitution
in this linear system.

51Ē5 = 0Ē4 = Ē5
Ē1 = Ē4 cos E1

+ E2Ē3

% 52
%G1

= Ē1
% 52
%G1

52Ē7 = 1Ē6 = Ē7
Ē2 = 2E2Ē6

+ E1Ē3

% 52
%G2

= Ē2
% 52
%G2

Ē3 = Ē7 + Ē5

Fig. 6.20Computational graph for the
reverse mode, showing the backward
propagation of the derivative of 52.

Although we set out to evaluate d 52/dG1, we also computed d 52/dG2 as a
by-product. For each output, the derivatives of all inputs come at the cost of

6 Computing Derivatives 246

1

Ē1

Ē2

Ē3

Ē4

Ē5

Ē6

Ē7

Ē1

Ē2

Ē3

Ē4

Ē5

Ē6

Ē7

=

Fig. 6.21 Dependency used in the
reverse chain rule propagation in
Eq. 6.30. The reverse mode is equiv-
alent to solving an upper triangu-
lar system by backward substitution,
where the system is sparse.

�E

Reverse

Forward1
1

1
1

1
1

� 5= 5

=G

=G

= 5

Fig. 6.22 When =G < = 5 , the forward
mode is advantageous.

�E

Reverse

Forward1
1

1
1

1
1� 5= 5

=G

=G

= 5

Fig. 6.23 When =G > = 5 , the reverse
mode is advantageous.

evaluating only one more line of code. Conversely, if we want the derivatives
of 51, a whole new set of computations is needed.

In forward mode, the computation of a given derivative, ¤E8 , requires the
partial derivatives of the line of code that computes E8 with respect to its inputs.
In the reverse case, however, to compute a given derivative, Ē 9 , we require the
partial derivatives with respect to E 9 of the functions that the current variable
E 9 affects. Knowledge of the function a variable affects is not encoded in that
variable computation, and that is why the computational graph is required.

Unlikewith forward-modeAD and finite differences, it is impossible
to compute a directional derivative by setting the appropriate seeds.
Although the seeds in the forward mode are associated with the inputs,
the seeds for the reversemode are associatedwith the outputs. Suppose
we have multiple functions of interest, 5 ≡ [E=−= 5 , . . . , E=]. To find the
derivatives of 51 in a vectorized operation, wewould set Ē = [1, 0, . . . , 0].
A seed with multiple nonzero elements computes the derivatives of a
weighted function with respect to all the variables, where the weight for
each function is determined by the corresponding Ē value.

6.6.4 Forward Mode or Reverse Mode?
Our goal is to compute � 5 , the (= 5 × =G) matrix of derivatives of all
the functions of interest 5 with respect to all the input variables G.
However, AD computes many other derivatives corresponding to
intermediate variables. The complete Jacobian for all the intermediate
variables, E8 = E8(E1 , E2 , . . . , E8 , . . . , E=), assuming that the loops have
been unrolled, has the structure shown in Figs. 6.22 and 6.23.

The input variables G are among the first entries in E, whereas the
functions of interest 5 are among the last entries of E. For simplicity, let
us assume that the entries corresponding to G and 5 are contiguous, as
previously shown in Fig. 6.13. Then, the derivatives we want (� 5) are a
block located on the lower left in the much larger matrix (�E), as shown
in Figs. 6.22 and 6.23. Although we are only interested in this block,
AD requires the computation of additional intermediate derivatives.

Themaindifference between the forward and the reverse approaches
is that the forward mode computes the Jacobian column by column,
whereas the reverse mode does it row by row. Thus, the cost of the
forward mode is proportional to =G , whereas the cost of the reverse
mode is proportional to = 5 . If we have more outputs (e.g., objective and
constraints) than inputs (design variables), the forward mode is more
efficient, as illustrated in Fig. 6.22. On the other hand, if we have many
more inputs than outputs, then the reverse mode is more efficient, as

6 Computing Derivatives 247

∗One of the main techniques for reducing
the memory usage of reverse AD is check-
pointing; see Chapter 12 in Griewank.115

115. Griewank, Evaluating Derivatives,
2000.

illustrated in Fig. 6.23. If the number of inputs is similar to the number
of outputs, neither mode has a significant advantage.

In bothmodes, each forward or reverse pass costs less than 2–3 times
the cost of running the original code in practice. However, because
the reverse mode requires storing a large amount of data, memory
costs also need to be considered. In principle, the required memory is
proportional to the number of variables, but there are techniques that
can reduce the memory usage significantly.∗

6.6.5 AD Implementation
There are two main ways to implement AD: by source code transformation
or by operator overloading. The function we used to demonstrate the
issues with symbolic differentiation (Ex. 6.2) can be differentiated much
more easily with AD. In the examples that follow, we use this function
to demonstrate how the forward and reverse mode work using both
source code transformation and operator overloading.

Source Code Transformation
AD tools that use source code transformation process the whole source
code automatically with a parser and add lines of code that compute
the derivatives. The added code is highlighted in Exs. 6.7 and 6.8.

Example 6.7 Source code transformation for forward mode
Running anADsource transformation tool on the code fromEx. 6.2 produces

the code that follows.

Input: G, ¤G Set seed ¤G = 1 to get d 5 /dG
5 = G
¤5 = ¤G Automatically added by AD tool
for 8 = 1 to 10 do

5 = sin(G + 5)
¤5 = (¤G + ¤5) · cos(G + 5) Automatically added by AD tool

end for
return 5 , ¤5 d 5 /dG is given by ¤5

The AD tool added a new line after each variable assignment that computes the
corresponding derivative. We can then set the seed, ¤G = 1 and run the code. As
the loops proceed, ¤5 accumulates the derivative as 5 is successively updated.

https://dx.doi.org/10.1137/1.9780898717761

6 Computing Derivatives 248

†A stack, also known as last in, first out
(LIFO), is a data structure that stores a one-
dimensional array. We can only add an
element to the top of the stack (push) and
take the element from the top of the stack
(pop).

Example 6.8 Source code transformation for reverse mode
The reverse-mode AD version of the code from Ex. 6.2 follows.

Input: G, 5̄ Set 5̄ = 1 to get d 5 /dG
5 = G
for 8 = 1 to 10 do
push(5) Save current value of 5 on top of stack
5 = sin(G + 5)

end for
for 8 = 10 to 1 do Reverse loop added by AD tool

5 = pop() Get value of 5 from top of stack
5̄ = cos(G + 5) · 5̄

end for
Ḡ = 5̄

return 5 , Ḡ d 5 /dG is given by Ḡ
The first loop is identical to the original code except for one line. Because the
derivatives that accumulate in the reverse loop depend on the intermediate
values of the variables, we need to store all the variables in the forward loop.
We store and retrieve the variables using a stack, hence the call to “push”.†

The second loop, which runs in reverse, is where the derivatives are
computed. We set the reverse seed, 5̄ = 1, and then the adjoint variables
accumulate the derivatives back to the start.

Operator Overloading
The operator overloading approach creates a new augmented data
type that stores both the variable value and its derivative. Every
floating-point number E is replaced by a new type with two parts (E, ¤E),
commonly referred to as a dual number. All standard operations (e.g.,
addition, multiplication, sine) are overloaded such that they compute
E according to the original function value and ¤E according to the
derivative of that function. For example, the multiplication operation,
G1 · G2, would be defined for the dual-number data type as

(G1 , ¤G1) · (G2 , ¤G2) = (G1G2 , G1 ¤G2 + ¤G1G2) , (6.31)

where we compute the original function value in the first term, and the
second term carries the derivative of the multiplication.

Although we wrote the two parts explicitly in Eq. 6.31, the source
code would only show a normal multiplication, such as E3 = E1 · E2.
However, each of these variables would be of the new type and carry the
corresponding ¤E quantities. By overloading all the required operations,

6 Computing Derivatives 249

‡The overloading of ‘’+” computes
(E, ¤E) =

(
G + 5 , ¤G + ¤5

)
and then the

overloading of “sin” computes
(
5 , ¤5

)
=

(sin(E), cos(E) ¤E).

§See Sec. 5.4 in Griewank115 for more
details on reverse mode using operating
overloading.

115. Griewank, Evaluating Derivatives,
2000.

the computations happen “behind the scenes”, and the source code
does not have to be changed, except to declare all the variables to be of
the new type and to set the seed. Example 6.9 lists the original code
from Ex. 6.2 with notes on the actual computations that are performed
as a result of overloading.

Example 6.9 Operator overloading for forward mode
Using the derived data types and operator overloading approach in forward

mode does not change the code listed in Ex. 6.2. The AD tool provides
overloaded versions of the functions in use, which in this case are assignment,
addition, and sine. These functions are overloaded as follows:

E2 = E1 ⇒ (E2 , ¤E2) = (E1 , ¤E1)
E1 + E2 ⇒ (E1 , ¤E1) + (E2 , ¤E2) ≡ (E1 + E2 , ¤E1 + ¤E2)
sin(E) ⇒ sin (E, ¤E) ≡ (sin(E), cos(E) ¤E) .

In this case, the source code is unchanged, but additional computations occur
through the overloaded functions. We reproduce the code that follows with
notes on the hidden operations that take place.

Input: G G is of a new data type with two components (G, ¤G)
5 = G (5 , ¤5) = (G, ¤G) through the overloading of the “=” operation
for 8 = 1 to 10 do

5 = sin(G + 5) Code is unchanged, but overloading
computes the derivative‡

end for
return 5 The new data type includes ¤5 , which is d 5 /dG

We set the seed, ¤G = 1, and for each function assignment, we add the cor-
responding derivative line. As the loops are repeated, ¤5 accumulates the
derivative as 5 is successively updated.

The implementation of the reverse mode using operating overload-
ing is less straightforward and is not detailed here. It requires a new
data type that stores the information from the computational graph and
the variable values when running the forward pass. This information
can be stored using the taping technique. After the forward evaluation
of using the new type, the “tape” holds the sequence of operations,
which is then evaluated in reverse to propagate the reverse-mode seed.§

Connection of AD with the Complex-Step Method
The complex-stepmethod fromSection 6.5 canbe interpreted as forward-
mode AD using operator overloading, where the data type is the

https://dx.doi.org/10.1137/1.9780898717761

6 Computing Derivatives 250

117. Utke et al., OpenAD/F: A modular
open-source tool for automatic differentiation
of Fortran codes, 2008.

118. Hascoet and Pascual, The Tapenade
automatic differentiation tool: Principles,
model, and specification, 2013.

119. Griewank et al., Algorithm 755:
ADOL-C: A package for the automatic dif-
ferentiation of algorithms written in C/C++,
1996.
120. Wiltschko et al., Tangent: automatic
differentiation using source code transforma-
tion in Python, 2017.

121. Bradbury et al., JAX: Composable
Transformations of Python+NumPy Pro-
grams, 2018.

122. Revels et al., Forward-mode automatic
differentiation in Julia, 2016.

123. Neidinger, Introduction to automatic
differentiation and MATLAB object-oriented
programming, 2010.

124. Betancourt, A geometric theory of
higher-order automatic differentiation, 2018.

complex number (G, H) ≡ G + 8H, and the imaginary part H carries the
derivative. To see this connection more clearly, let us write the complex
multiplication operation as

5 = (G1 + 8H1)(G2 + 8H2) =
(
G1G2 − H1H2

) + 8 (H1G2 + G1H2
)
. (6.32)

This equation is similar to the overloaded multiplication (Eq. 6.31). The
only difference is that the real part includes the term −H1H2, which
corresponds to the second-order error term in Eq. 6.15. In this case, the
complex part gives the exact derivative, but a second-order error might
appear for other operations. As argued before, these errors vanish in
finite-precision arithmetic if the complex step is small enough.

Tip 6.6 AD tools
There are AD tools available for most programming languages, including

Fortran,117,118 C/C++,119 Python,120,121, Julia,122 andMATLAB.123 These tools
have been extensively developed and provide the user with great functionality,
including the calculation of higher-order derivatives, multivariable derivatives,
and reverse-mode options. Although some AD tools can be applied recursively
to yield higher-order derivatives, this approach is not typically efficient and is
sometimes unstable.124

Source Code Transformation versus Operator Overloading
The source code transformation and the operator overloading ap-
proaches each have their relative advantages and disadvantages. The
overloading approach is much more elegant because the original code
stays practically the same and can be maintained directly. On the other
hand, the source transformation approach enlarges the original code
and results in less readable code, making it hard to work with. Still, it
is easier to see what operations take place when debugging. Instead of
maintaining source code transformed by AD, it is advisable to work
with the original source and devise a workflow where the parser is
rerun before compiling a new version.

One advantage of the source code transformation approach is that
it tends to yield faster code and allows more straightforward compile-
time optimizations. The overloading approach requires a language that
supports user-defined data types and operator overloading, whereas
source transformation does not. Developing a source transformation
AD tool is usually more challenging than developing the overloading
approach because it requires an elaborate parser that understands the
source syntax.

https://dx.doi.org/10.1145/1377596.1377598
https://dx.doi.org/10.1145/1377596.1377598
https://dx.doi.org/10.1145/1377596.1377598
https://dx.doi.org/10.1145/2450153.2450158
https://dx.doi.org/10.1145/2450153.2450158
https://dx.doi.org/10.1145/2450153.2450158
https://dx.doi.org/10.1145/229473.229474
https://dx.doi.org/10.1145/229473.229474
https://dx.doi.org/10.1145/229473.229474
https://https://arxiv.org/abs/1711.02712
https://https://arxiv.org/abs/1711.02712
https://https://arxiv.org/abs/1711.02712
https://http://github.com/google/jax
https://http://github.com/google/jax
https://http://github.com/google/jax
https://https://arxiv.org/abs/1607.07892
https://https://arxiv.org/abs/1607.07892
https://dx.doi.org/10.1137/080743627
https://dx.doi.org/10.1137/080743627
https://dx.doi.org/10.1137/080743627
https://https://arxiv.org/abs/1812.11592
https://https://arxiv.org/abs/1812.11592

6 Computing Derivatives 251

125. Giles, An extended collection of matrix
derivative results for forward and reverse
mode algorithmic differentiation, 2008.

6.6.6 AD Shortcuts for Matrix Operations
The efficiency of AD can be dramatically increasedwithmanually imple-
mented shortcuts. When the code involves matrix operations, manual
implementation of a higher-level differentiation of those operations
is more efficient than the line-by-line AD implementation. Giles125
documents the forward and reverse differentiation of many matrix
elementary operations.

For example, suppose that we have a matrix multiplication � = ��.
Then, the forward mode yields

¤� = ¤�� + � ¤� . (6.33)

The idea is to use ¤� and ¤� from the AD code preceding the operation
and then manually implement this formula (bypassing any AD of the
code that performs that operation) to obtain ¤�, as shown in Fig. 6.24.
Then we can use ¤� to seed the remainder of the AD code.

The reverse mode of the multiplication yields

�̄ = �̄�ᵀ , �̄ = �ᵀ�̄ . (6.34)

Similarly, we take �̄ from the reverse AD code and implement the
formula manually to compute �̄ and �̄, which we can use in the
remaining AD code in the reverse procedure.

Original code

Forward mode

Reverse mode

Matrix
operationG 5

Manual
implementation¤G ¤5

Manual
implementationḠ 5̄

�

�

�

¤�
¤�

�, �

¤�

�̄�̄

�̄

�, �

Forward AD

Reverse AD

Forward AD

Reverse AD
Fig. 6.24Matrix operations, including
the solution of linear systems, can
be differentiated manually to bypass
more costly AD code.

Oneparticularly useful (and astounding!) result is the differentiation
of the matrix inverse product. If we have a linear solver such that
� = �−1�, we can bypass the solver in the AD process by using the
following results:

¤� = �−1
(
¤� − ¤��

)
(6.35)

https://https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf

6 Computing Derivatives 252

125. Giles, An extended collection of matrix
derivative results for forward and reverse
mode algorithmic differentiation, 2008.

∗Peter and Dwight126 compare the contin-
uous and discrete adjoint approaches in
more detail.
126. Peter and Dwight, Numerical sensitiv-
ity analysis for aerodynamic optimization: A
survey of approaches, 2010.

for the forward mode and

�̄ = �−ᵀ�̄ , �̄ = −�̄�ᵀ (6.36)

for the reverse mode.
In addition to deriving the formulas just shown, Giles125 derives

formulas for the matrix derivatives of the inverse, determinant, norms,
quadratic, polynomial, exponential, eigenvalues and eigenvectors, and
singular value decomposition. Taking shortcuts as described here
applies more broadly to any case where a part of the process can be
differentiated manually to produce a more efficient derivative compu-
tation.

6.7 Implicit Analytic Methods—Direct and Adjoint
Direct and adjoint methods—whichwe refer to jointly as implicit analytic
methods—linearize the model governing equations to obtain a system
of linear equations whose solution yields the desired derivatives. Like
the complex-step method and AD, implicit analytic methods compute
derivatives with a precision matching that of the function evaluation.
The direct method is analogous to forward-mode AD, whereas the
adjoint method is analogous to reverse-mode AD.

Analytic methods can be thought of as lying in between the finite-
difference method and AD in terms of the number of variables involved.
With finite differences, we only need to be aware of inputs and outputs,
whereas AD involves every single variable assignment in the code.
Analytic methods work at the model level and thus require knowledge
of the governing equations and the corresponding state variables.

There are twomain approaches toderiving implicit analyticmethods:
continuous and discrete. The continuous approach linearizes the
original continuous governing equations, such as a partial differential
equation (PDE), and then discretizes this linearization. The discrete
approach linearizes the governing equations only after they have been
discretized as a set of residual equations, A(D) = 0.

Each approach has its advantages and disadvantages. The discrete
approach is preferred and is easier to generalize, so we explain this
approach exclusively. One of the primary reasons the discrete approach
is preferred is that the resulting derivatives are consistent with the func-
tion values because they use the same discretization. The continuous
approach is only consistent in the limit of a fine discretization. The
resulting inconsistencies can mislead the optimization.∗

https://https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://dx.doi.org/10.1016/j.compfluid.2009.09.013
https://dx.doi.org/10.1016/j.compfluid.2009.09.013
https://dx.doi.org/10.1016/j.compfluid.2009.09.013

6 Computing Derivatives 253

Solver

A(D; G)

5 (G, D)

G

5

D
D

A

Fig. 6.25 Relationship between func-
tions and design variables for a sys-
tem involving a solver. The implicit
equations A(D; G) = 0 define the states
D for a given G, so the functions of
interest 5 depend explicitly and im-
plicitly on the design variables G.

6.7.1 Residuals and Functions
As mentioned in Chapter 3, a discretized numerical model can be
written as a system of residuals,

A(D; G) = 0 , (6.37)

where the semicolon denotes that the design variables G are fixed when
these equations are solved for the state variables D. Through these
equations, D is an implicit function of G. This relationship is represented
by the box containing the solver and residual equations in Fig. 6.25.

The functions of interest, 5 (G, D), are typically explicit functions of
the state variables and the design variables. However, because D is an
implicit function of G, 5 is ultimately an implicit function of G as well.
To compute 5 for a given G, we must first find D such that A(D; G) = 0.
This is usually the most computationally costly step and requires a
solver (see Section 3.6). The residual equations could be nonlinear and
involve many state variables. In PDE-based models it is common to
have millions of states. Once we have solved for the state variables D,
we can compute the functions of interest 5 . The computation of 5 for a
given D and G is usually much cheaper because it does not require a
solver. For example, in PDE-based models, computing such functions
typically involves an integration of the states over a surface, or some
other transformation of the states.

To compute d 5 /dG using finite differences, we would have to use
the solver to find D for each perturbation of G. That means that we
would have to run the solver =G times, which would not scale well when
the solution is costly. AD also requires the propagation of derivatives
through the solution process. As we will see, implicit analytic methods
avoid involving the potentially expensive nonlinear solution in the
derivative computation.

Example 6.10 Residuals and functions in structural analysis
Recall Ex. 3.2, where we introduced the structural model of a truss structure.

The residuals in this case are the linear equations,

A(D) ≡ (G)D − @ = 0 , (6.38)

where the state variables are the displacements, D. Solving for the displacement
requires only a linear solver in this case, but it is still the most costly part of the
analysis. Suppose that the design variables are the cross-sectional areas of the
truss members. Then, the stiffness matrix is a function of G, but the external
forces are not.

Suppose that the functions of interest are the stresses in each of the truss
members. This is an explicit function of the displacements, which is given by

6 Computing Derivatives 254

†This chain rule can be derived bywriting
the total differential of 5 as

d 5 =
% 5
%G

dG + % 5
%D

dD

and then “dividing” it by dG. See Ap-
pendix A.2 for more background on dif-
ferentials.

the matrix multiplication

5 (G, D) ≡ �(D) = (D ,

where (is a matrix that depends on G. This is a much cheaper computation
than solving the linear system (Eq. 6.38).

6.7.2 Direct and Adjoint Derivative Equations
The derivatives we ultimately want to compute are the ones in the
Jacobian d 5 /dG. Given the explicit and implicit dependence of 5 on G,
we can use the chain rule to write the total derivative Jacobian of 5 as

d 5
dG =

% 5
%G
+ % 5
%D

dD
dG , (6.39)

where the result is an (= 5 × =G)matrix.†
In this context, the total derivatives, d 5 /dG, take into account the

change in D that is required to keep the residuals of the governing
equations (Eq. 6.37) equal to zero. The partial derivatives in Eq. 6.39
represent the variation of 5 (G, D) with respect to changes in G or D
without regard to satisfying the governing equations.

To better understand the difference between total and partial deriva-
tives in this context, imagine computing these derivatives using finite
differences with small perturbations. For the total derivatives, we
would perturb G, re-solve the governing equations to obtain D, and
then compute 5 , which would account for both dependency paths
in Fig. 6.25. To compute the partial derivatives % 5 /%G and % 5 /%D,
however, we would perturb G or D and recompute 5 without re-solving
the governing equations. In general, these partial derivative terms are
cheap to compute numerically or can be obtained symbolically.

To find the total derivativedD/dG, we need to consider the governing
equations. Assuming that we are at a point where A(G, D) = 0, any
perturbation in G must be accompanied by a perturbation in D such that
the governing equations remain satisfied. Therefore, the differential of
the residuals can be written as

dA = %A
%G

dG + %A
%D

dD = 0 . (6.40)

This constraint is illustrated in Fig. 6.26 in two dimensions, but keep
in mind that G, D, and A are vectors in the general case. The governing
equations (Eq. 6.37) map an =G-vector G to an =D-vector D. This mapping
defines a hypersurface (also known as a manifold) in the G–D space.

6 Computing Derivatives 255

dG
dD

A(G, D) = 0

G

D

Fig. 6.26 The governing equations de-
termine the values of D for a given G.
Given a point that satisfies the equa-
tions, the appropriate differential in
D must accompany a differential of G
about that point for the equations to
remain satisfied.

The total derivative d 5 /dG that we ultimately want to compute
represents the effect that a perturbation on G has on 5 subject to the
constraint of remaining on this hypersurface, which can be achieved
with the appropriate variation in D.

To obtain a more useful equation, we rearrange Eq. 6.40 to get the
linear system

%A
%D

dD
dG = −

%A
%G

, (6.41)

where %A/%G and dD/dG are both (=D × =G) matrices, and %A/%D is a
square matrix of size (=D × =D). This linear system is useful because if
we provide the partial derivatives in this equation (which are cheap
to compute), we can solve for the total derivatives dD/dG (whose
computation would otherwise require re-solving A(D) = 0). Because
dD/dG is amatrix with =G columns, this linear system needs to be solved
for each G8 with the corresponding column of the right-hand-sidematrix
%A/%G8 .

Now let us assume that we can invert the matrix in the linear system
(Eq. 6.41) and substitute the solution for dD/dG into the total derivative
equation (Eq. 6.39). Then we get

d 5
dG =

% 5
%G
− % 5
%D

%A
%D

−1 %A
%G

, (6.42)

where all the derivative terms on the right-hand side are partial deriva-
tives. The partial derivatives in this equation can be computed using any
of the methods that we have described earlier: symbolic differentiation,
finite differences, complex step, or AD. Equation 6.42 shows two ways
to compute the total derivatives, which we call the direct method and the
adjoint method.

The direct method (already outlined earlier) consists of solving the
linear system (Eq. 6.41) and substituting dD/dG into Eq. 6.39. Defining
) ≡ −dD/dG, we can rewrite Eq. 6.41 as

%A
%D

) =
%A
%G

. (6.43)

After solving for) (one column at the time), we can use it in the total
derivative equation (Eq. 6.39) to obtain,

d 5
dG =

% 5
%G
− % 5
%D

) . (6.44)

This is sometimes called the forward mode because it is analogous to
forward-mode AD.

6 Computing Derivatives 256

Solving the linear system (Eq. 6.43) is typically the most computa-
tionally expensive operation in this procedure. The cost of this approach
scales with the number of inputs =G but is essentially independent
of the number of outputs = 5 . This is the same scaling behavior as
finite differences and forward-mode AD. However, the constant of
proportionality is typically much smaller in the direct method because
we only need to solve the nonlinear equations A(D; G) = 0 once to obtain
the states.

d 5
dG

% 5
%G

% 5
%D

%A
%D

−1 %A
%G

= −

(= 5 × =G) (= 5 × =G) (= 5 × =D) (=D × =D) (=D × =G)

) (=D × =G)

#ᵀ (= 5 × =D)

Fig. 6.27 The total derivatives
(Eq. 6.42) can be computed either by
solving for) (direct method) or by
solving for # (adjoint method).

The adjoint method changes the linear system that is solved to
compute the total derivatives. Looking at Fig. 6.27, we see that instead
of solving the linear system with %A/%G on the right-hand side, we
can solve it with % 5 /%D on the right-hand side. This corresponds
to replacing the two Jacobians in the middle with a new matrix of
unknowns,

#ᵀ ≡ % 5
%D

%A
%D

−1
, (6.45)

where the columns of # are called the adjoint vectors. Multiplying both
sides of Eq. 6.45 by %A/%D on the right and taking the transpose of the
whole equation, we obtain the adjoint equation,

%A
%D

ᵀ

=
% 5
%D

ᵀ

. (6.46)

This linear system has no dependence on G. Each adjoint vector is
associated with a function of interest 59 and is found by solving the
adjoint equation (Eq. 6.46) with the corresponding row % 59/%D. The
solution (#) is then used to compute the total derivative

d 5
dG =

% 5
%G
− #ᵀ %A

%G
. (6.47)

This is sometimes called the reverse mode because it is analogous to
reverse-mode AD.

6 Computing Derivatives 257

‡The adjoint vector can also be interpreted
as a Lagrangemultiplier vector associated
with equality constraints A = 0. Defining
the Lagrangian ℒ(G, D) = 5 + #ᵀA and
differentiating it with respect to G, we get

%ℒ
%G

=
% 5
%G
+ #ᵀ %A

%G
.

Thus, the total derivatives d 5 /dG are the
derivatives of this Lagrangian.

= −

Solve =G times

=G < = 5

= −

Solve = 5 times

=G > = 5

Fig. 6.28 Two possibilities for the size
of d 5 /dG in Fig. 6.27. When =G < = 5 ,
it is advantageous to solve the linear
system with the vector to the right
of the square matrix because it has
fewer columns. When =G > = 5 , it is
advantageous to solve the transposed
linear system with the vector to the
left because it has fewer rows.

§One widespread application of the ad-
jointmethodhasbeen in aerodynamic and
hydrodynamic shape optimization.127

127. Martins, Perspectives on aerodynamic
design optimization, 2020.

As we will see in Section 6.9, the adjoint vectors are equivalent to
the total derivatives d 5 /dA, which quantify the change in the function
of interest given a perturbation in the residual that gets zeroed out by
an appropriate change in D.‡

6.7.3 Direct or Adjoint?
Similar to the direct method, the solution of the adjoint linear system
(Eq. 6.46) tends to be the most expensive operation. Although the linear
system is of the same size as that of the direct method, the cost of the
adjoint method scales with the number of outputs = 5 and is essentially
independent of the number of inputs =G . The comparison between the
computational cost of the direct and adjoint methods is summarized in
Table 6.3 and illustrated in Fig. 6.28.

Similar to the trade-offs between forward- and reverse-mode AD, if
the number of outputs is greater than the number of inputs, the direct
(forward) method is more efficient (Fig. 6.28, top). On the other hand, if
the number of inputs is greater than the number of outputs, it is more
efficient to use the adjoint (reverse) method (Fig. 6.28, bottom). When
the number of inputs and outputs is large and similar, neither method
has an advantage, and the cost of computing the full total derivative
Jacobian might be prohibitive. In this case, aggregating the outputs and
using the adjoint method might be effective, as explained in Tip 6.7.

In practice, the adjoint method is implemented much more often
than the direct method. Although both methods require a similar
implementation effort, the direct method competes with methods that
are muchmore easily implemented, such as finite differencing, complex
step, and forward-mode AD. On the other hand, the adjoint method
only competes with reverse-mode AD, which is plagued by thememory
issue.

Step Direct Adjoint

Partial derivative computation Same Same
Linear solution =G times = 5 times
Matrix multiplications Same Same

Table 6.3 Cost comparison of com-
puting derivatives with direct and
adjoint methods.

Another reason why the adjoint method is more widely used is
that many optimization problems have a few functions of interest (one
objective and a few constraints) and many design variables. The adjoint
method has made it possible to solve optimization problems involving
computationally intensive PDE models.§

Although implementing implicit analytic methods is labor intensive,

https://dx.doi.org/10.2514/6.2020-0043
https://dx.doi.org/10.2514/6.2020-0043

6 Computing Derivatives 258

Solver

�
< + cos�

�<2

<

5

�
�

Fig. 6.29 Model for Ex. 6.11.

it is worthwhile if the differentiated code is used frequently and in
applications that demand repeated evaluations. For such applications,
analytic differentiation with partial derivatives computed using AD is
the recommended approach for differentiating code because it combines
the best features of these methods.

Example 6.11 Differentiating an implicit function
Consider the following simplified equation for the natural frequency of a

beam:
5 = �<2 , (6.48)

where � is a function of < through the following relationship:

�
<
+ cos� = 0 .

Figure 6.29 shows the equivalent of Fig. 6.25 in this case. Our goal is to compute
the derivative d 5 /d<. Because � is an implicit function of <, we cannot find
an explicit expression for � as a function of <, substitute that expression into
Eq. 6.48, and then differentiate normally. Fortunately, the implicit analytic
methods allow us to compute this derivative.

Referring back to our nomenclature,

5 (G, D) ≡ 5 (<,�) = �<2 ,

A(D; G) ≡ A(�;<) = �
<
+ cos� = 0 ,

where< is the design variable and� is the state variable. The partial derivatives
that we need for the total derivative computation (Eq. 6.42) are as follows:

% 5
%G

=
% 5
%<

= 2�<,
% 5
%D

=
% 5
%�

= <2

%A
%G

=
%A
%<

= − �

<2 ,
%A
%D

=
%A
%�

=
1
<
− sin� .

Because this is a problemof only one function of interest and one design variable,
there is no distinction between the direct and adjoint methods (forward and
reverse), and the linear system solution is simply a division. Substituting these
partial derivatives into the total derivative equation (Eq. 6.42) yields

d 5
d< = 2�< + �

1
< − sin�

.

Thus, we obtained the desired derivative despite the implicitly defined function.
Here, it was possible to get an explicit expression for the total derivative, but
generally, it is only possible to get a numeric value.

6 Computing Derivatives 259

Solver

 (G)D − @

(D

G

�

D
D

Fig. 6.30 Model for Ex. 6.12
¶The displacements do change with the
areas but only through the solution of the
governing equations, which are not con-
sidered when taking partial derivatives.

‖This is not true for large displacements,
but we assume small displacements .

∗∗Although ultimately, the areas do
change the stresses, they do so only
through changes in the displacements.

Example 6.12 Direct and adjoint methods applied to structural analysis
Consider the structural analysis we reintroduced in Ex. 6.10. Let us compute

the derivatives of the stresses with respect to the cross-sectional truss member
areas and denote the number of degrees of freedom as =D and the number of
truss members as =C . Figure 6.30 shows the equivalent of Fig. 6.25 for this case.

We require four Jacobians of partial derivatives: %A/%G, %A/%D, %�/%G, and
%�/%D. When differentiating the governing equations with respect to an area
G8 , neither the displacements nor the external forces depend directly on the
areas,¶ so we obtain

%A
%G8

=
%

%G8

(
 D − @) = %

%G8
(D) = %

%G8
D .

This is a vector of size =D corresponding to one column of %A/%G. We can
compute this term by symbolically differentiating the equations that assemble
the stiffness matrix. Alternatively, we could use AD on the function that
computes the stiffness matrix or use finite differencing. Using AD, we can
employ the techniques described in Section 6.7.4 for an efficient implementation.

It is more efficient to compute the derivative of the product D directly
instead of differentiating and then multiplying by D. This avoids storing
and subtracting the entire perturbed matrix. We can apply a forward finite
difference to the product as follows:

%A
%G8
≈ (G + ℎ4̂8)D − (G)D

ℎ
.

Because the external forces do not depend on the displacements in this
case,‖ the partial derivatives of the governing equations with respect to the
displacements are given by

%A
%D

= .

We already have the stiffness matrix, so this term does not require any further
computations.

The partial derivative of the stresses with respect to the areas is zero
(%�/%G = 0) because there is nodirect dependence.∗∗ Thus, the partial derivative
of the stress with respect to displacements is

%�

%D
= (,

which is an (=C × =D)matrix that we already have from the stress computation.
Now we can use either the direct or adjoint method by replacing the partial

derivatives in the respective equations. The direct linear system (Eq. 6.43)
yields

)8 =
%

%G8
(D) ,

where 8 corresponds to each truss member area. Once we have)8 , we can use
it to compute the total derivatives of all the stresses with respect to member
area 8 with Eq. 6.44, as follows:

d�
dG8

= −()8 .

6 Computing Derivatives 260

††Usually, the stiffness matrix is symmet-
ric, and ᵀ = . This means that the
solver for displacements can be repur-
posed for adjoint computation by setting
the right-hand side shown here instead of
the loads. For that reason, this right-hand
side is sometimes called a pseudo-load.

‡‡Lambe et al.128 provide recommenda-
tions on constraint aggregation for struc-
tural optimization.

128. Lambe et al., An evaluation of con-
straint aggregation strategies for wing box
mass minimization, 2017.

§§Kenway et al.129 provide more details
on this approach and its applications.

129. Kenway et al., Effective Adjoint Ap-
proaches for Computational Fluid Dynamics,
2019.

The adjoint linear system (Eq. 6.46) yields††

 # 9 = (
ᵀ
9 ,∗ ,

where 9 corresponds to each truss member, and (9 ,∗ is the 9th row of (. Once we
have # 9 , we can use it to compute the total derivative of the stress in member 9
with respect to all truss member areas with Eq. 6.47, as follows:

d�9
dG = −#ᵀ

9
%

%G
(D) .

In this case, there is no advantage in using one method over the other because
the number of areas is the same as the number of stresses. However, if
we aggregated the stresses as suggested in Tip 6.7, the adjoint would be
advantageous.

Tip 6.7 Aggregate outputs to reduce the cost of adjoint or reversemethods
For problems with many outputs and many inputs, there is no efficient way

of computing the Jacobian. This is common in some structural optimization
problems, where the number of stress constraints is similar to the number of
design variables because they are both associated with each structural element
(see Ex. 6.12).

We can address this issue by aggregating the functions of interest as
described in Section 5.7 and then implementing the adjoint method to compute
the gradient. In Ex. 6.12, wewould aggregate the stresses in one or more groups
to reduce the number of required adjoint solutions.

We can use these techniques to aggregate any outputs, but in principle,
these outputs should have some relation to each other. For example, they could
be the stresses in a structure (see Ex. 6.12).‡‡

6.7.4 Adjoint Method with AD Partial Derivatives
Implementing the implicit analytic methods for models involving long,
complicated code requires significant development effort. In this section,
we focus on implementing the adjoint method because it is more widely
used, as explained in Section 6.7.3. We assume that = 5 < =G , so that the
adjoint method is advantageous.

To ease the implementation of adjoint methods, we recommend a
hybrid adjoint approach where the reverse mode of AD computes the
partial derivatives in the adjoint equations (Eq. 6.46) and total derivative
equation (Eq. 6.47).§§

https://dx.doi.org/10.1007/s00158-016-1495-1
https://dx.doi.org/10.1007/s00158-016-1495-1
https://dx.doi.org/10.1007/s00158-016-1495-1
https://dx.doi.org/10.1016/j.paerosci.2019.05.002
https://dx.doi.org/10.1016/j.paerosci.2019.05.002

6 Computing Derivatives 261

Original code

Reverse mode

5 (G, D) = 0
G

D
5

Ḡ

D̄
5̄

Fig. 6.31 Applying reverse AD to the
code that computes 5 produces code
that computes the partial derivatives
of 5 with respect to G and D.

¶¶See Appendix B.4 for more details on
iterative solvers.

Original code

Reverse mode

A(G, D) = 0
G

D
A

Ḡ

D̄
Ā

Fig. 6.32 Applying reverse AD to the
code that computes A produces code
that computes the partial derivatives
of A with respect to G and D.

The partials terms % 5 /%G form an (= 5 × =G) matrix and % 5 /%D is
an (= 5 × =D) matrix. These partial derivatives can be computed by
identifying the section of the code that computes 5 for a given G and D
and running the AD tool for that section. This produces code that takes
5̄ as an input and outputs Ḡ and D̄, as shown in Fig. 6.31. Recall that
we must first run the entire original code that computes D and 5 . Then
we can run the AD code with the desired seed. Suppose we want the
derivative of the 9th component of 5 . We would set 5̄9 = 1 and the other
elements to zero. After running the AD code, we obtain Ḡ and D̄, which
correspond to the rows of the respective matrix of partial terms, that is,

Ḡ =
% 59
%G

, D̄ =
% 59
%D

. (6.49)

Thus, with each run of the AD code, we obtain the derivatives of one
function with respect to all design variables and all state variables. One
run is required for each element of 5 . The reversemode is advantageous
if = 5 < =G , .

The Jacobian %A/%D can also be computed using AD. Because %A/%D
is typically sparse, the techniques covered in Section 6.8 significantly
increase the efficiency of computing this matrix. This is a square matrix,
so neither AD mode has an advantage over the other if we explicitly
compute and store the whole matrix.

However, reverse-modeAD is advantageouswhen using an iterative
method to solve the adjoint linear system (Eq. 6.46). When using an
iterative method, we do not form %A/%D. Instead, we require products
of the transpose of this matrix with some vector E,¶¶

%A
%D

ᵀ

E . (6.50)

The elements of E act as weights on the residuals and can be interpreted
as a projection onto the direction of E. Suppose we have the reverse
AD code for the residual computation, as shown in Fig. 6.32. This code
requires a reverse seed Ā, which determines the weights we want on
each residual. Typically, a seed would have only one nonzero entry to
find partial derivatives (e.g., setting Ā = [1, 0, . . . , 0] would yield the
first row of the Jacobian, D̄ ≡ %A1/%D). However, to get the product in
Eq. 6.50, we require the seed to be weighted as Ā = E. Then, we can
compute the product by running the reverse AD code once to obtain
D̄ ≡ [%A/%D]ᵀE.

The final term needed to compute total derivatives with the adjoint
method is the last term in Eq. 6.47, which can be written as

#ᵀ %A
%G

=

(
%A
%G

ᵀ

#

)ᵀ
. (6.51)

6 Computing Derivatives 262

This is yet another transpose vector product that can be obtained using
the same reverse AD code for the residuals, except that now the residual
seed is Ā = #, and the product we want is given by Ḡ.

In sum, it is advantageous to use reverse-mode AD to compute
the partial derivative terms for the adjoint equations, especially if the
adjoint equations are solved using an iterative approach that requires
only matrix-vector products. Similar techniques and arguments apply
for the direct method, except that in that case, forward-mode AD is
advantageous for computing the partial derivatives.

Tip 6.8 Verifying the implementation of derivative computations
Always compare your derivative computation against a different implemen-

tation. You can compare analytic derivatives with finite-difference derivatives,
but that is only a partial verification because finite differences are not accurate
enough. Comparing against the complex-step method or AD is preferable. Still,
finite differences are recommended as an additional check. If you can only use
finite differences, compare two different finite difference approximations.

You should use unit tests to verify each partial derivative term as you are
developing the code (see Tip 3.4) instead of just hoping it all works together
at the end (it usually does not!). One necessary but not sufficient test for the
verification of analytic methods is the dot-product test. For analytic methods,
the dot-product test can be derived from Eq. 6.42. For a chosen variable G8 and
function 59 , we have the following equality:

#ᵀ
9
%A
%G8

=
% 59
%D

)8 . (6.52)

Each side of this equation yields a scalar that shouldmatch toworking precision.
The dot-product test verifies that your partial derivatives and the solutions for
the direct and adjoint linear systems are consistent. For AD, the dot-product
test for a code with inputs G and outputs 5 is as follows:

¤Gᵀ Ḡ = ¤Gᵀ
(
% 5
%G

ᵀ

5̄

)
=

(
¤Gᵀ % 5

%G

ᵀ)
5̄ = ¤5 ᵀ 5̄ . (6.53)

6.8 Sparse Jacobians and Graph Coloring
In this chapter, we have discussed various ways to compute a Jacobian
of a model. If the Jacobian has many zero elements, it is said to be sparse.
In many cases, we can take advantage of that sparsity to significantly
reduce the computational time required to construct the Jacobian.

When applying a forward approach (forward-mode AD, finite
differencing, or complex step), the cost of computing the Jacobian scales

6 Computing Derivatives 263

∗Curtis et al.130 were the first to show that
the number of function evaluations could
be reduced for sparse Jacobians.

130. Curtis et al., On the estimation of
sparse Jacobian matrices, 1974.

with =G . Each forward pass re-evaluates the model to compute one
column of the Jacobian. For example, when using finite differencing,
=G evaluations would be required. To compute the 9th column of the
Jacobian, the input vector would be

[G1 , G2 , . . . , G 9 + ℎ, . . . , G=G] . (6.54)

We can significantly reduce the cost of computing the Jacobian
depending on its sparsity pattern. As a simple example, consider a
square diagonal Jacobian:

d 5
dG ≡



�11 0 0 0 0
0 �22 0 0 0
0 0 �33 0 0
0 0 0 �44 0
0 0 0 0 �55


. (6.55)

For this scenario, the Jacobian can be constructed with one evaluation
rather than =G evaluations. This is because a given output 58 depends
on only one input G8 . We could think of the outputs as =G independent
functions. Thus, for finite differencing, rather than requiring =G input
vectors with =G function evaluations, we can use one input vector, as
follows:

[G1 + ℎ, G2 + ℎ, . . . , G5 + ℎ] , (6.56)

allowing us to compute all the nonzero entries in one pass.∗
Although the diagonal case is easy to understand, it is a special

situation. To generalize this concept, let us consider the following (5×6)
matrix as an example:



�11 0 0 �14 0 �16
0 0 �23 �24 0 0
�31 �32 0 0 0 0
0 0 0 0 �45 0
0 0 �53 0 �55 �56


. (6.57)

A subset of columns that does not have more than one nonzero in
any given row are said to be structurally orthogonal. In this example,
the following sets of columns are structurally orthogonal: (1, 3), (1,
5), (2, 3), (2, 4, 5), (2, 6), and (4, 5). Structurally orthogonal columns
can be combined, forming a smaller Jacobian that reduces the number
of forward passes required. This reduced Jacobian is referred to as
compressed. There is more than one way to compress this Jacobian, but
in this case, the minimum number of compressed columns—referred to
as colors—is three. In the following compressed Jacobian, we combine

https://dx.doi.org/10.1093/imamat/13.1.117
https://dx.doi.org/10.1093/imamat/13.1.117

6 Computing Derivatives 264

†Gebremedhin et al.131 provide a review
of graph coloring in the context of comput-
ing derivatives. Gray et al.132 show how
touse graph coloring to compute total cou-
pled derivatives.

131. Gebremedhin et al., What color is
your Jacobian? Graph coloring for comput-
ing derivatives, 2005.

132. Gray et al., OpenMDAO: An open-
source framework for multidisciplinary
design, analysis, and optimization, 2019.

columns 1 and 3 (blue); columns 2, 4, and 5 (red); and leave column 6
on its own (black):



�11 0 0 �14 0 �16
0 0 �23 �24 0 0
�31 �32 0 0 0 0
0 0 0 0 �45 0
0 0 �53 0 �55 �56


⇒



�11 �14 �16
�23 �24 0
�31 �32 0
0 �45 0
�53 �55 �56


. (6.58)

For finite differencing, complex step, and forward-mode AD, only
compression among columns is possible. Reverse mode AD allows
compression among the rows. The concept is the same, but instead,
we look for structurally orthogonal rows. One such compression is as
follows:



�11 0 0 �14 0 �16
0 0 �23 �24 0 0
�31 �32 0 0 0 0
0 0 0 0 �45 0
0 0 �53 0 �55 �56


⇒


�11 0 0 �14 �45 �16
0 0 �23 �24 0 0
�31 �32 �53 0 �55 �56


.

(6.59)
AD can also be used even more flexibly when both modes are used:

forward passes to evaluate groups of structurally orthogonal columns
and reverse passes to evaluate groups of structurally orthogonal rows.
Rather than taking incremental steps in each direction as is done in
finite differencing, we set the AD seed vector with 1s in the directions
we wish to evaluate, similar to how the seed is set for directional
derivatives, as discussed in Section 6.6.

For these small Jacobians, it is straightforward to determine how to
compress the matrix in the best possible way. For a large matrix, this is
not so easy. One approach is to use graph coloring. This approach starts
by building a graph where the vertices represent the row and column
indices, and the edges represent nonzero entries in the Jacobian. Then,
algorithms are applied to this graph that estimate the fewest number
of “colors” (orthogonal columns) using heuristics. Graph coloring is a
large field of research, where derivative computation is one of many
applications.†

Example 6.13 Speed up from sparse derivatives
In static aerodynamic analyses, the forces and moments produced at two

different flow conditions are independent. If there are many different flow
conditions of interest, the resulting Jacobian is sparse. Examples include
evaluating the power produced by a wind turbine at different wind speeds or

https://dx.doi.org/10.1137/s0036144504444711
https://dx.doi.org/10.1137/s0036144504444711
https://dx.doi.org/10.1137/s0036144504444711
https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z

6 Computing Derivatives 265

133. Ning, Using blade element momen-
tum methods with gradient-based design
optimization, 2021.

assessing an aircraft’s performance throughout a flight envelope. Many other
engineering analyses have a similar structure.

Consider a typical wind turbine blade optimization. The Jacobian of the
functions of interest is fully dense with respect to geometry changes. However,
the part of the Jacobian that contains the derivatives with respect to the various
flow conditions is diagonal, as illustrated on left side of Fig. 6.33. Blank blocks
represent derivatives that are zero. We can compress the diagonal part of the
Jacobian as shown on the right side of Fig. 6.33.

Geometry Inflow

Outputs

Geometry Inflow

Outputs
Fig. 6.33 Jacobian structure for wind
turbine problem. The original Jaco-
bian (left) can be replacedwith a com-
pressed one (right).

To illustrate the potential benefits of using a sparse representation, we time
the Jacobian computation for various sizes of inflow conditions using forward
AD with and without graph coloring (Fig. 6.34). For more than 100 inflow
conditions, the difference in time required exceeds one order of magnitude
(note the log-log scale). Because Jacobians are needed at every iteration in the
optimization, this is a tremendous speedup, enabled by exploiting the sparsity
pattern.133

AD

AD with coloring

100 101 102

101

100

10−1

10−2

10−3

10−4

Inflow conditions

Ja
co
bi
an

tim
e
[s
]

Fig. 6.34 Jacobian computational time
with and without coloring.

6.9 Unified Derivatives Equation
Now that we have introduced all the methods for computing deriva-
tives, we will see how they are connected. For example, we have
mentioned that the direct and adjoint methods are analogous to the
forward and reverse mode of AD, respectively, but we did not show

https://dx.doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.1007/s00158-021-02883-6

6 Computing Derivatives 266

134. Martins and Hwang, Review and uni-
fication of methods for computing derivatives
of multidisciplinary computational models,
2013.

A2 =
0

A2 = +ΔA2A2 = −
Δ
A2 A1 =

0
A1 =
+ΔA1

A1 =
−ΔA1D∗

D1

D2

Fig. 6.35 Solution of a system of two
equations expressed by residuals.

A1 =
0

A1 =
+dA1

A1 =
−dA1

D1

D2

Fig. 6.36 The differential dA can be
visualized as a linearized (first-order)
change of the contour value.

this mathematically. The unified derivatives equation (UDE) expresses
both methods.134 Also, the implicit analytic methods from Section 6.7
assumed one set of implicit equations (A = 0) and one set of explicit
functions (5). The UDE formulates the derivative computation for
systems with mixed sets of implicit and explicit equations.

We first derive the UDE from basic principles and give an intuitive
explanation of the derivative terms. Then, we show how we can use
the UDE to handle implicit and explicit equations. We also show how
the UDE can retrieve the direct and adjoint equations. Finally, we show
how the UDE is connected to AD.

6.9.1 UDE Derivation
Suppose we have a set of = residual equations with the same number
of unknowns,

A8(D1 , D2 , . . . , D=) = 0, 8 = 1, . . . , = , (6.60)

and that there is at least one solution D∗ such that A(D∗) = 0. Such a
solution can be visualized for = = 2, as shown in Fig. 6.35.

These residuals are general: each one can depend on any subset of
the variables D and can be truly implicit functions or explicit functions
converted to the implicit form (see Section 3.3 and Ex. 3.3). The total
differentials for these residuals are

dA8 =
%A8
%D1

dD1 + . . . + %A8
%D=

dD= , 8 = 1, . . . , = . (6.61)

These represent first-order changes in A due to perturbations in D. The
differentials of D can be visualized as perturbations in the space of the
variables. The differentials of A can be visualized as linear changes to
the surface defined by A = 0, as illustrated in Fig. 6.36.

We can write the differentials (Eq. 6.61) in matrix form as



%A1
%D1

· · · %A1
%D=

...
. . .

...

%A=
%D1

· · · %A=
%D=





dD1

...

dD=


=



dA1
...

dA=


. (6.62)

The partial derivatives in the matrix are derivatives of the expressions
for A with respect to D that can be obtained symbolically, and they
are in general functions of D. The vector of differentials dD represents
perturbations in D that can be solved for a given vector of changes dA.

https://dx.doi.org/10.2514/1.J052184
https://dx.doi.org/10.2514/1.J052184
https://dx.doi.org/10.2514/1.J052184

6 Computing Derivatives 267

A2 = 0 A1 =
0

A1 =
+dA1

D∗
dD1

dD2

D1

D2

Fig. 6.37 The total derivatives
dD1/dA1 and dD2/dA1 represent the
first-order changes needed to satisfy a
perturbation A1 = dA1 while keeping
A2 = 0.
∗As explained in Appendix A.2, we take
the liberty of treating differentials alge-
braically and skip a more rigorous and
lengthy proof.

Now suppose that we are at a solution D∗, such that A(D∗) = 0. All
the partial derivatives (%A/%D) can be evaluated at D∗. When all entries
in dA are zero, then the solution of this linear system yields dD = 0.
This is because if there is no disruption in the residuals that are already
zero, the variables do not need to change either.

How is this linear system useful? With these differentials, we can
choose different combinations of dA to obtain any total derivatives
that we want. For example, we can get the total derivatives of D
with respect to a single residual A8 by keeping dA8 while setting all
the other differentials to zero (dA 9≠8 = 0). The visual interpretation
of this total derivative is shown in Fig. 6.37 for = = 2 and 8 = 1.
Setting dA = [0, . . . , 0,dA8 , 0, . . . , 0] in Eq. 6.62 and moving dA8 to the
denominator, we obtain the following linear system:∗



%A1
%D1

· · · %A1
%D8

· · · %A1
%D=

...
. . .

...
...

%A8
%D1

· · · %A8
%D8

· · · %A8
%D=

...
...

. . .
...

%A=
%D1

· · · %A=
%D8

· · · %A=
%D=





dD1
dA8
...

dD8
dA8
...

dD=
dA8



=



0
...

1
...

0



. (6.63)

Doing the same for all 8 = 1, . . . , =, we get the following = linear
systems:



%A1
%D1

· · · %A1
%D=

...
. . .

...

%A=
%D1

· · · %A=
%D=





dD1
dA1

· · · dD1
dA=

...
. . .

...

dD=
dA1

· · · dD=
dA=


=



1 · · · 0
...

. . .
...

0 · · · 1


. (6.64)

Solving these linear systems yields the total derivatives of all the
elements of D with respect to all the elements of A. We can write this
more compactly in matrix form as

%A
%D

dD
dA = � . (6.65)

This is the forward form of the UDE.
The total derivatives dD/dA might not seem like the derivatives

in which we are interested. Based on the implicit analytic methods

6 Computing Derivatives 268

†Normally, for two matrices � and �,
(��)ᵀ = �ᵀ�ᵀ, but in this case,
�� = � ⇒ � = �−1 ⇒ �ᵀ = �−ᵀ ⇒
�ᵀ�ᵀ = �.

A2 = 0

A2 = +dA2

A1 =
0

A1 =
+dA1

D∗

dD1

D1

D2

Fig. 6.38 The total derivatives
dD1/dA1 and dD1/dA2 represent the
first-order change in D1 resulting
from perturbations dA1 and dA2.

derived in Section 6.7.2, these look like derivatives of states with respect
to residuals, not the derivatives that we ultimately want to compute
(d 5 /dG). However, we will soon see that with the appropriate choice of
A and D, we can obtain a linear system that solves for the total derivatives
we want.

With Eq. 6.65, we can solve one column at a time. Similar to AD, we
can also solve for the rows instead by transposing the systems as †

%A
%D

ᵀ dD
dA

ᵀ

= � , (6.66)

which is the reverse form of the UDE. Now, each column 9 yields
dD9/dA—the total derivative of one variable with respect to all the
residuals. This total derivative is interpreted visually in Fig. 6.38.

The usefulness of the total derivative Jacobian dD/dA might still not
be apparent. In the next section, we explain how to set up the UDE to
include d 5 /dG in the UDE unknowns (dD/dA).

Example 6.14 Computing and interpreting dD/dA
Suppose we want to find the rectangle that is inscribed in the ellipse given

by

A1(D1 , D2) =
D2

1
4 + D

2
2 − 1 = 0 .

A change in this residual represents a change in the size of the ellipse without
changing its proportions. Of all the possible rectangles that can be inscribed in
the ellipse, we want the rectangle with an area that is half of that of this ellipse,
such that

A2(D1 , D2) = 4D1D2 − � = 0 .

A change in this residual represents a change in the area of the rectangle. There
are two solutions, as shown in the left pane of Fig. 6.39. These solutions can be
found using Newton’s method, which converges to one solution or the other,
depending on the starting guess. We will pick the one on the right, which is
[D1 , D2] = [1.79944, 0.43647]. The solution represents the coordinates of the
rectangle corner that touches the ellipse.

Taking the partial derivatives, we can write the forward UDE (Eq. 6.65) for
this problem as follows:


D1/2 2D2

4D2 4D1





dD1
dA1

dD1
dA2

dD2
dA1

dD2
dA2


=


1 0

0 1


. (6.67)

6 Computing Derivatives 269

A2
=

0
A2
= +

Δ
A2

A2
=
−
Δ
A2

A1 = 0

A1 = +ΔA1

A1 = −ΔA1
D∗

0 0.5 1 1.5 2
0

0.5

1

1.5

2

D1

D2

Residuals and solution

A2 = 0

A1 = 0

A1 = +dA1

D∗

dD2
dD1

1.76 1.78 1.8 1.82 1.84
0.4

0.42

0.44

0.46

0.48

D1

D2

First-order perturbation view showing
interpretation of dD/dA1

Fig. 6.39 Rectangle inscribed in el-
lipse problem.

Solving this linear system for each of the two right-hand sides, we get



dD1
dA1

dD1
dA2

dD2
dA1

dD2
dA2


=


1.45353 −0.17628

−0.35257 0.18169


. (6.68)

These derivatives reflect the change in the coordinates of the point where the
rectangle touches the ellipse as a result of a perturbation in the size of the
ellipse, dA1, and the area of the rectangle dA2. The right side of Fig. 6.39 shows
the visual interpretation of dD/dA1 as an example.

6.9.2 UDE for Mixed Implicit and Explicit Components
In the previous section, the UDE was derived based on residual equa-
tions. The equations were written in implicit form, but there was no
assumption on whether the equations were implicit or explicit. Because
we can write an explicit equation in implicit form (see Section 3.3 and
Ex. 3.3), the UDE allows a mix of implicit and explicit set of equations,
which we now call components.

To derive the implicit analytic equations in Section 6.7, we considered
two components: an implicit component that determines D by solving
A(D; G) = 0 and an explicit component that computes the functions of
interest, 5 (G, D).

We can recover the implicit analytic differentiation equations (di-
rect and adjoint) from the UDE by defining a set of variables that
concatenates the state variables with inputs and outputs as follows:

D̂ ≡

G
D
5


. (6.69)

6 Computing Derivatives 270

This is a vector with
(
=G + =D + = 5

)
variables. For the residuals, we

need a vector with the same size. We can obtain this by realizing that
the residuals associated with the inputs and outputs are just explicit
functions that can be written in implicit form. Then, we have

Â ≡


G − Ǧ
A − Ǎ(G, D)
5 − 5̌ (G, D)


= 0 . (6.70)

Here, we distinguish G (the actual variable in the UDE system) from
Ǧ (a given input) and 5 (the variable) from 5̌ (an explicit function of
G and D). Similarly, A is the vector of variables associated with the
residual and Ǎ is the residual function itself. Taking the differential of
the residuals, and considering only one of them to be nonzero at a time,
we obtain,

dÂ ≡

dG
dA
d 5


. (6.71)

Using these variable and residual definitions in Eqs. 6.65 and 6.66 yields
the full UDE shown in Fig. 6.40, where the block we ultimately want to
compute is d 5 /dG.

� 0 0

− % Ǎ
%G

− % Ǎ
%D

0

−% 5̌
%G

−% 5̌
%D

�

� 0 0

dD
dG

dD
dA

0

d 5
dG

d 5
dA

�

� 0 0

0 � 0

0 0 �

� − % Ǎ
%G

ᵀ

− % 5̌
%G

ᵀ

0 − % Ǎ
%D

ᵀ

− % 5̌
%D

ᵀ

0 0 �

�
dD
dG

ᵀ d 5
dG

ᵀ

0 dD
dA

ᵀ d 5
dA

ᵀ

0 0 �

= =

Fig. 6.40 The direct and adjoint meth-
ods can be recovered from the UDE.

To compute d 5 /dG using the forward UDE (left-hand side of the
equation in Fig. 6.40, we can ignore all but three blocks in the total
derivatives matrix: �, dD/dG, and d 5 /dG. By multiplying these blocks
and using the definition) ≡ −dD/dG, we recover the direct linear
system (Eq. 6.43) and the total derivative equation (Eq. 6.44).

To compute d 5 /dG using the reverse UDE (right-hand side of
the equation in Fig. 6.40), we can ignore all but three blocks in the
total derivatives matrix: �, d 5 /dA, and d 5 /dG. By multiplying these
blocks and defining # ≡ −d 5 /dA, we recover the adjoint linear system
(Eq. 6.46) and the corresponding total derivative equation (Eq. 6.47). The
definition of # here is significant because, as mentioned in Section 6.7.2,
the adjoint vector is the total derivative of the objective function with
respect to the governing equation residuals.

6 Computing Derivatives 271

A3(D, G) = 0

A4(D, G) = 0

A5(D) = 0

G

5

D
D

Fig. 6.41 Dependencies of the residu-
als.

By defining one implicit component (associated with D) and two
explicit components (associated with G and 5), we have retrieved
the direct and adjoint methods from the UDE. In general, we can
define an arbitrary number of components, so the UDE provides a
mathematical framework for computing the derivatives of coupled
systems. Furthermore, each component can be implicit or explicit, so
the UDE can handle an arbitrary mix of components. All we need to do
is to include the desired states in the UDE augmented variables vector
(Eq. 6.69) and the corresponding residuals in the UDE residuals vector
(Eq. 6.70). We address coupled systems in Section 13.3.3 and use the
UDE in Section 13.2.6, where we extend it to coupled systems with a
hierarchy of components.

Example 6.15 Computing arbitrary derivatives with the UDE
Saywewant to compute the total derivatives of the perimeter of the rectangle

from Ex. 6.14 with respect to the axes of the ellipse. The equation for the ellipse
can be rewritten as

A3(D1 , D2) =
D2

1
G2

1
+ D

2
2
G2

2
− 1 = 0 ,

where G1 and G2 are the semimajor and semiminor axes of the ellipse, respec-
tively. The baseline values are [G1 , G2] = [2, 1]. The residual for the rectangle
area is

A4(D1 , D2) = 4D1D2 − �
2 G1G2 = 0 .

To add the independent variables G1 and G2, we write them as residuals in
implicit form as

A1(G1) = G1 − 2 = 0, A2(G2) = G2 − 1 = 0 .

The perimeter can be written in implicit form as

A5(D1 , D2) = 5 − 4(D1 + D2) = 0 .

Now we have a system of five equations and five variables, with the
dependencies shown in Fig. 6.41. The first two variables in G are given, and we
can compute D and 5 using a solver as before.

Taking all the partial derivatives, we get the following forward system:



1 0 0 0 0

0 1 0 0 0

−2D2
1

G3
1
−2D2

2
G3

2

2D1
G2

1

2D2
G2

2
0

−�2 G2 −�2 G1 4D2 4D1 0

0 0 −4 −4 1





1 0 0 0 0

0 1 0 0 0

dD1
dG1

dD1
dG2

dD1
dA3

dD1
dA4

0

dD2
dG1

dD2
dG2

dD2
dA3

dD2
dA4

0

d 5
dG1

d 5
dG2

d 5
dA3

d 5
dA4

1



= � .

6 Computing Derivatives 272

d 5
dG1

d 5
dG2

1 1.5 2 2.5 3

0.5

1

1.5

2

G1

G2

Fig. 6.42 Contours of 5 as a function
of G and the total derivatives at G =
[2, 1].

We only want the two d 5 /dG terms in this equation. We can either solve this
linear system twice to compute the first two columns, or we can compute both
terms with a single solution of the reverse (transposed) system. Transposing
the system, substituting the numerical values for G and D, and removing the
total derivative terms that we do not need, we get the following system:



1 0 −0.80950 −1.57080 0

0 1 −0.38101 −3.14159 0

0 0 0.89972 1.74588 −4

0 0 0.87294 7.19776 −4

0 0 0 0 1





d 5
dG1
d 5
dG2
d 5
dA3
d 5
dA4
1



=



0

0

0

0

1



.

Solving this linear system, we obtain



d 5
dG1
d 5
dG2
d 5
dA3
d 5
dA4



=



3.59888

1.74588

4.40385

0.02163



.

The total derivatives of interest are shown in Fig. 6.42.
We could have obtained the same solution using the adjoint equations

from Section 6.7.2. The only difference is the nomenclature because the adjoint
vector in this case is # = −[d 5 /dA3 , d 5 /dA4]. We can interpret these terms as
the change of 5 with respect to changes in the ellipse size and rectangle area,
respectively.

6.9.3 Recovering AD
Now we will see how we can recover AD from the UDE. First, we
define the UDE variables associated with each operation or line of code
(assuming all loops have been unrolled), such that D ≡ E and

E8 = Ě8(E1 , . . . , E8−1), 8 = 1, . . . , = . (6.72)

Recall from Section 6.6.1 that each variable is an explicit function of the
previous ones.

6 Computing Derivatives 273

To define the appropriate residuals, we use the same technique from
before to convert an explicit function into implicit form by moving all
the terms in the left-hand side to obtain

A8 = E8 − Ě8(E1 , . . . , E8−1) . (6.73)

The distinction between E and Ě is that E represents variables that are
considered independent in the UDE, whereas Ě represents the explicit
expressions. Of course, the values for these become equal once the
system is solved. Similar to the differentials in Eq. 6.71, dA ≡ dE

Taking the partial derivatives of the residuals (Eq. 6.73) with respect
to E (Eq. 6.72), and replacing the total derivatives in the forward form
of the UDE (Eq. 6.65) with the new symbols yields



1 0 . . . 0

−%Ě2
%E1

1
. . .

...

...
. . .

. . . 0

−%Ě=
%E1

. . . − %Ě=
%E=−1

1





dE1
dE1

0 . . . 0
dE2
dE1

dE2
dE2

. . .
...

...
. . .

. . . 0
dE=
dE1

. . .
dE=

dE=−1

dE=
dE=



= � . (6.74)

This equation is the matrix form of the AD forward chain rule (Eq. 6.21),
where each column of the total derivative matrix corresponds to the
tangent vector (¤E) for the chosen input variable. As observed in Fig. 6.16,
the partial derivatives form a lower triangular matrix. The Jacobian
we ultimately want to compute (d 5 /dG) is composed of a subset of
derivatives in the bottom-left corner near the dE=/dE1 term. To compute
these derivatives, we need to perform forward substitution and compute
one column of the total derivative matrix at a time, where each column
is associated with the inputs of interest.

Similarly, the reverse form of the UDE (Eq. 6.66) yields the transpose
of Eq. 6.74,



1 −%Ě2
%E1

. . . −%Ě=
%E1

0 1
. . .

...
...

. . .
. . . − %Ě=

%E=−1

0 . . . 0 1





dE1
dE1

dE2
dE1

. . .
dE=
dE1

0 dE2
dE2

. . .
...

...
. . . dE=−1

dE=−1

dE=
dE=−1

0 . . . 0 dE=
dE=



= � . (6.75)

This is equivalent to the AD reverse chain rule (Eq. 6.26), where each
column of the total derivative matrix corresponds to the gradient vector

6 Computing Derivatives 274

(Ē) for the chosen output variable. The partial derivatives now form
an upper triangular matrix, as previously shown in Fig. 6.21. The
derivatives of interest are now near the top-right corner of the total
derivative matrix near the dE=/dE1 term. To compute these derivatives,
we need to perform back substitutions, computing one column of the
matrix at a time.

Tip 6.9 Scaling affects the derivatives
When scaling a problem (Tips 4.4 and 5.3), you should be aware that the

scale changes also affect the derivatives. You can apply the derivative methods
of this chapter to the scaled function directly. However, scaling is often done
outside themodel because the scaling is specific to the optimization problem. In
this case, you may want to use the original functions and derivatives and make
the necessary modifications in an outer function that provides the objectives
and constraints.

Using the nomenclature introduced in Tip 4.4, we represent the scaled
design variables given to the optimizer as Ḡ. Then, the unscaled variables are
G = BG � Ḡ. Thus, the required scaled derivatives are

d 5̄
dḠ =

d 5
dG �

BG
B 5
. (6.76)

Tip 6.10 Provide your own derivatives and use finite differences onlyas a last resort
Because of the step-size dilemma, finite differences are often the cause of

failed optimizations. To put it more dramatically, finite differences are the root
of all evil. Most gradient-based optimization software uses finite differences
internally as a default if you do not provide your own gradients. Although
some software packages try to find reasonable finite-difference steps, it is easy
to get inaccurate derivatives, which then causes optimization difficulties or
total failure. This is the top reason why beginners give up on gradient-based
optimization!

Instead, you should provide gradients computed using one of the other
methods described in this chapter. In contrast with finite differences, the
derivatives computed by the other methods are usually as accurate as the
function computation. You should also avoid using finite-difference derivatives
as a reference for a definitive verification of the other methods.

If you have to use finite differences as a last resort, make sure to do a step-
size study (see Tip 6.2). You should then provide your own finite-difference
derivatives to the optimization or make sure that the optimizer finite-difference
estimates are acceptable.

6 Computing Derivatives 275

6.10 Summary
Derivatives are useful in many applications beyond optimization. This
chapter introduced the methods available to compute the first deriva-
tives of the outputs of amodelwith respect to its inputs. In optimization,
the outputs are usually the objective function and the constraint func-
tions, and the inputs are the design variables. The typical characteristics
of the available methods are compared in Table 6.4.

Accuracy Scalability Ease of Implicit
implementation functions

Symbolic • Hard
Finite difference Easy •
Complex step • Intermediate •
AD • • Intermediate •
Implicit analytic • • Hard •

Table 6.4 Characteristics of the vari-
ous derivative computation methods.
Some of these characteristics are prob-
lemor implementation dependent, so
these are not universal.

Symbolic differentiation is accurate but only scalable for simple,
explicit functions of low dimensionality. Therefore, it is necessary to
compute derivatives numerically. Although it is generally intractable
or inefficient for many engineering models, symbolic differentiation is
used by AD at each line of code and in implicit analytic methods to
derive expressions for computing the required partial derivatives.

Finite-difference approximations are popular because they are easy
to implement and can be applied to any model, including black-box
models. The downsides are that these approximations are not accurate,
and the cost scales linearly with the number of variables. Many of
the issues practitioners experience with gradient-based optimization
can be traced to errors in the gradients when algorithms automatically
compute these gradients using finite differences.

The complex-step method is accurate and relatively easy to imple-
ment. It usually requires some changes to the analysis source code, but
this process can be scripted. The main advantage of the complex-step
method is that it produces analytically accurate derivatives. However,
like the finite-difference method, the cost scales linearly with the num-
ber of inputs, and each simulation requires more effort because of the
complex arithmetic.

AD produces analytically accurate derivatives, andmany implemen-
tations can be fully automated. The implementation requires access
to the source code but is still relatively straightforward to apply. The
computational cost of forward-mode AD scales with the number of
inputs, and the reverse mode scales with the number of outputs. The

6 Computing Derivatives 276

Finite
difference

1.49

Analytic
0.37

101 102 103

102

103

104

105

106

Number of design variables

N
um

be
ro

ff
un

ct
io
n
ev

al
ua

tio
ns

Fig. 6.43 Efficient gradient compu-
tation with an analytic method im-
proves the scalability of gradient-
based algorithms compared to finite
differencing. In this case, we show
the results for the =-dimensional
Rosenbrock, where the cost of com-
puting the derivatives analytically is
independent of =.

scaling factor for the forward mode is generally lower than that for
finite differences. The cost of reverse-mode AD is independent of the
number of design variables.

Implicit analytic methods (direct and adjoint) are accurate and
scalable but require significant implementation effort. These methods
are exact (depending on how the partial derivatives are obtained), and
like AD, they provide both forward and reverse modes with the same
scaling advantages. Gradient-based optimization using the adjoint
method is a powerful combination that scales well with the number
of variables, as shown in Fig. 6.43. The disadvantage is that because
implicit methods are intrusive, they require considerable development
effort.

A hybrid approach where the partial derivatives for the implicit
analytic equations are computed with AD is generally recommended.
This hybrid approach is computationally more efficient than AD while
reducing the implementation effort of implicit analytic methods and
ensuring accuracy.

The UDE encapsulates all the derivative computation methods
in a single linear system. Using the UDE, we can formulate the
derivative computation for an arbitrary system of mixed explicit and
implicit components. This will be used in Section 13.2.6 to develop a
mathematical framework for solving coupled systems and computing
the corresponding derivatives.

6 Computing Derivatives 277

Problems
6.1 Answer true or false and justify your answer.

a. A first-order derivative is only one of many types of sensitiv-
ity analysis.

b. Each column of the Jacobian matrix represents the gradient
of one of the functions of interest with respect to all the
variables.

c. You can only compute derivatives of models for which you
have the source code or, at the very least, understand how
the model computes the functions of interest.

d. Symbolic differentiation is intractable for all but the simplest
models because of expression swell.

e. Finite-difference approximations can compute first deriva-
tives with a precision matching that of the function being
differentiated.

f. The complex-step method can only be used to compute
derivatives of real functions.

g. AD via source code transformation uses a code parser to
differentiate each line of code symbolically.

h. The forward mode of AD computes the derivatives of all
outputs with respect to one input, whereas the reverse mode
computes the derivative of one output with respect to all
inputs.

i. The adjoint method requires the same partial derivatives as
the direct method.

j. Of the two implicit analytic methods, the direct method is
more widely used than the adjoint method because most
problems have more design variables than functions of
interest.

k. Graph coloring makes Jacobians sparse by selectively replac-
ing small-valued entries with zeros to trade accuracy for
speed.

l. The unified derivatives equation can represent implicit ana-
lytic approaches but not AD.

6.2 Reproduce the comparison between the complex-step and finite-
difference methods from Ex. 6.4. Do you get any complex-step
derivatives with zero error compared with the analytic reference?

6 Computing Derivatives 278

What does that mean, and how should you show those points on
the plot?

6.3 Compute the derivative using symbolic differentiation and using
algorithmic differentiation (either forward or reverse mode) for
the iterative code in Ex. 6.2. Use a package to facilitate the AD
portion. Most scientific computing languages have AD packages
(see Tip 6.6).

6.4 Write a forward-mode-AD script that computes the derivative of
the function in Ex. 6.3 using operator overloading. You need to
define your own type and provide it with overloaded functions
for exp, sin, cos, sqrt, addition, division, and exponentiation.

6.5 Suppose you have two airplanes that are flying in a horizontal
plane defined by G and H coordinates. Both airplanes start at H = 0,
but airplane 1 starts at G = 0, whereas airplane 2 has a head start
of G = ΔG. The airplanes fly at a constant velocity. Airplane 1 has
a velocity of E1 in the direction of the positive G-axis, and airplane
2 has a velocity of E2 at an angle � with the G-axis. The functions
of interest are the distance (3) and the angle (�) between the two
airplanes as a function of time. The independent variables are
ΔG, �, E1, E2, and C. Write the code that computes the functions of
interest (outputs) for a given set of independent variables (inputs).
Use AD to differentiate the code. Choose a set of inputs, compute
the derivatives of all the outputs with respect to the inputs, and
verify them against the complex-step method.

6.6 Kepler’s equation, which we mentioned in Section 2.2, defines the
relationship between a planet’s polar coordinates and the time
elapsed from a given initial point through the implicit equation

� − 4 sin(�) = " ,

where " is the mean anomaly (a parameterization of time), �
is the eccentric anomaly (a parameterization of the polar angle),
and 4 is the eccentricity of the elliptical orbit. Suppose that the
function of interest is the difference between the eccentric and
mean anomalies,

5 (�, ") = � −" .

Derive an analytic expression for d 5 /d4 and d 5 /d". Verify your
result against the complex-step method or AD (you will need a
solver for Kepler’s equation, which was the subject of Prob. 3.6).

6 Computing Derivatives 279

6.7 Compute the derivatives for the 10-bar truss problem described
in Appendix D.2.2 using the direct and adjoint implicit differenti-
ation methods. Compute the derivatives of the objective (mass)
with respect to the design variables (10 cross-sectional areas),
and the derivatives of the constraints (stresses in all 10 bars)
with respect to the design variables (a 10 × 10 Jacobian matrix).
Compute the derivatives using the following:

a. A finite-difference formula of your choice

b. The complex-step derivative method

c. AD

d. The implicit analytic method (direct and adjoint)

Report the errors relative to the implicit analyticmethods. Discuss
your findings and the relative merits of each approach.

6.8 You can now solve the 10-bar truss problem (previously solved in
Prob. 5.15) using the derivatives computed in Prob. 6.7. Solve this
optimization problem using both finite-difference derivatives and
derivatives computed using an implicit analytic method. Report
the following:

a. Convergence plot with two curves for the different derivative
computation approaches on the same plot

b. Number of function calls required to converge for each
method (This metric is more meaningful if you use more
than one starting point and average the results.)

Discuss your findings.

6.9 Aggregate the constraints for the 10-bar truss problem and extend
the code from Prob. 6.7 to compute the required constraint deriva-
tives using the implicit analytic method that is most advantageous
in this case. Verify your derivatives against the complex-step
method. Solve the optimization problem and compare your re-
sults to the ones you obtained in Prob. 6.8. How close can you get
to the reference solution?

7Gradient-Free Optimization
Gradient-free algorithms fill an essential role in optimization. The
gradient-based algorithms introduced in Chapter 4 are efficient in
finding local minima for high-dimensional nonlinear problems defined
by continuous smooth functions. However, the assumptions made
for these algorithms are not always valid, which can render these
algorithms ineffective. Also, gradients might not be available when a
function is given as a black box.

In this chapter, we introduce only a few popular representative
gradient-free algorithms. Most are designed to handle unconstrained
functions only, but they can be adapted to solve constrained problems
by using the penalty or filtering methods introduced in Chapter 5. We
start by discussing the problem characteristics relevant to the choice
between gradient-free and gradient-based algorithms and then give an
overview of the types of gradient-free algorithms.

By the end of this chapter you should be able to:

1. Identify problems that are well suited for gradient-free
optimization.

2. Describe the characteristics and approach of more than
one gradient-free optimization method.

3. Use gradient-free optimization algorithms to solve real
engineering problems.

7.1 When to Use Gradient-Free Algorithms
Gradient-free algorithms can be useful when gradients are not available,
such as when dealing with black-box functions. Although gradients
can always be approximated with finite differences, these approxima-
tions suffer from potentially significant inaccuracies (see Section 6.4.2).
Gradient-based algorithms require a more experienced user because
they take more effort to set up and run. Overall, gradient-free algo-

281

7 Gradient-Free Optimization 282

rithms are easier to get up and running but are much less efficient,
particularly as the dimension of the problem increases.

One significant advantage of gradient-free algorithms is that they
do not assume function continuity. For gradient-based algorithms,
function smoothness is essential when deriving the optimality con-
ditions, both for unconstrained functions and constrained functions.
More specifically, the Karush–Kuhn–Tucker (KKT) conditions (Eq. 5.11)
require that the function be continuous in value (�0), gradient (�1), and
Hessian (�2) in at least a small neighborhood of the optimum. If, for
example, the gradient is discontinuous at the optimum, it is undefined,
and the KKT conditions are not valid. Away from optimum points, this
requirement is not as stringent. Although gradient-based algorithms
work on the same continuity assumptions, they can usually tolerate
the occasional discontinuity, as long as it is away from an optimum
point. However, for functions with excessive numerical noise and
discontinuities, gradient-free algorithms might be the only option.

Many considerations are involvedwhen choosingbetweenagradient-
based and a gradient-free algorithm. Some of these considerations are
common sources of misconception. One problem characteristic often
cited as a reason for choosing gradient-free methods is multimodality.
Design space multimodality can be a result of an objective function
with multiple local minima. In the case of a constrained problem, the
multimodality can arise from the constraints that define disconnected
or nonconvex feasible regions.

As we will see shortly, some gradient-free methods feature a global
search that increases the likelihood of finding the globalminimum. This
feature makes gradient-free methods a common choice for multimodal
problems. However, not all gradient-free methods are global search
methods; some perform only a local search. Additionally, even though
gradient-based methods are by themselves local search methods, they
are often combined with global search strategies, as discussed in Tip 4.8.
It is not necessarily true that a global search, gradient-free method is
more likely to find a global optimum than a multistart gradient-based
method. As always, problem-specific testing is needed.

Furthermore, it is assumed far too often that any complex prob-
lem is multimodal, but that is frequently not the case. Although it
might be impossible to prove that a function is unimodal, it is easy to
prove that a function is multimodal simply by finding another local
minimum. Therefore, we should not make any assumptions about
the multimodality of a function until we show definite multiple local
minima. Additionally, we must ensure that perceived local minima are
not artificial minima arising from numerical noise.

7 Gradient-Free Optimization 283

135. Yu et al., On the influence of optimiza-
tion algorithm and starting design on wing
aerodynamic shape optimization, 2018.

136. Rios and Sahinidis, Derivative-free
optimization: a review of algorithms and
comparison of software implementations,
2013.

Another reason often cited for using a gradient-free method is
multiple objectives. Some gradient-free algorithms, such as the genetic
algorithm discussed in this chapter, can be naturally applied to multiple
objectives. However, it is a misconception that gradient-free methods
are always preferable just because there are multiple objectives. This
topic is introduced in Chapter 9.

Another common reason for using gradient-free methods is when
there are discrete design variables. Because the notion of a derivative
with respect to a discrete variable is invalid, gradient-based algorithms
cannot be used directly (although there are ways around this limitation,
as discussed in Chapter 8). Some gradient-free algorithms can handle
discrete variables directly.

The preceding discussion highlights that although multimodality,
multiple objectives, or discrete variables are commonly mentioned as
reasons for choosing a gradient-free algorithm, these are not necessarily
automatic decisions, and careful consideration is needed. Assuming a
choice exists (i.e., the function is not too noisy), one of the most relevant
factors when choosing between a gradient-free and a gradient-based
approach is the dimension of the problem.

Gradient-free

2.52

Gradient-based

0.37

101 102 103

102

103

104

105

106

107

Number of design variables

N
um

be
ro

ff
un

ct
io

n
ev

al
ua

tio
ns

Fig. 7.1 Cost of optimization for in-
creasing number of design variables
in the =-dimensional Rosenbrock
function. A gradient-free algorithm
is compared with a gradient-based
algorithm, with gradients computed
analytically. The gradient-based al-
gorithm has much better scalability.

Figure 7.1 shows how many function evaluations are required to
minimize the =-dimensional Rosenbrock function for varying numbers
of design variables. Two classes of algorithms are shown in the plot:
gradient-free and gradient-based algorithms. The gradient-based
algorithm uses analytic gradients in this case. Although the exact
numbers are problem dependent, similar scaling has been observed
in large-scale computational fluid dynamics–based optimization.135
The general takeaway is that for small-size problems (usually ≤ 30
variables136), gradient-free methods can be useful in finding a solution.

https://dx.doi.org/10.1016/j.ast.2018.01.016
https://dx.doi.org/10.1016/j.ast.2018.01.016
https://dx.doi.org/10.1016/j.ast.2018.01.016
https://dx.doi.org/10.1007/s10898-012-9951-y
https://dx.doi.org/10.1007/s10898-012-9951-y
https://dx.doi.org/10.1007/s10898-012-9951-y

7 Gradient-Free Optimization 284

∗Rios and Sahinidis136 review and bench-
mark a large selection of gradient-free op-
timization algorithms.

136. Rios and Sahinidis, Derivative-free
optimization: a review of algorithms and
comparison of software implementations,
2013.

Furthermore, because gradient-free methods usually take much less
developer time touse, a gradient-free solutionmay evenbepreferable for
these smaller problems. However, if the problem is large in dimension,
then a gradient-based method may be the only viable method despite
the need for more developer time.

Tip 7.1 Choose your bounds carefully for global algorithms
Unlike gradient-based methods, which usually do not require design

variable bounds, global algorithms require these bounds to be set. Because
the global search tends to explore the whole design space within the specified
bounds, the algorithm’s effectiveness diminishes considerably if the variable
bounds are unnecessarily wide.

7.2 Classification of Gradient-Free Algorithms
There is a much wider variety of gradient-free algorithms compared
with their gradient-based counterparts. Although gradient-based algo-
rithms tend to perform local searches, have a mathematical rationale,
and be deterministic, gradient-free algorithms exhibit different combi-
nations of these characteristics. We list some of the most widely known
gradient-free algorithms in Table 7.1 and classify them according to the
characteristics introduced in Fig. 1.22.∗

Search Algorithm Function
evaluation

Stochas-
ticity

Lo
ca

l

G
lo

ba
l

M
at

he
m

at
ic

al

H
eu

ri
st

ic

D
ir

ec
t

Su
rr

og
at

e

D
et

er
m

in
is

ti
c

St
oc

ha
st

ic

Nelder–Mead • • • •
GPS • • • •
MADS • • • •
Trust region • • • •
Implicit filtering • • • •
DIRECT • • • •
MCS • • • •
EGO • • • •
Hit and run • • • •
Evolutionary • • • •

Table 7.1 Classification of gradient-
free optimization methods using the
characteristics of Fig. 1.22.

https://dx.doi.org/10.1007/s10898-012-9951-y
https://dx.doi.org/10.1007/s10898-012-9951-y
https://dx.doi.org/10.1007/s10898-012-9951-y

7 Gradient-Free Optimization 285

†The textbooks by Conn et al.137 and Au-
det and Hare138 provide a more extensive
treatment of gradient-free optimization al-
gorithms that are based on mathematical
criteria. Kokkolaras139 presents a succinct
discussion on when to use DFO.
137. Conn et al., Introduction to Derivative-
Free Optimization, 2009.

138. Audet and Hare, Derivative-Free and
Blackbox Optimization, 2017.

139. Kokkolaras, When, why, and how
can derivative-free optimization be useful to
computational engineering design? 2020.

Local search, gradient-free algorithms that use direct function evalu-
ations include the Nelder–Mead algorithm, generalized pattern search
(GPS), and mesh-adaptive direct search (MADS). Although classified
as local search in the table, the latter two methods are frequently used
with globalization approaches. The Nelder–Mead algorithm (which
we detail in Section 7.3) is heuristic, whereas the other two are not.

GPS and MADS (discussed in Section 7.4) are examples of derivative-
free optimization (DFO) algorithms, which, despite the name, do not
include all gradient-free algorithms. DFO algorithms are understood
to be largely heuristic-free and focus on local search.† GPS is a family
of methods that iteratively seek an improvement using a set of points
around the current point. In its simplest versions, GPS uses a pattern
of points based on the coordinate directions, but more sophisticated
versions use a more general set of vectors. MADS improves GPS
algorithms by allowing a much larger set of such vectors and improving
convergence.

Model-based, local search algorithms include trust-region algo-
rithms and implicit filtering. The model is an analytic approximation
of the original function (also called a surrogate model), and it should
be smooth, easy to evaluate, and accurate in the neighborhood of the
current point. The trust-region approach detailed in Section 4.5 can be
considered gradient-free if the surrogate model is constructed using
just evaluations of the original functionwithout evaluating its gradients.
This does not prevent the trust-region algorithm from using gradients
of the surrogate model, which can be computed analytically. Implicit
filtering methods extend the trust-region method by adding a surrogate
model of the function gradient to guide the search. This effectively
becomes a gradient-based method applied to the surrogate model
instead of evaluating the function directly, as done for the methods in
Chapter 4.

Global search algorithms can be broadly classified as deterministic
or stochastic, depending on whether they include random parameter
generation within the optimization algorithm.

Deterministic, global search algorithms can be either direct or
model based. Direct algorithms include Lipschitzian-based parti-
tioning techniques—such as the “divide a hyperrectangle” (DIRECT)
algorithm detailed in Section 7.5 and branch-and-bound search (dis-
cussed in Chapter 8)—and multilevel coordinate search (MCS). The
DIRECT algorithm selectively divides the space of the design variables
into smaller and smaller =-dimensional boxes—hyperrectangles. It
uses mathematical arguments to decide which boxes should be sub-
divided. Branch-and-bound search also partitions the design space,

https://dx.doi.org/10.1137/1.9780898718768
https://dx.doi.org/10.1137/1.9780898718768
https://dx.doi.org/10.1007/978-3-319-68913-5
https://dx.doi.org/10.1007/978-3-319-68913-5
https://dx.doi.org/10.1115/1.4045043
https://dx.doi.org/10.1115/1.4045043
https://dx.doi.org/10.1115/1.4045043

7 Gradient-Free Optimization 286

‡Simon140 provides a more comprehen-
sive review of evolutionary algorithms.

140. Simon, Evolutionary Optimization
Algorithms, 2013.
§ These algorithms include the follow-
ing: ant colony optimization, artifi-
cial bee colony algorithm, artificial fish
swarm, artificial flora optimization al-
gorithm, bacterial foraging optimization,
bat algorithm, big bang–big crunch al-
gorithm, biogeography-based optimiza-
tion, bird mating optimizer, cat swarm
optimization, cockroach swarm optimiza-
tion, cuckoo search, design by shop-
ping paradigm, dolphin echolocation al-
gorithm, elephant herding optimization,
firefly algorithm, flower pollination algo-
rithm, fruit fly optimization algorithm,
galactic swarmoptimization, graywolf op-
timizer, grenade explosion method, har-
mony search algorithm, hummingbird op-
timization algorithm, hybrid glowworm
swarm optimization algorithm, imperial-
ist competitive algorithm, intelligent wa-
ter drops, invasive weed optimization,
mine bomb algorithm, monarch butter-
fly optimization, moth-flame optimiza-
tion algorithm, penguin search optimiza-
tion algorithm, quantum-behaved parti-
cle swarm optimization, salp swarm algo-
rithm, teaching–learning-based optimiza-
tion, whale optimization algorithm, and
water cycle algorithm.

but it estimates lower and upper bounds for the optimum by using
the function variation between partitions. MCS is another algorithm
that partitions the design space into boxes, where a limit is imposed on
how small the boxes can get based on the number of times it has been
divided.

Global-search algorithms based on surrogate models are similar to
their local search counterparts. However, they use surrogate models
to reproduce the features of a multimodal function instead of convex
surrogate models. One of the most widely used of these algorithms is
efficient global optimization (EGO), which employs kriging surrogate
models and uses the idea of expected improvement to maximize the
likelihood of finding the optimummore efficiently (surrogate modeling
techniques, including kriging are introduced in Chapter 10, which also
described EGO). Other algorithms use radial basis functions (RBFs) as
the surrogate model and also maximize the probability of improvement
at new iterates.

Stochastic algorithms rely on one or more nondeterministic pro-
cedures; they include hit-and-run algorithms and the broad class of
evolutionary algorithms. When performing benchmarks of a stochastic
algorithm, you should run a large enough number of optimizations to
obtain statistically significant results.

Hit-and-run algorithms generate random steps about the current
iterate in search of better points. A new point is accepted when it is
better than the current one, and this process repeats until the point
cannot be improved.

What constitutes an evolutionary algorithm is not well defined.‡
Evolutionary algorithms are inspired by processes that occur in nature
or society. There is aplethora of evolutionary algorithms in the literature,
thanks to the fertile imagination of the research community and a
never-ending supply of phenomena for inspiration.§ These algorithms
are more of an analogy of the phenomenon than an actual model.
They are, at best, simplified models and, at worst, barely connected
to the phenomenon. Nature-inspired algorithms tend to invent a
specific terminology for the mathematical terms in the optimization
problem. For example, a design point might be called a “member of
the population”, or the objective function might be the “fitness”.

The vast majority of evolutionary algorithms are population based,
which means they involve a set of points at each iteration instead of a
single one (we discuss a genetic algorithm in Section 7.6 and a particle
swarm method in Section 7.7). Because the population is spread out in
the design space, evolutionary algorithms perform a global search. The
stochastic elements in these algorithms contribute to global exploration

https://books.google.com/books?vid=ISBN1118659503
https://books.google.com/books?vid=ISBN1118659503

7 Gradient-Free Optimization 287

28. Nelder and Mead, A simplex method
for function minimization, 1965.

G(0)

G(1)

G(2)

G(3)

Fig. 7.2 A simplex for = = 3 has four
vertices.

and reduce the susceptibility to getting stuck in local minima. These
features increase the likelihood of getting close to the global minimum
but by nomeans guarantee it. The algorithmmay only get close because
heuristic algorithms have a poor convergence rate, especially in higher
dimensions, and because they lack a first-ordermathematical optimality
criterion.

This chapter covers five gradient-free algorithms: the Nelder–Mead
algorithm, GPS, the DIRECT method, genetic algorithms, and particle
swarm optimization. A few other algorithms that can be used for
continuous gradient-free problems (e.g., simulated annealing and
branch and bound) are covered in Chapter 8 because they are more
frequently used to solve discrete problems. In Chapter 10, on surrogate
modeling, we discuss kriging and efficient global optimization.

7.3 Nelder–Mead Algorithm
The simplex method of Nelder and Mead28 is a deterministic, direct-
search method that is among the most cited gradient-free methods. It
is also known as the nonlinear simplex—not to be confused with the
simplex algorithm used for linear programming, with which it has
nothing in common. To avoid ambiguity, we will refer to it as the
Nelder–Mead algorithm.

The Nelder–Mead algorithm is based on a simplex, which is a
geometric figure defined by a set of = + 1 points in the design space of =
variables, - =

{
G(0) , G(1) , . . . , G(=)

}
. Each point G(8) represents a design

(i.e., a full set of design variables). In two dimensions, the simplex
is a triangle, and in three dimensions, it becomes a tetrahedron (see
Fig. 7.2).

Each optimization iteration corresponds to a different simplex. The
algorithm modifies the simplex at each iteration using five simple
operations. The sequence of operations to be performed is chosen
based on the relative values of the objective function at each of the
points.

The first step of the simplex algorithm is to generate = + 1 points
based on an initial guess for the design variables. This could be done by
simply adding steps to each component of the initial point to generate
= new points. However, this will generate a simplex with different edge
lengths, and equal-length edges are preferable. Suppose we want the
length of all sides to be ; and that the first guess is G(0). The remaining
points of the simplex,

{
G(1) , . . . , G(=)

}
, can be computed by

G(8) = G(0) + B(8) , (7.1)

https://dx.doi.org/10.1093/comjnl/7.4.308
https://dx.doi.org/10.1093/comjnl/7.4.308

7 Gradient-Free Optimization 288

G(2)
G(0)

G(1)

Fig. 7.3 Starting simplex for = = 2.

where B(8) is a vector whose components 9 are defined by

B(8)9 =




;
=
√

2

(√
= + 1 − 1

)
+ ;√

2
, if 9 = 8

;
=
√

2

(√
= + 1 − 1

)
, if 9 ≠ 8 .

(7.2)

Figure 7.3 shows a starting simplex for a two-dimensional problem.
At any given iteration, the objective 5 is evaluated for every point,

and the points are ordered based on the respective values of 5 , from
the lowest to the highest. Thus, in the ordered list of simplex points
- =

{
G(0) , G(1) , . . . , G(=−1) , G(=)

}
, the best point is G(0), and the worst one

is G(=).
The Nelder–Mead algorithm performs five main operations on the

simplex to create anewone: reflection, expansion, outside contraction, inside
contraction, and shrinking, as shown in Fig. 7.4. Except for shrinking,
each of these operations generates a new point,

G = G2 +

(
G2 − G(=)

)
, (7.3)

where
 is a scalar, and G2 is the centroid of all the points except for the
worst one, that is,

G2 =
1
=

=−1∑
8=0

G(8) . (7.4)

This generates a new point along the line that connects the worst point,
G(=), and the centroid of the remaining points, G2 . This direction can be
seen as a possible descent direction.

Each iteration aims to replace the worst point with a better one
to form a new simplex. Each iteration always starts with reflection,
which generates a new point using Eq. 7.3 with
 = 1, as shown in
Fig. 7.4. If the reflected point is better than the best point, then the
“search direction” was a good one, and we go further by performing an
expansion using Eq. 7.3 with
 = 2. If the reflected point is between the
second-worst and the worst point, then the direction was not great, but
it improved somewhat. In this case, we perform an outside contraction
(
 = 1/2). If the reflected point is worse than our worst point, we try
an inside contraction instead (
 = −1/2). Shrinking is a last-resort
operation that we can perform when nothing along the line connecting
G(=) and G2 produces a better point. This operation consists of reducing
the size of the simplex by moving all the points closer to the best point,

G(8) = G(0) + �
(
G(8) − G(0)

)
for 8 = 1, . . . , = , (7.5)

where � = 0.5.

7 Gradient-Free Optimization 289

Initial simplex

G2

Reflection (
 = 1) Expansion (
 = 2)

Outside contraction
(
 = 0.5)

Inside contraction
(
 = −0.5)

Shrink
Fig. 7.4 Nelder–Mead algorithm op-
erations for = = 2.

Algorithm 7.1 details how a new simplex is obtained for each
iteration. In each iteration, the focus is on replacing the worst point
with a better one instead of improving the best. The corresponding
flowchart is shown in Fig. 7.5.

The cost for each iteration is one function evaluation if the reflection
is accepted, two function evaluations if an expansion or contraction is
performed, and = + 2 evaluations if the iteration results in shrinking.
Although we could parallelize the = evaluations when shrinking, it
would not be worthwhile because the other operations are sequential.

There several ways to quantify the convergence of the simplex
method. One straightforward way is to use the size of simplex, that is,

ΔG =
=−1∑
8=0

G(8) − G(=)

 , (7.6)

and specify that it must be less than a certain tolerance. Another
measure of convergence we can use is the standard deviation of the
function value,

Δ 5 =

√√√√ =∑
8=0

(
5 (8) − 5̄

)2

= + 1 , (7.7)

where 5̄ is the mean of the = + 1 function values. Another possible
convergence criterion is the difference between the best and worst value
in the simplex. Nelder–Mead is known for occasionally converging to
non-stationary points, so you should check the result if possible.

7 Gradient-Free Optimization 290

Algorithm 7.1 Nelder–Mead algorithm
Inputs:
G(0): Starting point
�G : Simplex size tolerances
� 5 : Function value standard deviation tolerances

Outputs:
G∗: Optimal point

for 9 = 1 to = do Create a simplex with edge length ;
G(9) = G(0) + B(9) B(9) given by Eq. 7.2

end for

while ΔG > �G or Δ 5 > � 5 do Simplex size (Eq. 7.6) and standard deviation (Eq. 7.7)
Sort

{
G(0) , . . . , G(=−1) , G(=)

}
Order from the lowest (best) to the highest 5 (G(9))

G2 = 1
=
∑=−1
8=0 G

(8) The centroid excluding the worst point G(=) (Eq. 7.4)
GA = G2 +

(
G2 − G(=)

)
Reflection, Eq. 7.3 with
 = 1

if 5 (GA) < 5 (G(0)) then Is reflected point is better than the best?
G4 = G2 + 2

(
G2 − G(=)

)
Expansion, Eq. 7.3 with
 = 2

if 5 (G4) < 5 (G(0)) then Is expanded point better than the best?
G(=) = G4 Accept expansion and replace worst point

else
G(=) = GA Accept reflection

end if
else if 5 (GA) ≤ 5 (G(=−1)) then Is reflected better than second worst?

G(=) = GA Accept reflected point
else

if 5 (GA) > 5 (G(=)) then Is reflected point worse than the worst?
G82 = G2 − 0.5

(
G2 − G(=)

)
Inside contraction, Eq. 7.3 with
 = −0.5

if 5 (G82) < 5 (G(=)) then Inside contraction better than worst?
G(=) = G82 Accept inside contraction

else
for 9 = 1 to = do

G(9) = G(0) + 0.5
(
G(9) − G(0)

)
Shrink, Eq. 7.5 with � = 0.5

end for
end if

else
G>2 = G2 + 0.5

(
G2 − G(=)

)
Outside contraction, Eq. 7.3 with
 = 0.5

if 5 (G>2) < 5 (GA) then Is contraction better than reflection?
G(=) = G>2 Accept outside contraction

else
for 9 = 1 to = do

G(9) = G(0) + 0.5
(
G(9) − G(0)

)
Shrink, Eq. 7.5 with � = 0.5

7 Gradient-Free Optimization 291

end for
end if

end if
end if

end while

G(=) = G4

G(=) = GA

G(=) = G82

G(=) = G>2

G2

5 (GA) ≤ 5 (G(0))

5 (GA) ≤ 5 (G(=−1))

5 (GA) ≥ 5 (G(=))

else

5 (G4) ≤ 5 (G(0))

else

5 (G82) ≤ 5 (G(=))

else

5 (G>2) ≤ 5 (GA)

else

: = : + 1

Fig. 7.5 Flowchart of Nelder–Mead
(Alg. 7.1).

Like most direct-search methods, Nelder–Mead cannot directly
handle constraints. One approach to handling constraints would be to
use a penaltymethod (discussed in Section 5.4) to formanunconstrained
problem. In this case, the penalty does not need not be differentiable,
so a linear penalty method would suffice.

Example 7.1 Nelder–Mead algorithm applied to the bean function
Figure 7.6 shows the sequence of simplices that results when minimizing

the bean function using a Nelder–Mead simplex. The initial simplex on the
upper left is equilateral. The first iteration is an expansion, followed by an
inside contraction, another reflection, and an inside contraction before the
shrinking. The simplices then shrink dramatically in size, slowly converging to
the minimum.

Using a convergence tolerance of 10−6 in the difference between 5best and
5worst, the problem took 68 function evaluations.

7 Gradient-Free Optimization 292

G0

G∗

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

Fig. 7.6 Sequence of simplices that
minimize the bean function.

G:

Δ:

Fig. 7.7 Local mesh for a two-
dimensional coordinate search at it-
eration :.
∗Section 5.2 discusses the concept of span
and polyhedral cones; Fig. 5.6 is particu-
larly relevant.

7.4 Generalized Pattern Search
GPS builds upon the ideas of a coordinate search algorithm. In co-
ordinate search, we evaluate points along a mesh aligned with the
coordinate directions, move toward better points, and shrink the mesh
when we find no improvement nearby. Consider a two-dimensional
coordinate search for an unconstrained problem. At a given point
G: , we evaluate points that are a distance Δ: away in all coordinate
directions, as shown in Fig. 7.7. If the objective function improves at any
of these points (four points in this case), we recenter with G:+1 at the
most improved point, keep the mesh size the same at Δ:+1 = Δ: , and
start with the next iteration. Alternatively, if none of the points offers an
improvement, we keep the same center (G:+1 = G:) and shrink the mesh
to Δ:+1 < Δ: . This process repeats until it meets some convergence
criteria.

We now explore various ways in which GPS improves coordinate
search. Coordinate search moves along coordinate directions, but
this is not necessarily desirable. Instead, the GPS search directions
only need to form a positive spanning set. Given a set of directions
� = {31 , 32 , . . . , 3=3 }, the set � is a positive spanning set if the vectors
are linearly independent and a nonnegative linear combination of these
vectors spans the =-dimensional space.∗ Coordinate vectors fulfill this
requirement, but there is an infinite number of options. The vectors 3
are referred to as positive spanning directions. We only consider linear
combinations with positive multipliers, so in two dimensions, the unit
coordinate vectors 4̂1 and 4̂2 are not sufficient to span two-dimensional
space; however, 4̂1 , 4̂2 ,−4̂1 , and −4̂2 are sufficient.

7 Gradient-Free Optimization 293

Fig. 7.8 A maximal set of positive
spanning vectors in two dimensions
(left) and a minimal set (right).

For a given dimension =, the largest number of vectors that could
be used while remaining linearly independent (known as the maximal
set) is 2=. Conversely, the minimum number of possible vectors needed
to span the space (known as the minimal set) is = + 1. These sizes are
necessary but not sufficient conditions.

Somealgorithms randomlygenerate apositive spanning set,whereas
other algorithms require the user to specify a set based on knowledge
of the problem. The positive spanning set need not be fixed throughout
the optimization. A common default for a maximal set is the set of
coordinate directions ±4̂8 . In three dimensions, this would be:

� = {31 , . . . , 36}, where




31 = [1, 0, 0]
32 = [0, 1, 0]
33 = [0, 0, 1]
34 = [−1, 0, 0]
35 = [0,−1, 0]
36 = [0, 0,−1]

. (7.8)

A potential default minimal set is the positive coordinate directions +4̂8
and a vector filled with −1 (or more generally, the negative sum of the
other vectors). As an example in three dimensions:

� = {31 , . . . , 34}, where




31 = [1, 0, 0]
32 = [0, 1, 0]
33 = [0, 0, 1]
34 = [−1,−1,−1]

. (7.9)

Figure 7.8 shows an example maximal set (four vectors) and minimal
set (three vectors) for a two-dimensional problem.

These direction vectors are then used to create a mesh. Given a
current center point G: , which is the best point found so far, and a mesh
size Δ: , the mesh is created as follows:

G: + Δ:3 for all 3 ∈ � . (7.10)

For example, in two dimensions, if the current point is G: = [1, 1], the
mesh size is Δ: = 0.5, and we use the coordinate directions for 3, then
the mesh points would be {[1, 1.5], [1, 0.5], [0.5, 1], [1.5, 1]}.

The evaluation of points in the mesh is called polling or a poll. In
the coordinate search example, we evaluated every point in the mesh,
which is usually inefficient. More typically, we use opportunistic polling,
which terminates polling at the first point that offers an improvement.

7 Gradient-Free Optimization 294

G:

5 = 10.2 5 = 12.4

5 = 8.6

Fig. 7.9 A two-dimensional example
of opportunistic polling with 31 =
[1, 0], 32 = [0, 1], 33 = [−1, 0], 34 =
[0,−1]. An improvement in 5 was
found at 32, so we do not evaluate 33
and 34 (shown with a faded color).

Δ:

Fig. 7.10 Meshing strategy extended
across the domain. The same direc-
tions (and potentially spacing) are
repeated at each mesh point, as indi-
cated by the lighter arrows through-
out the entire domain.

Figure 7.9 shows a two-dimensional example where the order of eval-
uation is 31 = [1, 0], 32 = [0, 1], 33 = [−1, 0], 34 = [0,−1]. Because we
found an improvement at 32, we do not continue evaluating 33 and 34.
Opportunistic polling may not yield the best point in the mesh, but the
improvement in efficiency is usually worth the trade-off. Some algo-
rithms add a user option for utilizing a full poll, in which case all points
in the mesh are evaluated. If more than one point offers a reduction,
the best one is accepted. Another approach that is sometimes used is
called dynamic polling. In this approach, a successful poll reorders the
direction vectors so that the direction that was successful last time is
checked first in the next poll.

GPS consists of two phases: a search phase and a poll phase. The
search phase is global, whereas the poll phase is local. The search phase
is intended to be flexible and is not specified by the GPS algorithm.
Common options for the search phase include the following:

• No search phase.
• Amesh search, similar to polling but with large spacing across

the domain.
• An alternative solver, such as Nelder–Mead or a genetic algorithm.
• A surrogate model, which could then use any number of solvers

that include gradient-basedmethods. This approach is often used
when the function is expensive, and a lower-fidelity surrogate
can guide the optimizer to promising regions of the larger design
space.

• Random evaluation using a space-fillingmethod (see Section 10.2).

The type of search can change throughout the optimization. Like the
polling phase, the goal of the search phase is to find a better point
(i.e., 5 (G:+1) < 5 (G:)) but within a broader domain. We begin with a
search at every iteration. If the search fails to produce a better point, we
continue with a poll. If a better point is identified in either phase, the
iteration ends, and we begin a new search. Optionally, a successful poll
could be followed by another poll. Thus, at each iteration, we might
perform a search and a poll, just a search, or just a poll.

We describe one option for a search procedure based on the same
mesh ideas as the polling step. The concept is to extend the mesh
throughout the entire domain, as shown in Fig. 7.10. In this example, the
mesh size Δ: is shared between the search and poll phases. However, it
is usually more effective if these sizes are independent. Mathematically,
we can define the global mesh as the set

� = {G: + Δ:�I for all I8 ∈ Z+}, (7.11)

7 Gradient-Free Optimization 295

where � is a matrix whose columns contain the basis vectors 3. The
vector I consists of nonnegative integers, and we consider all possible
combinations of integers that fall within the bounds of the domain.

We choose a fixed number of search evaluation points and randomly
select points from the global mesh for the search strategy. If improve-
ment is found among that set, then we recenter G:+1 at this improved
point, grow the mesh (Δ:+1 > Δ:), and end the iteration (and then
restart the search). A simple search phase along these lines is described
in Alg. 7.2 and the main GPS algorithm is shown in Alg. 7.3.

Algorithm 7.2 An example search phase for GPS
Inputs:
G: : Center point
Δ: : Mesh size
G, G: Lower and upper bounds
�: Column vectors representing positive spanning set
=B : Number of search points
5: : The function previously evaluated at 5 (G:)

Outputs:
success: True if successful in finding improved point
G:+1: New center point
5:+1: Corresponding function value

success = false
G:+1 = G:
5:+1 = 5:
Construct global mesh �, using directions �, mesh size Δ: , and bounds G, G
for 8 = 1 to =B do

Randomly select B ∈ �
Evaluate 5B = 5 (B)
if 5B < 5: then

G:+1 = B
5:+1 = 5B
success = true
break

end if
end for

The convergence of the GPS algorithm is often determined by a
user-specified maximum number of iterations. However, other criteria
are also used, such as a threshold on mesh size or a threshold on the
improvement in the function value over previous iterations.

7 Gradient-Free Optimization 296

Algorithm 7.3 Generalized Pattern Search
Inputs:
G0: Starting point
G, G: Lower and upper bounds
Δ0: Starting mesh size
=B : Number of search points
:max: Maximum number of iterations

Outputs:
G∗: Best point
5 ∗: Corresponding function value

� = [� ,−�]where � is (= × =) A coordinate aligned maximal positive spanning set
(for example)

: = 0
G: = G0
Evaluate 5: = 5 (G:)
while : < :max do Or other termination criteria

search_success, G:+1, 5:+1 = search(G: ,Δ: , 5:) Any search strategy
if search_success then

Δ:+1 = min(2Δ: ,Δmax) Or some other growth rate
: = : + 1
continue Move on to next iteration

else Poll
poll_success = false
for 9 = 1 to =3 do

B = G: + Δ:39 Where 39 is a column of �
Evaluate 5B = 5 (B)
if 5B < 5: then

G:+1 = B
5:+1 = 5B
Δ:+1 = Δ:
k = k + 1
poll_success = true
break

end if
end for

end if
if not poll_success then

G:+1 = G:
5:+1 = 5:
Δ:+1 = 0.5Δ: Shrink

end if
k = k + 1

end while

7 Gradient-Free Optimization 297

Fig. 7.11Mesh direction changed dur-
ing optimization to align with linear
constraints when close to the con-
straint.

141. Audet and J. E. Dennis, Mesh adap-
tive direct search algorithms for constrained
optimization, 2006.

GPS can handle linear and nonlinear constraints. For linear con-
straints, one effective strategy is to change the positive spanning di-
rections so that they align with any linear constraints that are nearby
(Fig. 7.11). For nonlinear constraints, penalty approaches (Section 5.4)
are applicable, although the filter method (Section 5.5.3) is another
effective approach.

Example 7.2 Minimization of a multimodal function with GPS
In this example, we optimize the Jones function (Appendix D.1.4). We start

at G = [0, 0] with an initial mesh size of Δ = 0.1. We evaluate two search points
at each iteration and run for 12 iterations. The iterations are plotted in Fig. 7.12.

G0

−2 0 2 4
−2

−1

0

1

2

3

G1

G2

: = 0

−2 0 2 4
−2

−1

0

1

2

3

G1

G2

: = 2

−2 0 2 4
−2

−1

0

1

2

3

G1

G2

: = 4

−2 0 2 4
−2

−1

0

1

2

3

G1

G2

: = 6

−2 0 2 4
−2

−1

0

1

2

3

G1

G2

: = 8

−2 0 2 4
−2

−1

0

1

2

3

G1

G2

: = 12

Fig. 7.12 Convergence history of a
GPS algorithm on the multimodal
Jones function. Faded points indicate
past iterations.

MADS is a well-known extension of GPS. The main difference
between these two methods is in the number of possibilities for polling
directions.141 In GPS, the polling directions are relatively restrictive
(e.g., left side of Fig. 7.13 for a minimal basis in two dimensions). MADS
adds a new sizing parameter called the poll size parameter (Δ?:) that can
be varied independently from the existing mesh size parameter (Δ<:).
These sizes are constrained by Δ?: ≥ Δ<: so the mesh sizing can become

https://dx.doi.org/10.1137/040603371
https://dx.doi.org/10.1137/040603371
https://dx.doi.org/10.1137/040603371

7 Gradient-Free Optimization 298

†TheNOMAD software is an open-source
implementation of MADS.142

142. Le Digabel, Algorithm 909: NOMAD:
Nonlinear optimization with the MADS
algorithm, 2011.

∗Jones et al.52 developed thismethod, aim-
ing for a global search that did not rely on
tunable parameters (e.g., population size
in genetic algorithms).53

52. Jones et al., Lipschitzian optimization
without the Lipschitz constant, 1993.

53. Jones and Martins, The DIRECT
algorithm—25 years later, 2021.

143. Jones, Direct Global Optimization
Algorithm, 2009.

smaller while allowing the poll size (which dictates the maximum
magnitude of the step) to remain large. This provides a much denser
set of options in poll directions (e.g., the grid points on the right panel
of Fig. 7.13). MADS randomly chooses the polling directions from this
much larger set of possibilities while maintaining a positive spanning
set.†

GPS

Δ<: Δ?:

MADS

Fig. 7.13 Typical GPS spanning di-
rections (left). In contrast, MADS
randomly selects from many poten-
tial spanning directions by utilizing
a finer mesh (right).

7.5 DIRECT Algorithm
The DIRECT algorithm is different from the other gradient-free opti-
mization algorithms in this chapter in that it is based on mathematical
arguments.∗ This is a deterministic method guaranteed to converge
to the global optimum under conditions that are not too restrictive
(although itmight require a prohibitive number of function evaluations).
DIRECT has been extended to handle constraints without relying on
penalty or filtering methods, but here we only explain the algorithm
for unconstrained problems.143

One way to ensure that we find the global optimum within a finite
design space is by dividing this space into a regular rectangular grid
and evaluating every point in this grid. This is called an exhaustive search,
and the precision of the minimum depends on how fine the grid is. The
cost of this brute-force strategy is high and goes up exponentially with
the number of design variables.

TheDIRECTmethod relies on a grid, but it uses an adaptivemeshing
scheme that dramatically reduces the cost. It starts with a single =-
dimensional hypercube that spans the whole design space—like many
other gradient-freemethods, DIRECT requires upper and lower bounds
on all the design variables. Each iteration divides this hypercube into
smaller ones and evaluates the objective function at the center of each
of these. At each iteration, the algorithm only divides rectangles
determined to be potentially optimal. The fundamental strategy in the

https://dx.doi.org/10.1145/1916461.1916468
https://dx.doi.org/10.1145/1916461.1916468
https://dx.doi.org/10.1145/1916461.1916468
https://dx.doi.org/10.1007/BF00941892
https://dx.doi.org/10.1007/BF00941892
https://dx.doi.org/10.1007/s10898-020-00952-6
https://dx.doi.org/10.1007/s10898-020-00952-6
https://dx.doi.org/10.1007/978-0-387-74759-0_128
https://dx.doi.org/10.1007/978-0-387-74759-0_128

7 Gradient-Free Optimization 299

DIRECT method is how it determines this subset of potentially optimal
rectangles, which is based on the mathematical concept of Lipschitz
continuity.

We start by explaining Lipschitz continuity and then describe
an algorithm for finding the global minimum of a one-dimensional
function using this concept—Shubert’s algorithm. Although Shubert’s
algorithm is not practical in general, it will help us understand the
mathematical rationale for the DIRECT algorithm. Then we explain the
DIRECT algorithm for one-dimensional functions before generalizing
it for = dimensions.

Lipschitz Constant
Consider the single-variable function 5 (G) shown in Fig. 7.14. For a
trial point G∗, we can draw a cone with slope ! by drawing the lines

5+(G) = 5 (G∗) + !(G − G∗), (7.12)
5−(G) = 5 (G∗) − !(G − G∗), (7.13)

to the left and right, respectively. We show this cone in Fig. 7.14 (left),
as well as cones corresponding to other values of :.

!

1

5 (G∗)

G∗

5+5−

G

5
!

1

G∗ G

5

Fig. 7.14 From a given trial point G∗,
we can draw a conewith slope ! (left).
For a function to be Lipschitz contin-
uous, we need all cones with slope !
to lie under the function for all points
in the domain (right).

A function 5 is said to be Lipschitz continuous if there is a cone slope
! such that the cones for all possible trial points in the domain remain
under the function. This means that there is a positive constant : such
that �� 5 (G) − 5 (G∗)�� ≤ ! |G − G∗ | , for all G, G∗ ∈ � , (7.14)
where � is the function domain. Graphically, this condition means
that we can draw a cone with slope ! from any trial point evaluation
5 (G∗) such that the function is always bounded by the cone, as shown
in Fig. 7.14 (right). Any : that satisfies Eq. 7.14 is a Lipschitz constant for
the corresponding function.

Shubert’s Algorithm
If a Lipschitz constant for a single-variable function is known, Shubert’s
algorithm can find the global minimum of that function. Because the

7 Gradient-Free Optimization 300

Lipschitz constant is not available in the general case, the DIRECT
algorithm is designed to not require this constant. However, we explain
Shubert’s algorithm first because it provides some of the basic concepts
used in the DIRECT algorithm.

Shubert’s algorithm starts with a domain within which we want to
find the global minimum—[0, 1] in Fig. 7.15. Using the property of the
Lipschitz constant ! defined in Eq. 7.14, we know that the function is
always above a cone of slope ! evaluated at any point in the domain.

G

5

G10 1

: = 0

G

5

G1G2 G3

: = 1

G

5

G3 G4G5

: = 2

G

5

G4

: = 3

Fig. 7.15 Shubert’s algorithm requires
an initial domain and a valid Lips-
chitz constant and then increases the
lower bound of the global minimum
with each successive iteration.

Shubert’s algorithm starts by sampling the endpoints of the interval
within which we want to find the global minimum ([0, 1] in Fig. 7.15).
We start by establishing a first lower bound on the global minimum by
finding the cone’s intersection (G1 in Fig. 7.15, : = 0) for the extremes of
the domain. We evaluate the function at G1 and can now draw a cone
about this point to find two more intersections (G2 and G3). Because
these two points always intersect at the same objective lower bound
value, they both need to be evaluated. Each subsequent iteration of
Shubert’s algorithm adds two new points to either side of the current
point. These two points are evaluated, and the lower bounding function

7 Gradient-Free Optimization 301

is updated with the resulting new cones. We then iterate by finding the
two points that minimize the new lower bounding function, evaluating
the function at these points, updating the lower bounding function,
and so on.

The lowest bound on the function increases at each iteration and
ultimately converges to the global minimum. At the same time, the
segments in G decrease in size. The lower bound can switch from
distinct regions as the lower bound in one region increases beyond the
lower bound in another region.

The two significant shortcomings of Shubert’s algorithm are that
(1) a Lipschitz constant is usually not available for a general function,
and (2) it is not easily extended to = dimensions. The DIRECT algorithm
addresses these two shortcomings.

One-Dimensional DIRECT
Before explaining the =-dimensional DIRECT algorithm, we introduce
the one-dimensional version based on principles similar to those of the
Shubert algorithm.

+! −!

5 (2) − 1
2!(1 − 0)

3 = 1
2 (1 − 0)

0 12 = 1
2 (0 + 1)
G

5

0 12 = 1
2 (0 + 1)
G

5

Fig. 7.16 The DIRECT algorithm eval-
uates themiddle point (left), and each
successive iteration trisects the seg-
ments that have the greatest potential
(right).

Like Shubert’s method, DIRECT starts with the domain [0, 1]. How-
ever, instead of sampling the endpoints 0 and 1, it samples themidpoint.
Consider the closed domain [0, 1] shown in Fig. 7.16 (left). For each
segment, we evaluate the objective function at the segment’s midpoint.
In the first segment, which spans the whole domain, the midpoint is
20 = (0 + 1)/2. Assuming some value of !, which is not known and
that we will not need, the lower bound on the minimum would be
5 (2) − !(1 − 0)/2.

We want to increase this lower bound on the function minimum
by dividing this segment further. To do this in a regular way that
reuses previously evaluated points and can be repeated indefinitely,

7 Gradient-Free Optimization 302

we divide it into three segments, as shown in Fig. 7.16 (right). Now we
have increased the lower bound on the minimum. Unlike the Shubert
algorithm, the lower bound is a discontinuous function across the
segments, as shown in Fig. 7.16 (right).

Instead of continuing to divide every segment into three other
segments, we only divide segments selected according to a potentially
optimal criterion. To better understand this criterion, consider a set of
segments [08 , 18] at a given DIRECT iteration, where segment 8 has a
half-length 38 = (18 − 08)/2 and a function value 5 (28) evaluated at the
segment center 28 = (08 + 18)/2. If we plot 5 (28) versus 38 for a set of
segments, we get the pattern shown in Fig. 7.17.

!

0 3 9

5 (2 9)

5min
5min − �| 5min |

3

5 (2)

Fig. 7.17 Potentially optimal seg-
ments in the DIRECT algorithm are
identified by the lower convex hull of
this plot.

The overall rationale for the potentially optimal criterion is that two
metrics quantify this potential: the size of the segment and the function
value at the center of the segment. The larger the segment is, the greater
the potential for that segment to contain the global minimum. The
lower the function value, the greater that potential is as well. For a set
of segments of the same size, we know that the one with the lowest
function value has the best potential and should be selected. If two
segments have the same function value and different sizes, we should
select the one with the largest size. For a general set of segments with
various sizes and value combinations, theremight bemultiple segments
that can be considered potentially optimal.

We identify potentially optimal segments as follows. If we draw a
line with a slope corresponding to a Lipschitz constant ! from any point
in Fig. 7.17, the intersection of this line with the vertical axis is a bound
on the objective function for the corresponding segment. Therefore,
the lowest bound for a given ! can be found by drawing a line through
the point that achieves the lowest intersection.

However, we do not know !, and we do not want to assume a value
because we do not want to bias the search. If !were high, it would favor
dividing the larger segments. Low values of ! would result in dividing
the smaller segments. The DIRECT method hinges on considering all

7 Gradient-Free Optimization 303

144. Jarvis, On the identification of the
convex hull of a finite set of points in the
plane, 1973.

possible values of !, effectively eliminating the need for this constant.
To eliminate the dependence on !, we select all the points for which

there is a line with slope ! that does not go above any other point. This
corresponds to selecting the points that form a lower convex hull, as
shown by the piecewise linear function in Fig. 7.17. This establishes a
lower bound on the function for each segment size.

Mathematically, a segment 9 in the set of current segments (is said
to be potentially optimal if there is a ! ≥ 0 such that

5 (2 9) − !3 9 ≤ 5 (28) − !38 for all 8 ∈ ((7.15)
5 (2 9) − !3 9 ≤ 5min − �

�� 5min
�� , (7.16)

where 5min is the best current objective function value, and � is a small
positive parameter. The first condition corresponds to finding the
points in the lower convex hull mentioned previously.

The second condition in Eq. 7.16 ensures that the potential minimum
is better than the lowest function value found so far by at least a small
amount. This prevents the algorithm from becoming too local, wasting
function evaluations in search of smaller function improvements. The
parameter � balances the search between local and global. A typical
value is � = 10−4, and its range is usually such that 10−7 ≤ � ≤ 10−2.

There are efficient algorithms for finding the convex hull of an
arbitrary set of points in two dimensions, such as the Jarvis march.144
These algorithms are more than we need because we only require the
lower part of the convex hull, so the algorithms can be simplified for
our purposes.

As in the Shubert algorithm, the division might switch from one
part of the domain to another, depending on the new function values.
Comparedwith the Shubert algorithm, theDIRECT algorithmproduces
a discontinuous lower bound on the function values, as shown in
Fig. 7.18.

0 12
G

5

Fig. 7.18 The lower bound for the
DIRECT method is discontinuous at
the segment boundaries.

https://dx.doi.org/10.1016/0020-0190(73)90020-3
https://dx.doi.org/10.1016/0020-0190(73)90020-3
https://dx.doi.org/10.1016/0020-0190(73)90020-3

7 Gradient-Free Optimization 304

†In this chapter, we present an improved
version of DIRECT.143

143. Jones, Direct Global Optimization
Algorithm, 2009.

‡Alg. 7.4 follows the revised version of DI-
RECT,143 which differs from the original
version.145 The original version trisected
all the long sides of the selected rectangles
instead of just one side.

143. Jones, Direct Global Optimization
Algorithm, 2009.

145. Jones et al., Efficient global optimiza-
tion of expensive black-box functions, 1998.

DIRECT in = Dimensions
The =-dimensional DIRECT algorithm is similar to the one-dimensional
version but becomes more complex.† The main difference is that we
deal with hyperrectangles instead of segments. A hyperrectangle can
be defined by its center-point position 2 in =-dimensional space and a
half-length in each direction 8, �48 , as shown in Fig. 7.19. The DIRECT
algorithm assumes that the initial dimensions are normalized so that
we start with a hypercube.

d

δe1

δe2

δe3
c

Fig. 7.19 Hyperrectangle in three di-
mensions, where 3 is the maximum
distance between the center and the
vertices, and �48 is the half-length in
each direction 8.

To identify the potentially optimal rectangles at a given iteration, we
use exactly the same conditions in Eqs. 7.15 and 7.16, but 28 is now the
center of the hyperrectangle, and 38 is the maximum distance from the
center to a vertex. The explanation illustrated in Fig. 7.17 still applies
in the =-dimensional case and still involves simply finding the lower
convex hull of a set of points with different combinations of 5 and 3.

The main complication introduced in the =-dimensional case is
the division (trisection) of a selected hyperrectangle. The question is
which directions should be divided first. The logic to handle this in
the DIRECT algorithm is to prioritize reducing the dimensions with
the maximum length, ensuring that hyperrectangles do not deviate too
much from the proportions of a hypercube. First, we select the set of the
longest dimensions for division (there are often multiple dimensions
with the same length). Among this set of the longest dimensions, we
select the direction that has been divided the least over thewhole history
of the search. If there are still multiple dimensions in the selection, we
simply select the one with the lowest index. Algorithm 7.4 details the
full algorithm.‡

Figure 7.20 shows the first three iterations for a two-dimensional ex-
ample and the corresponding visualization of the conditions expressed
in Eqs. 7.15 and 7.16. We start with a square that contains the whole
domain and evaluate the center point. The value of this point is plotted
on the 5 –3 plot on the far right.

The first iteration trisects the starting square along the first dimen-
sion and evaluates the two new points. The values for these three points

https://dx.doi.org/10.1007/978-0-387-74759-0_128
https://dx.doi.org/10.1007/978-0-387-74759-0_128
https://dx.doi.org/10.1007/978-0-387-74759-0_128
https://dx.doi.org/10.1007/978-0-387-74759-0_128
https://dx.doi.org/10.1023/A:1008306431147
https://dx.doi.org/10.1023/A:1008306431147

7 Gradient-Free Optimization 305

Iteration Select rectangles Trisect and sample

1

2

3

3

5

3

5

3

5 Fig. 7.20 DIRECT iterations for two-
dimensional case (left) and corre-
sponding identification of potentially
optimal rectangles (right).

are plotted in the second column from the right in the 5 –3 plot, where
the center point is reused, as indicated by the arrow and the matching
color. At this iteration, we have two points that define the convex hull.
In the second iteration, we have three rectangles of the same size, so
we divide the one with the lowest value and evaluate the centers of
the two new rectangles (which are squares in this case). We now have
another column of points in the 5 –3 plot corresponding to a smaller 3
and an additional point that defines the lower convex hull. Because the
convex hull now has two points, we trisect two different rectangles in
the third iteration.

Algorithm 7.4 DIRECT in =-dimensions
Inputs:
G, G: Lower and upper bounds

Outputs:
G∗: Optimal point

: = 0 Initialize iteration counter
Normalize bounded space to hypercube and evaluate its center, 20
5min = 5 (20) Stores the minimum function value so far
Initialize C(8) = 0 for 8 = 1, . . . , = Counts the times dimension 8 has been trisected
while not converged do

7 Gradient-Free Optimization 306

10−2 10−1 100
−20

−10

0

10

20

30

40

3

5

Fig. 7.21 Potentially optimal rectan-
gles for the DIRECT iterations shown
in Fig. 7.22.

∗ThefirstGAsoftwarewaswritten in 1954,
followed by other seminal work.146 Ini-
tially, these GAs were not developed to
perform optimization but rather to model
the evolutionary process. GAs were even-
tually applied to optimization.147

146. Barricelli, Esempi numerici di processi
di evoluzione, 1954.

147. Jong, An analysis of the behavior of a
class of genetic adaptive systems, 1975.

Find set (of potentially optimal hyperrectangles
for each hyperrectangle in (do

Find the set � of dimensions with maximum side length
Select 8 in � with the lowest C(8), breaking ties in favor of lower 8
Divide the rectangle into thirds along dimension 8
C(8) = C(8) + 1
Evaluate the center points of the outer two hyperrectangles
Update 5min based on these evaluations

end for
: = : + 1 Increment iteration counter

end while

Example 7.3 Minimization of multimodal function with DIRECT
Consider the multimodal Jones function (Appendix D.1.4). Applying the

DIRECT method to this function, we get the 5 -3 plot shown in Fig. 7.21, where
the final points and convex hull are highlighted. The sequence of rectangles
is shown in Fig. 7.22. The algorithm converges to the global minimum after
dividing the rectangles around the other local minima a few times.

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

G1

G2

Fig. 7.22 The DIRECT method
quickly determines the region with
the global minimum of the Jones
function after briefly exploring the
regions with other minima.

7.6 Genetic Algorithms
Genetic algorithms (GAs) are the most well-known and widely used
type of evolutionary algorithm. They were also among the earliest to
have been developed.∗ Like many evolutionary algorithms, GAs are
population based. The optimization starts with a set of design points (the

7 Gradient-Free Optimization 307

Selection

Crossover

Mutation

Population %:

Parents

Offspring

Population %:+1

Fig. 7.24 GA iteration steps.

population) rather than a single starting point, and each optimization
iteration updates this set in some way. Each GA iteration is called
a generation, each of which has a population with =? points. Each
point is represented by a chromosome, which contains the values for
all the design variables, as shown in Fig. 7.23. Each design variable is
represented by a gene. As we will see later, there are different ways for
genes to represent the design variables.

Population

G(0)

G(1)

G(=?)

Gene Chromosome

G1 G2 G=. . .

...

Fig. 7.23 Each GA iteration involves
a population of design points, where
each design is represented by a chro-
mosome, and each design variable is
represented by a gene.

GAs evolve the population using an algorithm inspired by biological
reproduction and evolution using three main steps: (1) selection, (2)
crossover, and (3) mutation. Selection is based on natural selection,
where members of the population that acquire favorable adaptations
are more likely to survive longer and contribute more to the population
gene pool. Crossover is inspired by chromosomal crossover, which is
the exchange of genetic material between chromosomes during sexual
reproduction. Mutationmimics geneticmutation, which is a permanent
change in the gene sequence that occurs naturally.

Algorithm 7.5 and Fig. 7.24 show how these three steps perform
optimization. Although most GAs follow this general procedure, there
is a great degree of flexibility in how the steps are performed, leading
to many variations in GAs. For example, there is no single method
specified for the generation of the initial population, and the size of
that population varies. Similarly, there are many possible methods
for selecting the parents, generating the offspring, and selecting the
survivors. Here, the new population (%:+1) is formed exclusively by
the offspring generated from the crossover. However, some GAs add
an extra selection process that selects a surviving population of size =?
among the population of parents and offspring.

In addition to the flexibility in the various operations, GAs use differ-
ent methods for representing the design variables. The design variable
representation can be used to classify genetic algorithms into two broad
categories: binary-encoded and real-encoded genetic algorithms. Binary-
encoded algorithms use bits to represent the design variables, whereas
the real-encoded algorithms keep the same real value representation

7 Gradient-Free Optimization 308

†One popular binary-encoded genetic al-
gorithm implementation is the elitist
nondominated sorting genetic algorithm
(NSGA-II; discussed in Section 9.3.4 in
connection with multiobjective optimiza-
tion).148

148. Deb et al., A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II, 2002.

used in most other algorithms. The details of the operations in Alg. 7.5
depend on whether we are using one or the other representation, but
the principles remain the same. In the rest of this section, we describe a
particular way of performing these operations for each of the possible
design variable representations.

Algorithm 7.5 Genetic algorithm
Inputs:
G, G: Lower and upper bounds

Outputs:
G∗: Best point
5 ∗: Corresponding function value

: = 0
%: =

{
G(1) , G(2) , . . . , G(=?)

}
Generate initial population

while : < :max do
Compute 5 (G) for all G ∈ %: Evaluate objective function
Select =?/2 parent pairs from %: for crossover Selection
Generate a new population of =? offspring (%:+1) Crossover
Randomly mutate some points in the population Mutation
: = : + 1

end while

7.6.1 Binary-Encoded Genetic Algorithms
The original genetic algorithms were based on binary encoding because
they more naturally mimic chromosome encoding. Binary-coded GAs
are applicable to discrete or mixed-integer problems.† When using
binary encoding, we represent each variable as a binary number with
< bits. Each bit in the binary representation has a location, 8, and a
value, 18 (which is either 0 or 1). If we want to represent a real-valued
variable, we first need to consider a finite interval G ∈ [G, G], which we
can then divide into 2< − 1 intervals. The size of the interval is given by

ΔG =
G − G

2< − 1 . (7.17)

To have a more precise representation, we must use more bits.
When using binary-encoded GAs, we do not need to encode the

design variables because they are generated and manipulated directly
in the binary representation. Still, we do need to decode them be-
fore providing them to the evaluation function. To decode a binary

https://dx.doi.org/10.1109/4235.996017
https://dx.doi.org/10.1109/4235.996017

7 Gradient-Free Optimization 309

representation, we use

G = G +
<−1∑
8=0

1828ΔG . (7.18)

Example 7.4 Binary representation of a real number
Suppose we have a continuous design variable G that we want to represent

in the interval [−20, 80] using 12 bits. Then, we have 212 − 1 = 4, 095 intervals,
and using Eq. 7.17, we get ΔG ≈ 0.0244. This interval is the error in this
finite-precision representation. For the following sample binary representation:

8 1 2 3 4 5 6 7 8 9 10 11 12

18 0 0 0 1 0 1 1 0 0 0 0 1

We can use Eq. 7.18 to compute the equivalent real number, which turns out to
be G ≈ 32.55.

Initial Population
The first step in a genetic algorithm is to generate an initial set (pop-
ulation) of points. As a rule of thumb, the population size should
be approximately one order of magnitude larger than the number of
design variables, and this size should be tuned.

Onepopularway to choose the initial population is to do it at random.
Using binary encoding, we can assign each bit in the representation of
the design variables a 50 percent chance of being either 1 or 0. This
can be done by generating a random number 0 ≤ A ≤ 1 and setting the
bit to 0 if A ≤ 0.5 and 1 if A > 0.5. For a population of size =? , with =
design variables, where each variable is encoded using < bits, the total
number of bits that needs to be generated is =? × = × <.

To achieve better spread in a larger dimensional space, the sampling
methods described in Section 10.2 are generally more effective than
random populations.

Although we then need to evaluate the function across many points
(a population), these evaluations can be performed in parallel.

Selection
In this step, we choose points from the population for reproduction
in a subsequent step (called a mating pool). On average, it is desirable
to choose a mating pool that improves in fitness (thus mimicking the

7 Gradient-Free Optimization 310

concept of natural selection), but it is also essential to maintain diversity.
In total, we need to generate =?/2 pairs.

The simplest selection method is to randomly select two points from
the population until the requisite number of pairs is complete. This
approach is not particularly effective because there is no mechanism to
move the population toward points with better objective functions.

Tournament selection is a better method that randomly pairs up =?
points and selects the best point from each pair to join the mating pool.
The same pairing and selection process is repeated to create =?/2 more
points to complete a mating pool of =? points.

Example 7.5 Tournament selection process
Figure 7.25 illustrates the process with a small population. Each member of

the population ends up in the mating pool zero, one, or two times, with better
points more likely to appear in the pool. The best point in the population will
always end up in the pool twice, whereas the worst point in the population is
always eliminated.

12

10
10

7

15
7

2

6
2

2

15
2

6

7
6

10

12
10

Fig. 7.25 Tournament selection exam-
ple. The best point in each randomly
selectedpair ismoved into themating
pool.

Another standard method is roulette wheel selection. This concept
is patterned after a roulette wheel used in a casino. Better points
are allocated a larger sector on the roulette wheel to have a higher
probability of being selected.

First, the objective function for all the points in the population must
be converted to a fitness value because the roulette wheel needs all
positive values and is based on maximizing rather than minimizing. To
achieve that, we first perform the following conversion to fitness:

� =
− 58 + Δ�

max(1,Δ� − 5low) , (7.19)

7 Gradient-Free Optimization 311

0.25

G(1)

0.3125

G(2)

0.875

G(3)

0

G(4)

Fig. 7.26 Roulette wheel selection ex-
ample. Fitter members receive a pro-
portionally larger segment on the
wheel.

1

1

1

0

0

1

0

0

0

1

1

1

0

1

1

0

1

1

1

0

0

1

0

0

0

1

1

1

1

0

0

1

Crossover point

Parent 1

Parent 2

Offspring 1

Offspring 2

Fig. 7.27 The crossover point deter-
mines which parts of the chromo-
some from each parent get inherited
by each offspring.

whereΔ� = 1.1 5high−0.1 5low is based on the highest and lowest function
values in the population, and the denominator is introduced to scale
the fitness.

Then, to find the sizes of the sectors in the roulette wheel selection,
we take the normalized cumulative sum of the scaled fitness values to
compute an interval for each member in the population 9 as

(9 =

9∑
8=1
�8

=?∑
8=1
�8

. (7.20)

We can now create a mating pool of =? points by turning the roulette
wheel =? times. We do this by generating a random number 0 ≤ A ≤ 1
at each turn. The 9th member is copied to the mating pool if

(9−1 < A ≤ (9 . (7.21)

This ensures that the probability of a member being selected for repro-
duction is proportional to its scaled fitness value.

Example 7.6 Roulette wheel selection process
Assume that � = [5, 10, 20, 45]. Then (= [0.25, 0.3125, 0.875, 1], which

divides the “wheel” into four segments, shown graphically in Fig. 7.26. We
would then draw four random numbers (say, 0.6, 0.2, 0.9, 0.7), which would
correspond to the following =?/2 pairs: (G3 and G1), (G4 and G3).

Crossover
In the reproduction operation, two points (offspring) are generated
from a pair of points (parents). Various strategies are possible in genetic
algorithms. Single-point crossover usually involves generating a random
integer 1 ≤ : ≤ < − 1 that defines the crossover point. This is illustrated
in Fig. 7.27. For one of the offspring, the first : bits are taken from parent
1 and the remaining bits from parent 2. For the second offspring, the
first : bits are taken from parent 2 and the remaining ones from parent
1. Various extensions exist, such as two-point crossover or =-point
crossover.

Mutation
Mutation is a random operation performed to change the genetic infor-
mation and is needed because even though selection and reproduction

7 Gradient-Free Optimization 312

1

1

0

0

0

0

1

1

0

1

1

1

1

1

0

0

Before mutation

After mutation

Fig. 7.28 Mutation randomly
switches some of the bits with low
probability.

140. Simon, Evolutionary Optimization
Algorithms, 2013.

effectively recombine existing information, occasionally some useful
genetic information might be lost. The mutation operation protects
against such irrecoverable loss and introduces additional diversity into
the population.

When using bit representation, every bit is assigned a small permu-
tation probability, say ? = 0.005 ∼ 0.05. This is done by generating a
random number 0 ≤ A ≤ 1 for each bit, which is changed if A < ?. An
example is illustrated in Fig. 7.28.

7.6.2 Real-Encoded Genetic Algorithms
As the name implies, real-encoded GAs represent the design variables
in their original representation as real numbers. This has several
advantages over the binary-encoded approach. First, real encoding
represents numbers up to machine precision rather than being limited
by the number of bits chosen for the binary encoding. Second, it
avoids the “Hamming cliff” issue of binary encoding, which is caused
by the fact that many bits must change to move between adjacent
real numbers (e.g., 0111 to 1000). Third, some real-encoded GAs can
generate points outside the design variable bounds used to create the
initial population; in many problems, the design variables are not
bounded. Finally, it avoids the burden of binary coding and decoding.
The main disadvantage is that integer or discrete variables cannot be
handled. For continuous problems, a real-encoded GA is generally
more efficient than a binary-encoded GA.140 We now describe the
required changes to the GA operations in the real-encoded approach.

Initial Population
The most common approach is to pick the =? points using random
sampling within the provided design bounds. Each member is often
chosen at random within some initial bounds. For each design variable
G8 , with bounds such that G 8 ≤ G8 ≤ G 8 , we could use,

G8 = G 8 + A(G 8 − G 8) (7.22)

where A is a random number such that 0 ≤ A ≤ 1. Again, the sam-
pling methods described in Section 10.2 are more effective for higher-
dimensional spaces.

Selection
The selection operation does not depend on the design variable encod-
ing. Therefore, we can use one of the selection approaches described
for the binary-encoded GA: tournament or roulette wheel selection.

https://books.google.com/books?vid=ISBN1118659503
https://books.google.com/books?vid=ISBN1118659503

7 Gradient-Free Optimization 313

G?1

G21

G?2

G22

Fig. 7.29 Linear crossover produces
two newpoints along the line defined
by the two parent points.

149. Deb, Multi-Objective Optimization
Using Evolutionary Algorithms, 2001.

Crossover
When using real encoding, the term crossover does not accurately
describe the process of creating the two offspring from a pair of points.
Instead, the approaches are more accurately described as a blending,
although the name crossover is still often used.

There are various options for the reproduction of twopoints encoded
using real numbers. A standard method is linear crossover, which
generates two or more points in the line defined by the two parent
points. One option for linear crossover is to generate the following two
points:

G21 = 0.5G?1 + 0.5G?2 ,

G22 = 2G?2 − G?1 ,
(7.23)

where parent 2 is more fit than parent 1 (5 (G?2) < 5 (G?1)). An example
of this linear crossover approach is shown in Fig. 7.29, where we can
see that child 1 is the average of the two parent points, whereas child 2
is obtained by extrapolating in the direction of the “fitter” parent.

Another option is a simple crossover like the binary case where a
random integer is generated to split the vectors—for example, with a
split after the first index:

G?1 = [G1 , G2 , G3 , G4]
G?2 = [G5 , G6 , G7 , G8]
⇓

G21 = [G1 , G6 , G7 , G8]
G22 = [G5 , G2 , G3 , G4] .

(7.24)

This simple crossover does not generate as much diversity as the
binary case and relies more heavily on effective mutation. Many other
strategies have been devised for real-encoded GAs.149

Mutation
As with a binary-encoded GA, mutation should only occur with a small
probability (e.g., ? = 0.005 ∼ 0.05). However, rather than changing
each bit with probability ?, we now change each design variable with
probability ?.

Many mutation methods rely on random variations around an
existing member, such as a uniform random operator:

Gnew 8 = G8 + (A8 − 0.5)Δ8 , for 8 = 1, . . . = , (7.25)

where A8 is a random number between 0 and 1, and Δ8 is a preselected
maximumperturbation in the 8th direction. Many nonuniformmethods

https://books.google.com/books?vid=ISBN047187339X
https://books.google.com/books?vid=ISBN047187339X

7 Gradient-Free Optimization 314

exist as well. For example, we can use a normal probability distribution

Gnew 8 = G8 +N(0, �8), for 8 = 1, . . . = , (7.26)

where �8 is a preselected standard deviation, and random samples are
drawn from the normal distribution. During the mutation operations,
bound checking is necessary to ensure the mutations stay within the
lower and upper limits.

Example 7.7 Genetic algorithm applied to the bean function

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 0

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 3

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 6

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 10

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 20

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 50

Fig. 7.30 Evolution of the population
using a bit-encoded GA to minimize
the bean function, where : is the gen-
eration number.

Figure 7.30 shows the evolution of the population when minimizing the
bean function using a bit-encoded GA. The initial population size was 40, and
the simulation was run for 50 generations. Figure 7.31 shows the evolution
when using a real-encoded GA but otherwise uses the same parameters as the
bit-encoded optimization. The real-encoded GA converges faster in this case.

7.6.3 Constraint Handling
Various approaches exist for handling constraints. Like the Nelder–
Mead method, we can use a penalty method (e.g., augmented La-

7 Gradient-Free Optimization 315

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 0

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 1

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 2

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 4

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 6

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 10

Fig. 7.31 Evolution of the population
using a real-encoded GA tominimize
the bean function, where : is the gen-
eration number.

grangian, linear penalty). However, there are additional options for
GAs. In the tournament selection, we can use other selection criteria
that do not depend on penalty parameters. One such approach for
choosing the best selection among two competitors is as follows:

1. Prefer a feasible solution.
2. Among two feasible solutions, choose the one with a better

objective.
3. Among two infeasible solutions, choose the one with a smaller

constraint violation.

This concept is a lot like the filter methods discussed in Section 5.5.3.

7.6.4 Convergence
Rigorousmathematical convergence criteria, like those used in gradient-
based optimization, do not apply to GAs. The most common way to
terminate a GA is to specify a maximum number of iterations, which
corresponds to a computational budget. Another similar approach is
to let the algorithm run indefinitely until the user manually terminates
the algorithm, usually by monitoring the trends in population fitness.

7 Gradient-Free Optimization 316

∗PSO was first proposed by Eberhart and
Kennedy.150 Eberhart was an electrical en-
gineer, and Kennedy was a social psychol-
ogist.

150. Eberhart and Kennedy, New opti-
mizer using particle swarm theory, 1995.

A more automated approach is to track a running average of the
population’s fitness. However, it can be challenging to decide what
tolerance to apply to this criterion because we generally are not inter-
ested in the average performance. A more direct metric of interest
is the fitness of the best member in the population. However, this
can be a problematic criterion because the best member can disappear
as a result of crossover or mutation. To avoid this and to improve
convergence, many GAs employ elitism. This means that the fittest
population member is retained to guarantee that the population does
not regress. Even without this behavior, the best member often changes
slowly, so the user should not terminate the algorithm unless the best
member has not improved for several generations.

7.7 Particle Swarm Optimization
Like a GA, particle swarm optimization (PSO) is a stochastic population-
based optimization algorithm based on the concept of “swarm intel-
ligence”. Swarm intelligence is the property of a system whereby
the collective behaviors of unsophisticated agents interacting locally
with their environment cause coherent global patterns. In other words:
dumb agents, properly connected into a swarm, can yield smart results.∗

The “swarm” in PSO is a set of design points (agents or particles) that
move in =-dimensional space, looking for the best solution. Although
these are just design points, the history for each point is relevant to
the PSO algorithm, so we adopt the term particle. Each particle moves
according to a velocity. This velocity changes according to the past
objective function values of that particle and the current objective values
of the rest of the particles. Each particle remembers the location where
it found its best result so far, and it exchanges information with the
swarm about the location where the swarm has found the best result
so far.

The position of particle 8 for iteration : + 1 is updated according to

G(8):+1 = G
(8)
: + E

(8)
:+1ΔC , (7.27)

where ΔC is a constant artificial time step. The velocity for each particle
is updated as follows:

E(8):+1 =
E(8): + �
G(8)best − G

(8)
:

ΔC
+ � Gbest − G

(8)
:

ΔC
. (7.28)

The first component in this update is the “inertia”, which determines
how similar the new velocity is to the velocity in the previous iteration

https://dx.doi.org/10.1109/MHS.1995.494215
https://dx.doi.org/10.1109/MHS.1995.494215

7 Gradient-Free Optimization 317

151. Zhan et al., Adaptive particle swarm
optimization, 2009.

through the parameter
. Typical values for the inertia parameter
 are
in the interval [0.8, 1.2]. A lower value of
 reduces the particle’s inertia
and tends toward faster convergence to aminimum. A higher value of

increases the particle’s inertia and tends toward increased exploration to
potentially help discover multiple minima. Some methods are adaptive,
choosing the value of
 based on the optimizer’s progress.151

The second term represents “memory” and is a vector pointing
toward the best position particle 8 has seen in all its iterations so far, G(8)best.
The weight in this term consists of a random number � in the interval
[0, �max] that introduces a stochastic component to the algorithm. Thus,
� controls how much influence the best point found by the particle so
far has on the next direction.

The third term represents “social” influence. It behaves similarly
to the memory component, except that Gbest is the best point the entire
swarm has found so far, and � is a random number between [0, �max]
that controls how much of an influence this best point has in the next
direction. The relative values of � and � thus control the tendency
toward local versus global search, respectively. Both �max and �max are
in the interval [0, 2] and are typically closer to 2. Sometimes, rather
than using the best point in the entire swarm, the best point is chosen
within a neighborhood.

Because the time step is artificial, we can eliminate it by multiplying
Eq. 7.28 by ΔC to yield a step:

ΔG(8):+1 =
ΔG(8): + �
(
G(8)best − G

(8)
:

)
+ �

(
Gbest − G(8):

)
. (7.29)

We then use this step to update the particle position for the next
iteration:

G(8):+1 = G
(8)
: + ΔG

(8)
:+1 . (7.30)

The three components of the update in Eq. 7.29 are shown in Fig. 7.32
for a two-dimensional case.

G(8):

G(8):−1

G(8)best

Gbest

ΔG(8):

�
(
Gbest − G(8):

)
�
(
G(8)best − G

(8)
:

)
G(8):+1

ΔG(8):+1

Fig. 7.32 Components of the PSO up-
date.

https://dx.doi.org/10.1109/TSMCB.2009.2015956
https://dx.doi.org/10.1109/TSMCB.2009.2015956

7 Gradient-Free Optimization 318

The first step in the PSO algorithm is to initialize the set of particles
(Alg. 7.6). As with a GA, the initial set of points can be determined
randomly or can use a more sophisticated sampling strategy (see
Section 10.2). The velocities are also randomly initialized, generally
using some fraction of the domain size (G − G).

Algorithm 7.6 Particle swarm optimization algorithm
Inputs:
G: Variable upper bounds
G: Variable lower bounds

: Inertia parameter
�max: Self influence parameter
�max: Social influence parameter
ΔGmax: Maximum velocity

Outputs:
G∗: Best point
5 ∗: Corresponding function value

: = 0
for 8 = 1 to = do Loop to initialize all particles

Generate position G(8)0 within specified bounds.
Initialize “velocity” ΔG(8)0

end for
while not converged do Main iteration loop

for 8 = 1 to = do
if 5

(
G(8)

)
< 5

(
G(8)best

)
then Best individual points

G(8)best = G
(8)

end if
if 5 (G(8)) < 5 (Gbest) then Best swarm point

Gbest = G(8)
end if

end for
for 8 = 1 to = do

ΔG(8):+1 =
ΔG(8): + �
(
G(8)best − G

(8)
:

)
+ �

(
Gbest − G(8):

)
ΔG(8):+1 = max

(
min

(
ΔG(8):+1 ,ΔGmax

)
,−ΔGmax

)
Limit velocity

G(8):+1 = G
(8)
: + ΔG

(8)
:+1 Update the particle position

G(8):+1 = max
(
min

(
G(8):+1 , G

)
, G

)
Enforce bounds

end for
: = : + 1

end while

7 Gradient-Free Optimization 319

The main loop in the algorithm computes the steps to be added to
each particle and updates their positions. Particles must be prevented
from going beyond the bounds. If a particle reaches a boundary and
has a velocity pointing out of bounds, it is helpful to reset to velocity to
zero or reorient it toward the interior for the next iteration. It is also
helpful to impose a maximum velocity. If the velocity is too large, the
updated positions are unrelated to their previous positions, and the
search is more random. The maximum velocity might also decrease
across iterations to shift from exploration toward exploitation.

Example 7.8 PSO algorithm applied to the bean function
Figure 7.33 shows the particle movements that result when minimizing the

bean function using a particle swarm method. The initial population size was
40, and the optimization required 600 function evaluations. Convergence was
assumed if the best value found by the population did not improve by more
than 10−4 for three consecutive iterations.

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 0

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 1

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 3

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 5

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 12

−2 −1 0 1 2 3
−1

0

1

2

3

G1

G2

: = 17

Fig. 7.33 Sequence of PSO iterations
that minimize the bean function.

Several convergence criteria are possible, some of which are similar
to the Nelder–Mead algorithm and GAs. Examples of convergence

7 Gradient-Free Optimization 320

Original

Discontinuous

G∗

−1 0 1 2 3
−20

−10

0

10

20

30

G1

5

Fig. 7.34 Slice of the Jones function
with the added checkerboard pattern.

criteria include the distance (sum or norm) between each particle and
the best particle, the best particle’s objective function value changes
for the last few generations, and the difference between the best and
worst member. For PSO, another alternative is to check whether the
velocities for all particles (as measured by a metric such as norm or
mean) are below some tolerance. Some of these criteria that assume
all the particles congregate (distance, velocities) do not work well for
multimodal problems. In those cases, tracking only the best particle’s
objective function value may be more appropriate.

Tip 7.2 Compare optimization algorithms fairly
It is challenging to compare different algorithms fairly, especially when they

use different convergence criteria. You can either compare the computational
cost of achieving an objective with a specified accuracy or compare the objective
achieved for a specified computational cost. To compare algorithms that use
different convergence criteria, you can run them for as long as you can afford
using the lowest convergence tolerance possible and tabulate the number of
function evaluations and the respective objective function values. To compare
the computational cost for a specified tolerance, you can determine the number
of function evaluations that each algorithm requires to achieve a given number
of digit agreement in the objective function. Alternatively, you can compare the
objective achieved for the different algorithms for a given number of function
evaluations. Comparison becomes more challenging for constrained problems
because a better objective that is less feasible is not necessarily better. In that
case, you need to make sure that all results are feasible to the same tolerance.
When comparing algorithms that include stochastic procedures (e.g., GAs,
PSO), you should run each optimization multiple times to get statistically
significant data and compare themean and variance of the performancemetrics.
Even for deterministic algorithms, results can vary significantly with starting
points (or other parameters), so running multiple optimizations is preferable.

Example 7.9 Comparison of algorithms for a multimodal discontinuousfunction
We now return to the Jones function (Appendix D.1.4), but we make it

discontinuous by adding the following function:

Δ 5 = 4dsin(�G1) sin(�G2)e . (7.31)

By taking the ceiling of the product of the two sine waves, this function creates a
checkerboard patternwith 0s and 4s. In this latter case, each gradient evaluation
is counted as an evaluation in addition to each function evaluation. Adding this
function to the Jones function produces the discontinuous pattern shown in
Fig. 7.34. This is a one-dimensional slice of constant G2 through the optimum of

7 Gradient-Free Optimization 321

the Jones function; the full two-dimensional contour plot is shown in Fig. 7.35.
The global optimum remains the same as the original function.

G∗

179 evaluations

−1 0 1 2 3

−1

0

1

2

3

G1

G2

Nelder–Mead algorithm

G∗

119 evaluations

−1 0 1 2 3

−1

0

1

2

3

G1

G2

Generalized pattern search

G∗

99 evaluations

−1 0 1 2 3

−1

0

1

2

3

G1

G2

DIRECT algorithm

G∗

2420 evaluations

−1 0 1 2 3

−1

0

1

2

3

G1

G2

Genetic algorithm

G∗

760 evaluations

−1 0 1 2 3

−1

0

1

2

3

G1

G2

Particle swarm optimization

G∗

96 evaluations

−1 0 1 2 3

−1

0

1

2

3

G1

G2

Quasi-Newton method

Fig. 7.35 Convergence path for
gradient-free algorithms compared
with gradient-based algorithms with
multistart.

The resulting optimization paths demonstrate that some gradient-free
algorithms effectively handle the discontinuities and find the global minimum.
Nelder–Mead converges quickly, but not necessarily to the global minimum.
GPS and DIRECT quickly converge to the global minimum. GAs and PSO
also find the global minimum, but they require many more evaluations. The
gradient-based algorithm (quasi-Newton) with multistart also converges the
global minimum in two of the six random starts.

7.8 Summary
Gradient-free optimization algorithms are needed when the objective
and constraint functions are not smooth enough or when it is not
possible to compute derivatives with enough precision. One major
advantage of gradient-free methods is that they tend to be robust to
numerical noise and discontinuities, making them easier to use than
gradient-based methods.

7 Gradient-Free Optimization 322

However, the overall cost of gradient-free optimization is sensitive to
the cost of the function evaluations because they requiremany iterations
for convergence, and the number of iterations scales poorly with the
number of design variables.

There is a wide variety of gradient-free methods. They can perform
a local or global search, use mathematical or heuristic criteria, and
be deterministic or stochastic. A global search does not guarantee
convergence to the global optimum but increases the likelihood of such
convergence. We should be wary when heuristics establish convergence
because the result might not correspond to the actual mathematical
optimum. Heuristics in the optimization algorithm also limit the rate
of convergence compared with algorithms based on mathematical
principles.

In this chapter, we covered only a small selection of popular gradient-
free algorithms. TheNelder–Mead algorithm is a local search algorithm
based on heuristics and is easy to implement. GPS and DIRECT are
based on mathematical criteria.

Evolutionary algorithms are global search methods based on the
evolution of a population of designs. They stem from appealing
heuristics inspired by natural or societal phenomena and have some
stochastic element in their algorithms. The GAs and PSO algorithms
covered in this chapter are only two examples from the plethora of
evolutionary algorithms that have been invented.

Many of the methods presented in this chapter do not directly
address constrained problems; in those cases, penalty or filtering
methods are typically used to enforce constraints.

7 Gradient-Free Optimization 323

Problems
7.1 Answer true or false and justify your answer.

a. Gradient-free optimization algorithms are not as efficient as
gradient-based algorithms, but they converge to the global
optimum.

b. None of the gradient-free algorithms checks the KKT condi-
tions for optimality.

c. The Nelder–Meade algorithm is a deterministic local search
algorithm using heuristic criteria and direct function evalua-
tions.

d. The simplex is a geometric figure defined by a set of = points,
where = is the dimensionality of the design variable space.

e. The DIRECT algorithm is a deterministic global search al-
gorithm using mathematical criteria and direct function
evaluations.

f. The DIRECT method favors small rectangles with better
function values over large rectangles with worse function
values.

g. Evolutionary algorithms are stochastic global search algo-
rithms based on heuristics and direct function evaluations.

h. GAs start with a population of designs that gradually de-
creases to a single individual design at the optimum.

i. Each design in the initial population of a GA should be
carefully selected to ensure a successful optimization.

j. Stochastic procedures are necessary in the GAs to maintain
population diversity and therefore reduce the likelihood of
getting stuck in local minima.

k. PSO follows a model developed by biologists in the research
of how bee swarms search for pollen and nectar.

l. All evolutionary algorithms are based on either evolutionary
genetics or animal behavior.

7.2 Program the Nelder–Mead algorithm and perform the following
studies:

a. Reproduce the bean function results shown in Ex. 7.1.
b. Add random noise to the function with a magnitude of 10−4

using a normal distribution and see if that makes a difference
in the convergence of the Nelder–Mead algorithm. Compare
the results to those of a gradient-based algorithm.

7 Gradient-Free Optimization 324

c. Consider the following function:

5 (G1 , G2 , G3) = |G1 | + 2|G2 | + G2
3 . (7.32)

Minimize this function with the Nelder–Mead algorithm
and a gradient-based algorithm. Discuss your results.

d. Exploration: Study the logic of the Nelder–Mead algorithm
and devise possible improvements. For example, is it a good
idea to be greedier and do multiple expansions?

7.3 Program the DIRECT algorithm and perform the following stud-
ies:

a. Reproduce the Jones function results shown in Ex. 7.3.

b. Use a gradient-based algorithm with a multistart strategy to
minimize the same function. On average, howmanydifferent
starting points do you need to find the global minimum?

c. Minimize theHartmann function (defined inAppendixD.1.5)
using both methods. Compare and discuss your results.

d. Exploration: Develop a hybrid approach that starts with
DIRECT and then switches to the gradient-based algorithm.
Are you able to reduce the computational cost of DIRECT
significantly while converging to the global minimum?

7.4 Program a GA and perform the following studies:

a. Reproduce the bean function results shown in Ex. 7.7.

b. Use your GA to minimize the Harmann function. Estimate
the rate of convergence and compare the performance of the
GA with a gradient-based algorithm.

c. Study the effect of adding checkerboard steps (Eq. 7.31) with
a suitable magnitude to this function. How does this affect
the performance of the GA and the gradient-based algorithm
comparedwith the smooth case? Study the effect of reducing
the magnitude of the steps.

d. Exploration: Experiment with different population sizes,
types of crossover, and mutation probability. Can you
improve on your original algorithm? Is that improvement
still observed for other problems?

7.5 Program the PSO algorithm and perform the following studies:

a. Reproduce the bean function results shown in Ex. 7.8.

7 Gradient-Free Optimization 325

b. Use your PSO to minimize the =-dimensional Rosenbrock
function (defined in Appendix D.1.2) with = = 4. Estimate
the convergence rate and discuss the performance of PSO
compared with a gradient-based algorithm.

c. Study the effect of adding noise to the objective function for
both algorithms (see Prob. 7.2). Experiment with different
levels of noise.

d. Exploration: Experiment with different population sizes and
with the values of the coefficients in Eq. 7.29. Are you able
to improve the performance of your implementation for
multiple problems?

7.6 Study the effect of increased problem dimensionality using the
=-dimensional Rosenbrock function defined in Appendix D.1.2.
Solve the problem using three approaches:

a. Gradient-free algorithm
b. Gradient-based algorithm with gradients computed using

finite differences
c. Gradient-based algorithm with exact gradients

You can either use an off-the-shelf optimizer or your own im-
plementation. In each case, repeat the minimization for = =
2, 4, 8, 16, . . . up to at least 128, and see how far you can get with
each approach. Plot the number of function calls required as a
function of the problem dimension (=) for all three methods on
one figure. Discuss any differences in optimal solutions found by
the various algorithms and dimensions. Compare and discuss
your results.

7.7 Consider the aircraft wing design problem described in Ap-
pendix D.1.6. We add a wrinkle to the drag computation to make
the objective discontinuous. Previously, the approximation for
the skin friction coefficient assumed that the boundary layer on
the wing was fully turbulent. In this assignment, we assume
that the boundary layer is fully laminar when the wing chord
Reynolds number is less or equal to '4 = 6 × 105. The laminar
skin friction coefficient is given by

� 5 =
1.328√
'4

.

For '4 > 6 × 105, the boundary layer is assumed to be fully
turbulent, and the previous skin friction coefficient approximation
(Eq. D.14) holds.

7 Gradient-Free Optimization 326

Minimize the power with respect to span and chord by doing the
following:

a. Implement one gradient-free algorithm of your choice, or
alternatively, make up your own algorithm (and give it a
good name!)

b. Use the quasi-Newtonmethod you programmed in Prob. 4.9.

c. Use an existing optimizer

Discuss the relative performance of these methods as applied to
this problem.

∗Sometimes subtle differences inmeaning
are intended, but typically, and in this
chapter, these terms can be used inter-
changeably.

8Discrete Optimization
Most algorithms in this book assume that the design variables are
continuous. However, sometimes design variables must be discrete.
Common examples of discrete optimization include scheduling, net-
work problems, and resource allocation. This chapter introduces some
techniques for solving discrete optimization problems.

By the end of this chapter you should be able to:

1. Identify problems where you can avoid using discrete
variables.

2. Convert problems with integer variables to ones with
binary variables.

3. Understand the basics of various discrete optimization
algorithms (branch and bound, greedy, dynamic program-
ming, simulated annealing, binary genetic).

4. Identify which algorithms are likely to be most suitable
for a given problem.

8.1 Binary, Integer, and Discrete Variables
Discrete optimization variables can be of three types: binary (sometimes
called zero-one), integer, and discrete. A light switch, for example, can
only be on or off and is a binary decision variable that is either 0 or 1.
The number of wheels on a vehicle is an integer design variable because
it is not useful to build a vehicle with half a wheel. The material in a
structure that is restricted to titanium, steel, or aluminum is an example
of a discrete variable. These cases can all be represented as integers
(including the discrete categories, which can be mapped to integers).
An optimization problem with integer design variables is referred to as
integer programming, discrete optimization, or combinatorial optimization.∗
Problems with both continuous and discrete variables are referred to
as mixed-integer programming.

327

8 Discrete Optimization 328

Unfortunately, discrete optimization is nondeterministic polynomial-
time complete, or NP-complete, which means that we can easily verify
a solution, but there is no known approach to find a solution efficiently.
Furthermore, the time required to solve the problem becomes much
worse as the problem size grows.

Example 8.1 The drawback of an exhaustive search
The scaling issue in discrete optimization is illustrated by a well-known

discrete optimization problem: the traveling salesperson problem. Consider a
set of cities represented graphically on the left of Fig. 8.1. The problem is to
find the shortest possible route that visits each city exactly once and returns
to the starting city. The path on the right of Fig. 8.1 shows one such solution
(not necessarily the optimum). If there were only a handful of cities, you could
imagine doing an exhaustive search. You would enumerate all possible paths,
evaluate them, and return the one with the shortest distance. Unfortunately,
this is not a scalable algorithm. The number of possible paths is (= − 1)!, where
= is the number of cities. If, for example, we used all 50 U.S. state capitals as the
set of cities, then there would be 49! = 6.08× 1062 possible paths! This is such a
large number that we cannot evaluate all paths using an exhaustive search.

Fig. 8.1Example of the traveling sales-
person problem.

It is possible to construct algorithms that find the global optimum
of discrete problems, such as exhaustive searches. Exhaustive search
ideas can also be used for continuous problems (see Section 7.5, for
example, but the cost is much higher). Although an exhaustive search
may eventually arrive at the correct answer, executing that algorithm
to completion is often not practical, as Ex. 8.1 highlights. Discrete
optimization algorithms aim to search the large combinatorial space
more efficiently, often using heuristics and approximate solutions.

8.2 Avoiding Discrete Variables
Even though adiscrete optimization problem limits the options and thus
conceptually sounds easier to solve, discrete optimization problems

8 Discrete Optimization 329

are usually much more challenging to solve than continuous problems.
Thus, it is often desirable to find ways to avoid using discrete design
variables. There are a few approaches to accomplish this.

Tip 8.1 Avoid discrete variables when possible
Unless your optimization problem fits specific forms that are well suited to

discrete optimization, your problem is likely expensive to solve, and it may be
helpful to consider approaches to avoid discrete variables.

The first approach is an exhaustive search. We just discussed how
exhaustive search scales poorly, but sometimes we have many continu-
ous variables and only a few discrete variables with few options. In
that case, enumerating all options is possible. For each combination
of discrete variables, the optimization is repeated using all continuous
variables. We then choose the best feasible solution among all the opti-
mizations. This approach yields the global optimum, assuming that the
continuous optimization finds the global optimum in the continuous
variable space.

Example 8.2 Evaluate discrete variables exhaustively when the number ofcombinations is small
Consider the optimization of a propeller. Although most of the design vari-

ables are continuous (e.g., propeller blade shape, twist, and chord distributions),
the number of blades on a propeller is not. Fortunately, the number of blades
falls within a reasonably small set (e.g., two to six). Assuming there are no other
discrete variables, we could just perform five optimizations corresponding to
each option and choose the best solution among the optima.

A second approach is rounding. We can optimize the discrete design
variables for some problems as if they were continuous and round the
optimal design variable values to integer values afterward. This can be
a reasonable approach if the magnitude of the design variables is large
or if there are many continuous variables and few discrete variables.
After rounding, it is best to repeat the optimization once more, allowing
only the continuous design variables to vary. This process might not
lead to the true optimum, and the solution might not even be feasible.
Furthermore, if the discrete variables are binary, rounding is generally
too crude. However, rounding is an effective and practical approach
for many problems.

Dynamic rounding is a variation of the rounding approach. Rather
than rounding all continuous variables at once, dynamic rounding is an

8 Discrete Optimization 330

∗Better methods may exist that leverage
the specific problem structure, some of
which are discussed in this chapter.

iterative process. It rounds only one or a subset of the discrete variables,
fixes them, and re-optimizes the remaining variables using continuous
optimization. The process is repeated until all discrete variables are
fixed, followed by one last optimization with the continuous variables.

A third approach to avoiding discrete variables is to change the
parameterization. For example, one approach in wind farm layout
optimization is to parametrize the wind turbine locations as a discrete
set of points on a grid. To turn this into a continuous problem, we could
parametrize the position of each turbine using continuous coordinates.
The trade-off of this continuous parameterization is that we can no
longer change the number of turbines, which is still discrete. To re-
parameterize, sometimes a continuous alternative is readily apparent,
but more often, it requires a good deal of creativity.

Sometimes, an exhaustive search is not feasible, rounding is unac-
ceptable, and a continuous representation is impossible. Fortunately,
there are several techniques for solving discrete optimization problems.

8.3 Branch and Bound
A popular method for solving integer optimization problems is the
branch-and-boundmethod. Although it is not always the most efficient
method,∗ it is popular because it is robust and applies to a wide variety
of discrete problems. One case where the branch-and-bound method
is especially effective is solving convex integer programming problems
where it is guaranteed to find the global optimum. The most common
convex integer problem is a linear integer problem (where all the
objectives and constraints are linear in the design variables). This
method can be extended to nonconvex integer optimization problems,
but it is generally far less effective for those problems and is not
guaranteed to find the global optimum. In this section, we assume linear
mixed-integer problems but include a short discussion on nonconvex
problems.

A linear mixed-integer optimization problem can be expressed as
follows:

minimize 2ᵀG

subject to �̂G ≤ 1̂
�G + 1 = 0
G8 ∈ Z+ for some or all 8 ,

(8.1)

where Z+ represents the set of all positive integers, including zero.

8 Discrete Optimization 331

8.3.1 Binary Variables
Before tackling the integer variable case, we explore the binary variable
case, where the discrete entries in G8 must be 0 or 1. Most integer
problems can be converted to binary problems by adding additional
variables and constraints. Although the new problem is larger, it is
usually far easier to solve.

Example 8.3 Converting an integer problem to a binary one
Consider a problemwhere an engineering device may use one of = different

materials: H ∈ (1 . . . =). Rather than having one design variable H, we can
convert the problem to have = binary variables G8 , where G8 = 0 if material 8 is
not selected and G8 = 1 if material 8 is selected. We would also need to add an
additional linear constraint to make sure that one (and only one) material is
selected:

=∑
8=1

G8 = 1 .

The key to a successful branch-and-bound problem is a good relax-
ation. Relaxation aims to construct an approximation of the original
optimization problem that is easier to solve. Such approximations are
often accomplished by removing constraints.

Many types of relaxation are possible for a given problem, but for lin-
ear mixed-integer programming problems, the most natural relaxation
is to change the integer constraints to continuous bound constraints
(0 ≤ G8 ≤ 1). In other words, we solve the corresponding continuous
linear programming problem, also known as an LP (discussed in Sec-
tion 11.2). If the solution to the original LP happens to return all binary
values, that is the final solution, and we terminate the search. If the LP
returns fractional values, then we need to branch.

Branching is done by adding constraints and solving the new
optimization problems. For example, we could branch by adding
constraints on G1 to the relaxed LP, creating two new optimization
problems: onewith the constraint G1 = 0 and anotherwith the constraint
G1 = 1. This procedure is then repeated with additional branching as
needed.

Figure 8.2 illustrates the branching concept for binary variables. If
we explored all of those branches, this would amount to an exhaustive
search. The main benefit of the branch-and-bound algorithm is that we
can find ways to eliminate branches (referred to as pruning) to narrow
down the search scope.

8 Discrete Optimization 332

0 1

0

0 1

1

0

0 1

0

0 1

1

1G1 =

G2 =

G3 =
Fig. 8.2 Enumerating the options for
a binary problem with branching.

There are two ways to prune. If any of the relaxed problems is
infeasible, we know that everything from that node downward (i.e.,
that branch) is also infeasible. Adding more constraints cannot make
an infeasible problem feasible again. Thus, that branch is pruned, and
we go back up the tree. We can also eliminate branches by determining
that a better solution cannot exist on that branch. The algorithm keeps
track of the best solution to the problem found so far.

If one of the relaxed problems returns an objective that is worse
than the best we have found, we can prune that branch. We know this
because adding constraints always leads to a solution that is either the
same or worse, never better (assuming that we find the global optimum,
which is guaranteed for LP problems).

The solution from a relaxed problem provides a lower bound—the
best that could be achieved if continuing on that branch. The logic for
these various possibilities is summarized in Alg. 8.1.

The initial best known solution can be set as 5best = ∞ if nothing is
known, but if a known feasible solution exists (or can be found quickly
by some heuristic), providing any finite best point can speed up the
optimization.

Many variations exist for the branch-and-bound algorithm. One
variation arises from the choice of which variables to branch on at a
given node.

One common strategy is to branch on the variable with the largest
fractional component. For example, if Ĝ = [1.0, 0.4, 0.9, 0.0], we could
branch on G2 or G3 because both are fractional. We hypothesize that
we are more likely to force the algorithm to make faster progress by
branching on variables that are closer to midway between integers. In
this case, that value would be G2 = 0.4. We would choose to branch on
the value closest to 0.5, that is,

min
8
|G8 − 0.5| . (8.2)

Another variation of branch and bound arises from how the tree
search is performed. Two common strategies are depth-first and breadth-

8 Discrete Optimization 333

first. A depth-first strategy continues as far down as possible (e.g., by
always branching left) until it cannot go further, and then it follows
right branches. A breadth-first strategy explores all nodes on a given
level before increasing depth. Various other strategies exist. In general,
we do not know beforehand which one is best for a given problem.

Depth-first is a common strategy because, in the absence of more
information about a problem, it is most likely to be the fastest way
to find a solution—reaching the bottom of the tree generally forces a
solution. Finding a solution quickly is desirable because its solution
can then be used as a lower bound on other branches.

The depth-first strategy requires less memory storage because
breadth-first must maintain a longer history as the number of lev-
els increases. In contrast, depth-first only requires node storage equal
to the number of levels.

Algorithm 8.1 Branch-and-bound algorithm
Inputs:
5best: Best known solution, if any; otherwise 5best = ∞

Outputs:
G∗: Optimal point
5 (G∗): Optimal function value

Let S be the set of indices for binary constrained design variables
while branches remain do

Solve relaxed problem for Ĝ, 5̂
if relaxed problem is infeasible then

Prune this branch, back up tree
else

if Ĝ8 ∈ {0, 1} for all 8 ∈ S then A solution is found
5best = min(5best , 5̂), back up tree

else
if 5̂ > 5best then

Prune this branch, back up tree
else A better solution might exist

Branch further
end if

end if
end if

end while

8 Discrete Optimization 334

Example 8.4 A binary branch-and-bound optimization
Consider the following discrete problem with binary design variables:

minimize − 2.5G1 − 1.1G2 − 0.9G3 − 1.5G4

subject to 4.3G1 + 3.8G2 + 1.6G3 + 2.1G4 ≤ 9.2
4G1 + 2G2 + 1.9G3 + 3G4 ≤ 9
G8 ∈ {0, 1} for all 8.

To solve this problem, we begin at the first node by solving the linear
relaxation. The binary constraint is removed and instead replaced with
continuous bounds: 0 ≤ G8 ≤ 1. The solution to this LP is as follows:

G∗ = [1, 0.5274, 0.4975, 1]
5 ∗ = −5.0279.

There are nonbinary values in the solution, so we need to branch. As
mentioned previously, a typical choice is to branch on the variable with the
most fractional component. In this case, that is G3, so we create two additional
problems, which add the constraints G3 = 0 and G3 = 1, respectively (Fig. 8.3).

0 1G3 =

G∗ = [1, 0.53, 0.50, 1]ᵀ
5 ∗ = −5.03

Fig. 8.3 Initial binary branch.

Although depth-first was recommended previously, in this example, we
use breadth-first because it yields a more concise example. The depth-first tree
is also shown at the end of the example. We solve both of the problems at this
next level as shown in Fig. 8.4. Neither of these optimizations yields all binary
values, so we have to branch both of them. In this case, the left node branches
on G2 (the only fractional component), and the right node also branches on G2
(the most fractional component).

0 1G3 =

G∗ = [1, 0.53, 0.50, 1]ᵀ
5 ∗ = −5.03

G∗ = [1, 0.74, 0, 1]ᵀ
5 ∗ = −4.81

G∗ = [1, 0.47, 1, 0.72]ᵀ
5 ∗ = −5.00

Fig. 8.4 Solutions along these two
branches.

The first branch (see Fig. 8.5) yields a feasible binary solution! The corre-
sponding function value 5 = −4 is saved as the best value so far. There is no
need to continue on this branch because the solution cannot be improved on
this particular branch.

We continue solving along the rest of this row (Fig. 8.6). The third node
in this row yields another binary solution. In this case, the function value is
5 = −4.9, which is better, so this becomes the new best value so far. The second

8 Discrete Optimization 335

0 1

0

0 1

1G3 =

G2 =

G∗ = [1, 0.53, 0.50, 1]ᵀ
5 ∗ = −5.03

G∗ = [1, 0.74, 0, 1]ᵀ
5 ∗ = −4.81

G∗ = [1, 0.47, 1, 0.72]ᵀ
5 ∗ = −5.00

G∗ = [1, 0, 0, 1]ᵀ
5 ∗ = −4

Fig. 8.5 The first feasible solution.

and fourth nodes do not yield a solution. Typically, we would have to branch
these further, but they have a lower bound that is worse than the best solution
so far. Thus, we can prune both of these branches.

0 1

0

0 1

1G3 =

G2 =

G∗ = [1, 0.53, 0.50, 1]ᵀ
5 ∗ = −5.03

G∗ = [1, 0.74, 0, 1]ᵀ
5 ∗ = −4.81

G∗ = [1, 0.47, 1, 0.72]ᵀ
5 ∗ = −5.00

G∗ = [1, 0, 0, 1]ᵀ
5 ∗ = −4

G∗ = [0.77, 1, 0, 1]ᵀ
5 ∗ = −4.52

G∗ = [1, 0, 1, 1]ᵀ
5 ∗ = −4.9

G∗ = [0.40, 1, 1, 1]ᵀ
5 ∗ = −4.49 Fig. 8.6 The rest of the solutions on

this row.

All branches have been pruned, so we have solved the original problem:

G∗ = [1, 0, 1, 1]
5 ∗ = −4.9.

0

0

0 1

1

1

0

0 1

1G3 =

G1 =

G4 =

G2 =

5 ∗ = −4

5 ∗ = −2.6

5 ∗ = −3.6 infeasible

5 ∗ = −4.9 bounded

Fig. 8.7 Search path using a depth-
first strategy.

Alternatively, we could have used a depth-first strategy. In this case, it is
less efficient, but in general, the best strategy is not known beforehand. The
depth-first tree for this same example is shown in Fig. 8.7. Feasible solutions to
the problem are shown as 5 ∗.

8 Discrete Optimization 336

8.3.2 Integer Variables
If the problem cannot be cast in binary form, we can use the same proce-
dure with integer variables. Instead of branching with two constraints
(G8 = 0 and G8 = 1), we branch with two inequality constraints that
encourage integer solutions. For example, if the variable we branched
on was G8 = 3.4, we would branch with two new problems with the
following constraints: G8 ≤ 3 or G8 ≥ 4.

Example 8.5 Branch and bound with integer variables
Consider the following problem:

minimize − G1 − 2G2 − 3G3 − 1.5G4

subject to G1 + G2 + 2G3 + 2G4 ≤ 10
7G1 + 8G2 + 5G3 + G4 = 31.5
G8 ∈ Z+ for 8 = 1, 2, 3
G4 ≥ 0 .

We begin by solving the LP relaxation, replacing the integer constraints
with a lower bound constraint of zero (G8 ≥ 0). The solution to that problem is

G∗ = [0, 1.1818, 4.4091, 0], 5 ∗ = −15.59 .

We begin by branching on the most fractional value, which is G3. We create
two new branches:

• The original LP with the added constraint G3 ≤ 4
• The original LP with the added constraint G3 ≥ 5

Even though depth-first is usually more efficient, we use breadth-first because
it is easier to display on a figure. The solution to that first problem is

G∗ = [0, 1.4, 4, 0.3], 5 ∗ = −15.25.

The second problem is infeasible, so we can prune that branch.
Recall that the last variable is allowed to be continuous, so we now branch

on G2 by creating two new problems with additional constraints: G2 ≤ 1 and
G2 ≥ 2.

The problem continues using the same procedure shown in the breadth-
first tree in Fig. 8.8. The figure gives some indication of why solving integer
problems is more time-consuming than solving binary ones. Unlike the binary
case, the same value is revisited with tighter constraints. For example, the
constraint G3 ≤ 4 is enforced early on. Later, two additional problems are
created with tighter bounds on the same variable: G3 ≤ 2 and G3 ≥ 3. In
general, the same variable could be revisited many times as the constraints are
slowly tightened, whereas in the binary case, each variable is only visited once
because the values can only be 0 or 1.

8 Discrete Optimization 337

G1 ≤ 0

G1 ≤ 1 G1 ≥ 2

G2 ≤ 0 G2 ≥ 1

G1 ≥ 1

G2 ≤ 1

G3 ≤ 2 G3 ≥ 3

G2 ≥ 2

G3 ≤ 4 G3 ≥ 5

infeasible

infeasible

infeasible bounded

bounded

bounded 5 ∗ = −13.75

Fig. 8.8 A breadth search of the
mixed-integer programming exam-
ple.

Once all the branches are pruned, we obtain the solution:

G∗ = [0, 2, 3, 0.5]
5 ∗ = −13.75.

Nonconvex mixed-integer problems can also be used with the
branch-and-bound method and generally use this latter strategy of
forming two branches of continuous constraints. In this case, the
relaxed problem is not a convex problem, so there is no guarantee that
we have found a lower bound for that branch. Furthermore, the cost
of each suboptimization problem is increased. Thus, for nonconvex
discrete problems, this approach is usually only practical for a relatively
small number of discrete design variables.

8.4 Greedy Algorithms
Greedy algorithms are among the simplest methods for discrete opti-
mization problems. This method is more of a concept than a specific
algorithm. The implementation varies with the application. The idea is
to reduce the problem to a subset of smaller problems (often down to a
single choice) and then make a locally optimal decision. That decision
is locked in, and then the next small decision is made in the same
manner. A greedy algorithm does not revisit past decisions and thus
ignores much of the coupling between design variables.

8 Discrete Optimization 338

152. Gutin et al., Traveling salesman should
not be greedy: domination analysis of greedy-
type heuristics for the TSP, 2002.

Example 8.6 A weighted directed graph
As an example, consider the weighted directed graph shown in Fig. 8.9.

This graph might represent a transportation problem for shipping goods,
information flow through a social network, or a supply chain problem. The
objective is to traverse from node 1 to node 12 with the lowest possible total
cost (the numbers above the path segments denote the cost of each path). A
series of discrete choices must be made at each step, and those choices limit the
available options in the next step.

1

2

3

4

5

6

7

8

9

10

11

12

2

1

5

5

4
4

6

3

5

3

2

1

5

4

7

5

4
2

3

6

2

Global

Greedy
Fig. 8.9 The greedy algorithm in this
weighted directed graph results in
a total cost of 15, whereas the best
possible cost is 10.

A greedy algorithm simply makes the best choice assuming each decision
is the only decision to be made. Starting at node 1, we first choose to move to
node 3 because that is the lowest cost between the three options (node 2 costs
2, node 3 costs 1, node 4 costs 5). We then choose to move to node 6 because
that is the smallest cost between the next two available options (node 6 costs
4, node 7 costs 6), and so on. The path selected by the greedy algorithm is
highlighted in the figure and results in a total cost of 15. The global optimum
is also highlighted in the figure and has a total cost of 10.

The greedy algorithm used in Ex. 8.6 is easy to apply and scalable
but does not generally find the global optimum. To find that global
optimum, we have to consider the impact of our choices on future
decisions. A method to achieve this for certain problem structures is
discussed in the next section.

Even for a fixed problem, there are many ways to construct a greedy
algorithm. The advantage of the greedy approach is that the algorithms
are easy to construct, and they bound the computational expense of
the problem. One disadvantage of the greedy approach is that it
usually does not find an optimal solution (and in some cases finds the
worst solution!152). Furthermore, the solution is not necessarily feasible.

https://dx.doi.org/10.1016/s0166-218x(01)00195-0
https://dx.doi.org/10.1016/s0166-218x(01)00195-0
https://dx.doi.org/10.1016/s0166-218x(01)00195-0

8 Discrete Optimization 339

∗This is a form of the knapsack problem,
which is a classic problem in discrete op-
timization discussed in more detail in the
following section.

Despite the disadvantages, greedy algorithms can sometimes quickly
find solutions reasonably close to an optimal solution.

Example 8.7 Greedy algorithms
A few other examples of greedy algorithms are listed below. For the

traveling salesperson problem (Ex. 8.1), always select the nearest city as the
next step. Consider the propeller problem (Ex. 8.2 but with additional discrete
variables (number of blades, type of material, and number of shear webs). A
greedy method could optimize the discrete variables one at a time, with the
others fixed (i.e., optimize the number of blades first, fix that number, then
optimize material, and so on). As a final example, consider the grocery store
shopping problem discussed in a separate chapter (Ex. 11.1).∗ A few possible
greedy algorithms for this problem include: always pick the cheapest food
item next, or always pick the most nutritious food item next, or always pick the
food item with the most nutrition per unit cost.

8.5 Dynamic Programming
Dynamic programming is a valuable approach for discrete optimiza-
tion problems with a particular structure. This structure can also be
exploited in continuous optimization problems and problems beyond
optimization. The required structure is that the problem can be posed
as a Markov chain (for continuous problems, this is called a Markov
process). A Markov chain or process satisfies the Markov property,
where a future state can be predicted from the current state without
needing to know the entire history. The concept can be generalized to a
finite number of states (i.e., more than one but not the entire history)
and is called a variable-order Markov chain.

If the Markov property holds, we can transform the problem into a
recursive one. Using recursion, a smaller problem is solved first, and
then larger problems are solved that use the solutions from the smaller
problems.

This approach may sound like a greedy optimization, but it is not.
We are not using a heuristic but fully solving the smaller problems.
Because of the problem structure, we can reuse those solutions. We will
illustrate this in examples. This approach has becomeparticularly useful
in optimal control and some areas of economics and computational
biology. More general design problems, such as the propeller example
(Ex. 8.2), do not fit this type of structure (i.e., choosing the number
of blades cannot be broken up into a smaller problem separate from
choosing the material).

8 Discrete Optimization 340

∗We can also convert this to a standard
first-order Markov chain by defining 6= =
5=−1 and considering our state to be
(5= , 6=). Then, each state only depends
on the previous state.

A classic example of a Markov chain is the Fibonacci sequence,
defined as follows:

50 = 0
51 = 1
5= = 5=−1 + 5=−2.

(8.3)

We can compute the next number in the sequence using only the last
two states.∗ We could implement the computation of this sequence
using recursion, as shown algorithmically in Alg. 8.2 and graphically
in Fig. 8.10 for 55.

Algorithm 8.2 Fibonacci with recursion
procedure fib(=)

if = ≤ 1 then
return =

else
return fib(= − 1) + fib(= − 2)

end if
end procedure

fib(5)

fib(4)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

Fig. 8.10 Computing Fibonacci se-
quence using recursion. The function
fib(2) is highlighted as an example
to show the repetition that occurs in
this recursive procedure.

Although this recursive procedure is simple, it is inefficient. For
example, the calculation for fib(2) (highlighted in Fig. 8.10) is repeated
multiple times. There are two main approaches to avoiding this
inefficiency. The first is a top-down procedure called memoization,
where we store previously computed values to avoid having to compute
them again. For example, the first time we need fib(2), we call the fib
function and store the result (the value 1). As we progress down the
tree, if we need fib(2) again, we do not call the function but retrieve
the stored value instead.

8 Discrete Optimization 341

B8 B8+1 B8+2
G8 G8+1

Fig. 8.11 Diagram of state transitions
in a Markov chain.

†For some problems, the transition func-
tion is stochastic.
‡It is common to use discount factors on
future costs.

§We use E and 2 for the scalars in Eq. 8.6
instead of Greek letters because the con-
nection to “value” and “cost” is clearer.

A bottom-up procedure called tabulation is more common. This
procedure is how we would typically show the Fibonacci sequence. We
start from the bottom (50) and work our way forward, computing each
new value using the previous states. Rather than using recursion, this
involves a simple loop, as shown in Alg. 8.3. Whereas memoization fills
entries on demand, tabulation systematically works its way up, filling
in entries. In either case, we reduce the computational complexity of
this algorithm from exponential complexity (approximately O(2=)) to
linear complexity (O(=)).

Algorithm 8.3 Fibonacci with tabulation
50 = 0
51 = 1
for 8 = 2 to = do

58 = 58−1 + 58−2
end for

These procedures can be applied to optimization, but before intro-
ducing examples, we formalize the mathematics of the approach. One
main difference in optimization is that we do not have a set formula
like a Fibonacci sequence. Instead, we need to make a design decision
at each state, which changes the next state. For example, in the problem
shown in Fig. 8.9, we decide which path to take.

Mathematically, we express a given state as B8 and make a design
decision G8 , which transitions us to the next state B8+1 (Fig. 8.11),

B8+1 = C8(B8 , G8), (8.4)

where C is a transition function.† At each transition, we compute the
cost function 2.‡ For generality, we specify a cost function that may
change at each iteration 8:

28(B8 , G8). (8.5)

We want to make a set of decisions that minimize the sum of the
current and future costs up to a certain time, which is called the value
function,

E(B8) = minimize
G8 ,...,G=

(28(B8 , G8) + 28+1(B8+1 , G8+1) + . . . + 2=(B= , G=)) , (8.6)

where = defines the time horizon up to which we consider the cost.
For continuous problems, the time horizon may be infinite. The value
function (Eq. 8.6) is theminimum cost, not just the cost for some arbitrary
set of decisions.§

8 Discrete Optimization 342

1

2

3

4

5

6

7

8

9

10

11

12

2

1

5

5

4
4

6

3

5

3
2

1

5

4

7

5

4
2

3

6

2

Fig. 8.12 Small version of Fig. 8.9 for
convenience.

Bellman’s principle of optimality states that because of the structure
of the problem (where the next state only depends on the current state),
we can determine the best solution at this iteration G∗8 if we already know
all the optimal future decisions G∗8+1 , . . . , G

∗
= . Thus, we can recursively

solve this problem from the back (bottom) by determining G∗= , then
G∗=−1, and so on back to G∗8 . Mathematically, this recursive procedure is
captured by the Bellman equation:

E(B8) = minimize
G8

(2(B8 , G8) + E(B8+1)) . (8.7)

We can also express this equation in terms of our transition function to
show the dependence on the current decision:

E(B8) = minimize
G8

(2(B8 , G8) + E(C8(B8 , G8))) . (8.8)

Example 8.8 Dynamic programming applied to a graph problem
Let us solve the graphproblemposed inEx. 8.6 usingdynamicprogramming.

For convenience, we repeat a smaller version of the figure in Fig. 8.12. We use
the tabulation (bottom-up) approach. To do this, we construct a table where we
keep track of the cost to move from this node to the end (node 12) and which
node we should move to next:

Node 1 2 3 4 5 6 7 8 9 10 11 12

Cost
Next

We start from the end. The last node is simple: there is no cost to move
from node 12 to the end (we are already there), and there is no next node.

Node 1 2 3 4 5 6 7 8 9 10 11 12

Cost 0
Next –

Now we move back one level to consider nodes 9, 10, and 11. These nodes
all lead to node 12 and are thus straightforward. We need to be more careful
with the formulas as we get to the more complicated cases next.

Node 1 2 3 4 5 6 7 8 9 10 11 12

Cost 3 6 2 0
Next 12 12 12 –

8 Discrete Optimization 343

Now we move back one level to nodes 5, 6, 7, and 8. Using the Bellman
equation for node 5, the cost is

cost(5) = min[3 + cost(9), 2 + cost(10), 1 + cost(11)]. (8.9)

We have already computed theminimumvalue for cost(9), cost(10), and cost(11),
so we just look up these values in the table. In this case, the minimum total
value is 3 and is associated with moving to node 11. Similarly, the cost for node
6 is

cost(6) = min[5 + cost(9), 4 + cost(10)]. (8.10)

The result is 8, and it is realized by moving to node 9.

Node 1 2 3 4 5 6 7 8 9 10 11 12

Cost 3 8 3 6 2 0
Next 11 9 12 12 12 –

We repeat this process, moving back and reusing optimal solutions to find
the global optimum. The completed table is as follows:

Node 1 2 3 4 5 6 7 8 9 10 11 12

Cost 10 8 12 9 3 8 7 4 3 6 2 0
Next 2 5 6 8 11 9 11 11 12 12 12 –

From this table, we see that the minimum cost is 10. This cost is achieved
by moving first to node 2. Under node 2, we see that we next go to node 5, then
11, and finally 12. Thus, the tabulation gives us the global minimum for cost
and the design decisions to achieve that.

To illustrate the concepts more generally, consider another classic
problem in discrete optimization—the knapsack problem. In this
problem, we have a fixed set of items we can select from. Each item
has a weight F8 and a cost 28 . Because the knapsack problem is usually
written as a maximization problem and cost implies minimization,
we should use value instead. However, we proceed with cost to be
consistent with our earlier notation. The knapsack has a fixed capacity
 (a scalar) that cannot be exceeded.

The objective is to choose the items that yield the highest total
cost subject to the capacity of our knapsack. The design variables G8
are either 1 or 0, indicating whether we take or do not take item 8.
This problem has many practical applications, such as shipping, data
transfer, and investment portfolio selection.

8 Discrete Optimization 344

The problem can be written as

maximize
G

=∑
8=1

28G8

subject to
=∑
8=1

F8G8 ≤

G8 ∈ {0, 1} .

(8.11)

In its present form, the knapsack problem has a linear objective and
linear constraints, so branch and bound would be a good approach.
However, this problem can also be formulated as a Markov chain, so we
can use dynamic programming. The dynamic programming version
accommodates variations such as stochasticity and other constraints
more easily.

To pose this problem as a Markov chain, we define the state as the
remaining capacity of the knapsack : and the number of items we
have already considered. In other words, we are interested in E(:, 8),
where E is the value function (optimal value given the inputs), : is
the remaining capacity in the knapsack, and 8 indicates that we have
already considered items 1 through 8 (this does not mean we have
added them all to our knapsack, only that we have considered them).
We iterate through a series of decisions G8 deciding whether to take
item 8 or not, which transitions us to a new state where 8 increases and
: may decrease, depending on whether or not we took the item.

The real problem we are interested in is E(, =), which we solve
using tabulation. Starting at the bottom, we know that E(:, 0) = 0 for
any :. This means that no matter the capacity, the value is 0 if we have
not considered any items yet. To work forward, consider a general case
considering item 8, with the assumption that we have already solved
up to item 8 − 1 for any capacity. If item 8 cannot fit in our knapsack
(F8 > :), then we cannot take the item. Alternatively, if the weight is
less than the capacity, we need to decide whether to select item 8 or
not. If we do not, then the value is unchanged, and E(:, 8) = E(:, 8 − 1).
If we do select item 8, then our value is 28 plus the best we could do
with the previous items but with a capacity that was smaller by F8 :
E(:, 8) = 28 + E(: − F8 , 8 − 1). Whichever of these decisions yields a
better value is what we should choose.

To determine which items produce this cost, we need to add more
logic. To keep track of the selected items, we define a selection matrix
(of the same size as E (note that this matrix is indexed starting at zero
in both dimensions). Every time we accept an item 8, we register that in

8 Discrete Optimization 345

the matrix as (:,8 = 1. Algorithm 8.4 summarizes this process.

Algorithm 8.4 Knapsack with tabulation
Inputs:
28 : Cost of item 8

F8 : Weight of item 8

 : Total available capacity
Outputs:
G∗: Optimal selections
E(, =): Corresponding cost, E(:, 8) is the optimal cost for capacity : considering items 1
through 8; note that indexing starts at 0

for : = 0 to do
E(:, 0) = 0 No items considered; value is zero for any capacity

end for
for 8 = 1 to = do Iterate forward solving for one additional item at a time

for : = 0 to do
if F8 > : then

E(:, 8) = E(:, 8 − 1) Weight exceeds capacity; value unchanged
else

if 28 + E(: − F8 , 8 − 1) > E(:, 8 − 1) then Take item
E(:, 8) = 28 + E(: − F8 , 8 − 1)
((:, 8) = 1

else Reject item
E(:, 8) = E(:, 8 − 1)

end if
end if

end for
end for
: = Initialize
G∗ = {} Initialize solution G∗ as an empty set
for 8 = = to 1 by −1 do Loop to determine which items we selected

if (:,8 = 1 then
add 8 to G∗ Item 8 was selected
: = : − F8

end if
end for

We fill all entries in the matrix E[:, 8] to extract the last value
E[, =]. For small numbers, filling this matrix (or table) is often
illustrated manually, hence the name tabulation. As with the Fibonacci
example, using dynamic programming instead of a fully recursive
solution reduces the complexity from O(2=) to O(=), which means it
is pseudolinear. It is only pseudolinear because there is a dependence

8 Discrete Optimization 346

on the knapsack size. For small capacities, the problem scales well
even with many items, but as the capacity grows, the problem scales
much less efficiently. Note that the knapsack problem requires integer
weights. Real numbers can be scaled up to integers (e.g., 1.2, 2.4 become
12, 24). Arbitrary precision floats are not feasible given the number of
combinations to search across.

Example 8.9 Knapsack problem with dynamic programming
Consider five items with the following weights and costs:

F8 = [4, 5, 2, 6, 1]
28 = [4, 3, 3, 7, 2].

The capacity of our knapsack is = 10. Using Alg. 8.4, we find that the optimal
cost is 12. The value matrix is as follows:

0 0 0 0 0 0
0 0 0 0 0 2
0 0 0 3 3 3
0 0 0 3 3 5
0 4 4 4 4 5
0 4 4 4 4 6
0 4 4 7 7 7
0 4 4 7 7 9
0 4 4 7 10 10
0 4 7 7 10 12
0 4 7 7 11 12



.

For this example, the selection matrix (is as follows:

(=



0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 1 0 1
0 1 0 0 0 1
0 1 0 0 0 1
0 1 0 1 0 0
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 1 1
0 1 1 0 1 1



.

Following this algorithm, we find that we selected items 3, 4, and 5 for a total
cost of 12, as expected, and a total weight of 9.

Like greedy algorithms, dynamic programming is more of a tech-
nique than a specific algorithm. The implementation varies with the
particular application.

8 Discrete Optimization 347

∗First developed by Kirkpatrick et al.153
and Černý.154

153. Kirkpatrick et al., Optimization by
simulated annealing, 1983.

154. Černý, Thermodynamical approach to
the traveling salesman problem: An efficient
simulation algorithm, 1985.

155. Metropolis et al., Equation of state
calculations by fast computing machines,
1953.

8.6 Simulated Annealing
Simulated annealing∗ is a methodology designed for discrete opti-
mization problems. However, it can also be effective for continuous
multimodal problems, as we will discuss. The algorithm is inspired by
the annealing process of metals. The atoms in a metal form a crystal
lattice structure. If the metal is heated, the atoms move around freely.
As themetal cools down, the atoms slowdown, and if the cooling is slow
enough, they reconfigure into a minimum-energy state. Alternatively,
if the metal is quenched or cooled rapidly, the metal recrystallizes with
a different higher-energy state (called an amorphous metal).

From statistical mechanics, the Boltzmann distribution (also called
Gibbs distribution) describes the probability of a system occupying a
given energy state:

%(4) ∝ exp
(−4
:�)

)
, (8.12)

where 4 is the energy level,) is the temperature, and :� is Boltzmann’s
constant. This equation shows that as the temperature decreases, the
probability of occupying a higher-energy state decreases, but it is not
zero. Therefore, unlike in classical mechanics, an atom could jump
to a higher-energy state with some small probability. This property
imparts an exploratory nature to the optimization algorithm, which
avoids premature convergence to a local minimum. The temperature
level provides some control on the level of expected exploration.

An early approach to simulate this type of probabilistic thermo-
dynamic model was the Metropolis algorithm.155 In the Metropolis
algorithm, the probability of transitioning from energy state 41 to energy
state 42 is formulated as

% = min
(
exp

(−(42 − 41)
:�)

)
, 1

)
, (8.13)

where this probability is limited to be no greater than 1. This limit
is needed because the exponent yields a value greater than 1 when
42 < 41, which would be nonsensical. Simulated annealing leverages
this concept in creating an optimization algorithm.

In the optimization analogy, the objective function is the energy
level. Temperature is a parameter controlled by the optimizer, which
begins high and is slowly “cooled” to drive convergence. At a given
iteration, the design variables are given by G, and the objective (or
energy) is given by 5 (G(:)). A new state Gnew is selected at random in
the neighborhood of G. If the energy level decreases, the new state
is accepted. If the energy level increases, the new state might still be

https://dx.doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1007/bf00940812
https://dx.doi.org/10.1007/bf00940812
https://dx.doi.org/10.1007/bf00940812
https://dx.doi.org/10.2172/4390578
https://dx.doi.org/10.2172/4390578

8 Discrete Optimization 348

†See Andresen and Gordon156, for exam-
ple.

156. Andresen and Gordon, Constant ther-
modynamic speed for minimizing entropy
production in thermodynamic processes and
simulated annealing, 1994.

accepted with probability

exp

(
− (

5 (Gnew) − 5
(
G(:)

))
)

)
, (8.14)

where Boltzmann’s constant is removed because it is just an arbitrary
scale factor in the optimization context. Otherwise, the state remains
unchanged. Constraints can be handled in this algorithm without
resorting to penalties by rejecting any infeasible step.

We must supply the optimizer with a function that provides a
random neighboring design from the set of possible design configurations.
A neighboring design is usually related to the current design instead
of picking a pure random design from the entire set. In defining the
neighborhood structure, wemightwish to define transition probabilities
so that all neighbors are not equally likely. This type of structure is
common in Markov chain problems. Because the nature of different
discrete problems varies widely, we cannot provide a generic neighbor-
selecting algorithm, but an example is shown later for the specific case
of a traveling salesperson problem.

Finally, we need to determine the annealing schedule (or cooling
schedule), a process for decreasing the temperature throughout the
optimization. A common approach is an exponential decrease:

) =)0

: , (8.15)

where)0 is the initial temperature,
 is the cooling rate, and : is the
iteration number. The cooling rate
 is a number close to 1, such as
0.8–0.99. Another simple approach to iterate toward zero temperature
is as follows:

) =)0

(
1 − :

:max

)�
, (8.16)

where the exponent � is usually in the range of 1–4. A higher exponent
corresponds to spending more time at low temperatures. In many
approaches, the temperature is kept constant for a fixed number of
iterations (or a fixed number of successful moves) before moving to
the next decrease. Many methods are simple schedules with a prede-
termined rate, although more complex adaptive methods also exist.†
The annealing schedule can substantially impact the algorithm’s perfor-
mance, and some experimentation is required to select an appropriate
schedule for the problem at hand. One essential requirement is that the
temperature should start high enough to allow for exploration. This
should be significantly higher than the maximum expected energy
change (change in objective) but not so high that computational time is

https://dx.doi.org/10.1103/physreve.50.4346
https://dx.doi.org/10.1103/physreve.50.4346
https://dx.doi.org/10.1103/physreve.50.4346
https://dx.doi.org/10.1103/physreve.50.4346

8 Discrete Optimization 349

157. Lin, Computer solutions of the traveling
salesman problem, 1965.

wasted with too much random searching. Also, cooling should occur
slowly to improve the ability to recover from a local optimum, imitating
the annealing process instead of the quenching process.

The algorithm is summarized in Alg. 8.5; for simplicity in the
description, the annealing schedule uses an exponential decrease at
every iteration.

Algorithm 8.5 Simulated Annealing
Inputs:
G0: Starting point
)0: Initial temperature

Outputs:
G∗: Optimal point

for : = 0 to :max do Simple iteration; convergence metrics can be used instead
Gnew = neighbor

(
G(:)

)
Randomly generate from neighbors

if 5 (Gnew) ≤ 5
(
G(:)

)
then Energy decreased; jump to new state

G(:+1) = Gnew
else

A ∈ U[0, 1] Randomly draw from uniform distribution
% = exp

(
−
(
5 (Gnew)− 5

(
G(:)

))
)

)

if % ≥ A then Probability high enough to jump
G(:+1) = Gnew

else
G(:+1) = G(:) Otherwise remain at current state

end if
end if
) =
) Reduce temperature

end for

Example 8.10 Traveling salesperson with simulated annealing
This example sets up the traveling salesperson problem with 50 points

randomly distributed (from uniform sampling) on a square grid with sides of
length 1 (left of Fig. 8.13). The objective is the total Euclidean distance of a path
that traverses all points and returns to the starting point. The design variables
are a sequence of integers corresponding to the order in which the salesperson
traverses the points.

We generate new neighboring designs using the technique from Lin,157
where one of two options is randomly chosen at each iteration: (1) randomly
choose two points and flip the direction of the path segments between those

https://dx.doi.org/10.1002/j.1538-7305.1965.tb04146.x
https://dx.doi.org/10.1002/j.1538-7305.1965.tb04146.x

8 Discrete Optimization 350

two points, or (2) randomly choose two points and move the path segments to
follow another randomly chosen point. The distance traveled by the randomly
generated initial set of points is 26.2.

We specify an iteration budget of 25,000 iterations, set the initial temperature
to be 10, and decrease the temperature by a multiplicative factor of 0.95 at every
100 iterations. The right panel of Fig. 8.13 shows the final path, which has a
length of 5.61. The final path might not be the global optimum (remember,
these finite time methods are only approximations of the full combinatorial
search), but the methodology is effective and fast for this problem in finding at
least a near-optimal solution. Figure 8.14 shows the iteration history.

Fig. 8.13 Initial and final paths for
traveling salesperson problem.

0 0.5 1 1.5 2 2.5
·104

0

10

20

30

Iteration

D
is

ta
nc

e

Fig. 8.14 Convergence history of the
simulated annealing algorithm.

The simulated annealing algorithm can be applied to continuous
multimodal problems as well. The motivation is similar because the
initial high temperature permits the optimizer to escape local minima,
whereas a purely descent-based approachwould not. By slowly cooling,
the initial exploration gives way to exploitation. The only real change
in the procedure is in the neighbor function. A typical approach is
to generate a random direction and choose a step size proportional
to the temperature. Thus, smaller, more conservative steps are taken
as the algorithm progresses. If bound constraints are present, they
would be enforced at this step. Purely random step directions are
not particularly efficient for many continuous problems, particularly

8 Discrete Optimization 351

158. Press et al., Numerical Recipes in C:
The Art of Scientific Computing, 1992.

when most directions are ill-conditioned (e.g., a narrow valley or near
convergence). One variation adopts concepts from the Nelder–Mead
algorithm (Section 7.3) to improve efficiency.158 Overall, simulated
annealing has made more impact on discrete problems compared with
continuous ones.

8.7 Binary Genetic Algorithms
The binary form of a genetic algorithm (GA) can be directly used with
discrete variables. Because the binary form already requires a discrete
representation for the population members, using discrete design
variables is a natural fit. The details of this method were discussed in
Section 7.6.1.

8.8 Summary
This chapter discussed various strategies for approaching discrete
optimization problems. Some problems can be well approximated
using rounding, can be reparameterized in a continuous way, or only
have a few discrete combinations, allowing for explicit enumeration.
For problems that can be posed as linear (or convex in general), branch
and bound is effective. If the problem can be posed as a Markov chain,
dynamic programming is a useful method.

If none of these categorizations are applicable, then a stochastic
method, such as simulated annealing or GAs, may work well. These
stochastic methods typically struggle as the dimensionality of the
problem increases. However, simulated annealing can scale better for
some problems if there are clever ways to quickly evaluate designs in
the neighborhood, as is done with the traveling salesperson problem.
An alternative to these various algorithms is to use a greedy strategy,
which can scale well. Because this strategy is a heuristic, it usually
results in a loss in solution quality.

https://books.google.com/books?vid=ISBN0521431085
https://books.google.com/books?vid=ISBN0521431085

8 Discrete Optimization 352

Problems
8.1 Answer true or false and justify your answer.

a. All discrete variables can be represented by integers.

b. Discrete optimization algorithms sometimes use heuristics
and find only approximate solutions.

c. The rounding technique solves a discrete optimization prob-
lem with continuous variables and then rounds each result-
ing design variable, objective, and constraint to the nearest
integer.

d. Exhaustive search is the only way to be sure we have found
the global minimum for a problem that involves discrete
variables.

e. The branch-and-bound method is guaranteed to find the
global optimum for convex problems.

f. When using the branch-and-bound method for binary vari-
ables, the same variable might have to be revisited.

g. When using the branch-and-boundmethod, the breadth-first
strategy requires less memory storage than the depth-first
strategy.

h. Greedy algorithms never reconsider a decision once it has
been made.

i. The Markov property applies when a future state can be
predicted from the current state without needing to know
any previous state.

j. Both memoization and tabulation reduce the computational
complexity of dynamic programming such that it no longer
scales exponentially.

k. Simulated annealing can be used to minimize smooth uni-
modal functions of continuous design variables.

l. Simulated annealing, genetic algorithms, and dynamic pro-
gramming include stochastic procedures.

8.2 Branch and bound. Solve the following problem using a manual
branch-and-bound approach (i.e., show each LP subproblem), as

8 Discrete Optimization 353

is done in Ex. 8.4:

maximize 0.5G1 + 2G2 + 3.5G3 + 4.5G4

subject to 5.5G1 + 0.5G2 + 3.5G3 + 2.3G4 ≤ 9.2
2G1 + 4G2 + 2G4 ≤ 8
1G1 + 3G2 + 3G3 + 4G4 ≤ 4
G8 ∈ {0, 1} for all 8.

8.3 Solve an integer linear programming problem. A chemical company
produces four types of products: A, B, C, and D. Each requires
labor to produce and uses some combination of chlorine, sulfuric
acid, and sodium hydroxide in the process. The production
process can also produce these chemicals as a by-product, rather
than just consuming them. The chemical mixture and labor
required for the production of the three products are listed in the
following table, along with the availability per day. The market
values for one barrel of A, B, C, and D are $50, $30, $80, and $30,
respectively. Determine the number of barrels of each to produce
to maximize profit using three different approaches:

a. As a continuous linear programmingproblemwith rounding
b. As an integer linear programming problem
c. Exhaustive search

A B C D Limit

Chlorine 0.74 −0.05 1.0 −0.15 97
Sodium hydroxide 0.39 0.4 0.91 0.44 99
Sulfuric acid 0.86 0.89 0.09 0.83 52
Labor (person-hours) 5 7 7 6 1000

Discuss the results.

8.4 Solve a dynamic programming problem. Solve the knapsack problem
with the following weights and costs:

F8 = [2, 5, 3, 4, 6, 1]
28 = [5, 3, 1, 5, 7, 2]

and a capacity of = 12. Maximize the cost subject to the capacity
constraint. Use the following two approaches:

a. A greedy algorithm where you take the item with the best
cost-to-weight ratio (that fits within the remaining capacity)
at each iteration

8 Discrete Optimization 354

b. Dynamic programming

8.5 Simulated annealing. Construct a traveling salesperson problem
with 50 randomly generated points. Implement a simulated
annealing algorithm to solve it.

8.6 Binary genetic algorithm. Solve the same problem as previously
(traveling salesperson) with a binary genetic algorithm.

9Multiobjective Optimization
Up to this point in the book, all of our optimization problem formula-
tions have had a single objective function. In this chapter, we consider
multiobjective optimization problems, that is, problems whose formula-
tions have more than one objective function. Some common examples
of multiobjective optimization include risk versus reward, profit versus
environmental impact, acquisition cost versus operating cost, and drag
versus noise.

By the end of this chapter you should be able to:

1. Identify scenarios where multiobjective optimization is
useful.

2. Understand the concept of dominance and identify aPareto
set.

3. Use various methods for performing multiobjective opti-
mization and understand the pros and cons of themethods.

9.1 Multiple Objectives
Before discussing how to solve multiobjective problems, we must first
explore what it means to have more than one objective. In some
sense, there is no such thing as a multiobjective optimization problem.
Although many metrics are important to the engineer, only one thing
can be made best at a time. A common technique when presented with
multiple objectives is to assign weights to the various objectives and
combine them into a single objective.

More generally, multiobjective optimization helps explore the trade-
offs between different metrics. Still, if we select one design from
the presented options, we have indirectly chosen a single objective.
However, the corresponding objective function may be difficult to
formulate beforehand.

355

9 Multiobjective Optimization 356

Tip 9.1 Are you sure you have multiple objectives?
A common pitfall for beginner optimization practitioners is to categorize

a problem as multiobjective without critical evaluation. When considering
whether you should usemore than one objective, you should askwhether or not
there is a more fundamental underlying objective or if some of the “objectives”
are actually constraints. Solving a multiobjective problem is much more costly
than solving a single objective one, so you should make sure you need multiple
objectives.

Example 9.1 Selecting an objective
Determining the appropriate objective is often a real challenge. For ex-

ample, in designing an aircraft, we may decide that minimizing drag and
minimizing weight are important. However, these metrics compete with each
other and cannot be minimized simultaneously. Instead, we may conclude
that maximizing range (the distance the aircraft can fly) is the underlying
metric that matters most for our application and appropriately balances the
trade-offs between weight and drag. Or perhaps maximizing range is not the
right metric. Range may be important, but only insofar as we reach some
threshold. Increasing the range does not increase the value because the range
is a constraint. The underlying objective in this scenario may be some other
metric, such as operating costs.

Despite these considerations, there are still good reasons to pursue
a multiobjective problem. A few of the most common reasons are as
follows:

1. Multiobjective optimization can quantify the trade-off between
different objectives. The benefits of this approach will become ap-
parent when we discuss Pareto surfaces and can lead to important
design insights.

2. Multiobjective optimization provides a “family” of designs rather
than a single design. A family of options is desirable when
decision-making needs to be deferred to a later stage as more
information is gathered. For example, an executive team or
higher-fidelity numerical simulations may be used to make later
design decisions.

3. For some problems, the underlying objective is either unknown
or too difficult to compute. For example, cost and environmental
impact may be two important metrics for a new design. Although
the latter could arguably be turned into a cost, doing so may

9 Multiobjective Optimization 357

�

�

�

51

52

Fig. 9.1 Three designs, �, �, and �,
are plotted against two objectives, 51
and 52. The region in the shaded
rectangle highlights points that are
dominated by design �.

be too difficult to quantify and add an unacceptable amount of
uncertainty (see Chapter 12).

Mathematically, the only change to our optimization problem for-
mulation is that the objective statement,

minimize
G

5 (G) , (9.1)

becomes

minimize
G

5 (G) =



51(G)
52(G)
...

5= 5 (G)


, where = 5 ≥ 2 . (9.2)

The constraints are unchanged unless some of them have been refor-
mulated as objectives. This multiobjective formulation might require
trade-offs when trying to minimize all functions simultaneously be-
cause, beyond some point, further reduction in one objective can only
be achieved by increasing one or more of the other objectives.

One exception occurs if the objectives are independent because they
depend on different sets of design variables. Then, the objectives are
said to be separable, and they can be minimized independently. If there
are constraints, these need to be separable as well. However, separable
objectives and constraints are rare because functions tend to be linked
in engineering systems.

Given that multiobjective optimization requires trade-offs, we need
a new definition of optimality. In the next section, we explain how there
is an infinite number of optimal points, forming a surface in the space of
objective functions. After defining optimality formultiple objectives, we
present several possiblemethods for solvingmultiobjective optimization
problems.

9.2 Pareto Optimality
With multiple objectives, we have to reconsider what it means for a
point to be optimal. In multiobjective optimization, we use the concept
of Pareto optimality.

Figure 9.1 shows three designs measured against two objectives that
we want to minimize: 51 and 52. Let us first compare design A with
design B. From the figure, we see that design A is better than design B
in both objectives. In the language of multiobjective optimization, we
say that design A dominates design B. One design is said to dominate

9 Multiobjective Optimization 358

51

52

Fig. 9.2 A plot of all the evaluated
points in the design space plotted
against two objectives, 51 and 52. The
set of red points is not dominated
by any other and is thus the current
approximation of the Pareto set.

−Power

N
oi

se

Fig. 9.3 A notional Pareto front repre-
sentingpower andnoise trade-offs for
a wind farm optimization problem.

another design if it is superior in all objectives (design A dominates
any design in the shaded rectangle). Comparing design A with design
C, we note that design A is better in one objective (51) but worse in the
other objective (52). Neither design dominates the other.

A point is said to be nondominated if none of the other evaluated
points dominate it (Fig. 9.2). If a point is nondominated by any point
in the entire domain, then that point is called Pareto optimal. This does
not imply that this point dominates all other points; it simply means no
other point dominates it. The set of all Pareto optimal points is called
the Pareto set. The Pareto set refers to the vector of points G∗, whereas
the Pareto front refers to the vector of functions 5 (G∗).

Example 9.2 A Pareto front in wind farm optimization
The Pareto front is a valuable tool to produce design insights. Figure 9.3

shows a notional Pareto front for a wind farm optimization. The two objectives
are maximizing power production (shown with a negative sign so that it is
minimized) and minimizing noise.

The Pareto front is helpful to understand trade-off sensitivities. For example,
the left endpoint represents the maximum power solution, and the right
endpoint represents the minimum noise solution. The nature of the curve on
the left side tells us how much power we have to sacrifice for a given reduction
in noise. If the slope is steep, as is the case in the figure, we can see that a small
sacrifice in maximum power production can be exchanged for significantly
reduced noise. However, if more significant noise reductions are sought, then
large power reductions are required. Conversely, if the left side of the figure
had a flatter slope, we would know that small reductions in noise would require
significant decreases in power. Understanding the magnitude of these trade-off
sensitivities helps make high-level design decisions.

9.3 Solution Methods
Various solution methods exist for solving multiobjective problems.
This chapter does not cover all methods but highlights some of themore
commonly used approaches. These include the weighted-sum method,
the epsilon-constraint method, the normal boundary intersection (NBI)
method, and evolutionary algorithms.

9.3.1 Weighted Sum
The weighted-sum method is easy to use, but it is not particularly
efficient. Other methods exist that are just as simple but have better

9 Multiobjective Optimization 359

51

52

−F
1 − F

Fig. 9.4 The weighted-sum method
defines a line for each value of F and
finds the point tangent to the Pareto
front.

51

52

F = 1

F = 0

Fig. 9.5 The convex portions of this
Pareto front are the portions high-
lighted.

performance. It is only introduced because it is well known and is
frequently used. The idea is to combine all of the objectives into one
objective using a weighted sum, which can be written as

5̄ (G) =
= 5∑
8=1

F8 58(G) , (9.3)

where = 5 is the number of objectives, and the weights are usually
normalized such that

= 5∑
8=1

F8 = 1 . (9.4)

If we have two objectives, the objective reduces to

5̄ (G) = F 51(G) + (1 − F) 52(G) , (9.5)

where F is a weight in [0, 1].
Consider a two-objective case. Points on the Pareto set are deter-

mined by choosing a weight F, completing the optimization for the
composite objective, and then repeating the process for a new value of
F. It is straightforward to see that at the extremes F = 0 and F = 1,
the optimization returns the designs that optimize one objective while
ignoring the other. The weighted-sum objective forms an equation for
a line with the objectives as the ordinates. Conceptually, we can think
of this method as choosing a slope for the line (by selecting F), then
pushing that line down and to the left as far as possible until it is just
tangent to the Pareto front (Fig. 9.4). With this form of the objective,
the slope of the line would be

d 52
d 51

=
−F

1 − F . (9.6)

This procedure identifies one point in the Pareto set, and the procedure
must then be repeated with a new slope.

The main benefit of this method is that it is easy to use. However,
the drawbacks are that (1) uniform spacing in F leads to nonuniform
spacing along with the Pareto set, (2) it is not apparent which values
of F should be used to sweep out the Pareto set evenly, and (3) this
method can only return points on the convex portion of the Pareto
front.

In Fig. 9.5, we highlight the convex portions of the Pareto front from
Fig. 9.4. If we utilize the concept of pushing a line down and to the left,
we see that these are the only portions of the Pareto front that can be
found using a weighted-sum method.

9 Multiobjective Optimization 360

159. Haimes et al., On a bicriterion formu-
lation of the problems of integrated system
identification and system optimization, 1971.

�51

52

Fig. 9.6 The vertical line represents
an upper bound constraint on 51. The
other objective, 52, is minimized to re-
veal one point in the Pareto set. This
procedure is then repeated for differ-
ent constraints on 51 to sweep out the
Pareto set.

160. Das and Dennis, Normal-boundary
intersection: A new method for generating
the Pareto surface in nonlinear multicriteria
optimization problems, 1998.

9.3.2 Epsilon-Constraint Method
The epsilon-constraint method works by minimizing one objective
while setting all other objectives as additional constraints:159

minimize
G

58

subject to 59 ≤ �9 for all 9 ≠ 8
6(G) ≤ 0
ℎ(G) = 0 .

(9.7)

Then, we must repeat this procedure for different values of �9 .
This method is visualized in Fig. 9.6. In this example, we constrain

51 to be less than or equal to a certain value and minimize 52 to find the
corresponding point on the Pareto front. We then repeat this procedure
for different values of �.

One advantage of this method is that the values of � correspond
directly to the magnitude of one of the objectives, so determining
appropriate values for � is more intuitive than selecting the weights in
the previous method. However, we must be careful to choose values
that result in a feasible problem. Another advantage is that this method
reveals the nonconvex portions of the Pareto front. Both of these reasons
strongly favor using the epsilon-constraint method over the weighted-
sum method, especially because this method is not much harder to use.
Its main limitation is that, like the weighted-sum method, a uniform
spacing in � does not generally yield a uniform spacing of the Pareto
front (though it is usually much better spaced than weighted-sum), and
therefore it might still be inefficient, particularly with more than two
objectives.

9.3.3 Normal Boundary Intersection
TheNBImethod is designed to address the issue of nonuniform spacing
along the Pareto front.160 We first find the extremes of the Pareto set; in
other words, we minimize the objectives one at a time. These extreme
points are referred to as anchor points. Next, we construct a plane that
passes through the anchor points. We space points along this plane
(usually evenly) and, starting from those points, solve optimization
problems that search along directions normal to this plane.

This procedure is shown in Fig. 9.7 for a two-objective case. In this
case, the plane that passes through the anchor points is a line. We
now space points along this line by choosing a vector of weights 1, as
illustrated on the left-hand of Fig. 9.7. The weights are constrained such

https://dx.doi.org/10.1109/tsmc.1971.4308298
https://dx.doi.org/10.1109/tsmc.1971.4308298
https://dx.doi.org/10.1109/tsmc.1971.4308298
https://dx.doi.org/10.1137/s1052623496307510
https://dx.doi.org/10.1137/s1052623496307510
https://dx.doi.org/10.1137/s1052623496307510
https://dx.doi.org/10.1137/s1052623496307510

9 Multiobjective Optimization 361

that 18 ∈ [0, 1], and ∑
8 18 = 1. If we make 18 = 1 and all other entries

zero, then this equation returns one of the anchor points, 5 (G∗8). For
two objectives, we would set 1 = [F, 1 − F] and vary F in equal steps
between 0 and 1.

51

52

5 (G∗1)

5 (G∗2)
5 ∗

%1 + 5 ∗

1 = [0.8, 0.2]

51

52

5 (G∗1)

5 (G∗2)
5 ∗

%1 + 5 ∗

=̂
Fig. 9.7 A notional example of the
NBI method. A plane is created that
passes through the single-objective
optima (the anchor points), and solu-
tions are sought normal to that plane
for amore evenly spaced Pareto front.

Starting with a specific value of 1, we search along a direction
perpendicular to the line defined by the anchor points, represented by

=̂ in Fig. 9.7 (right). We seek to find the point along this direction
that is the farthest away from the anchor points line (a maximization
problem), with the constraint that the point is consistent with the
objective functions. The resulting optimal point found along this
direction is a point on the Pareto front. We then repeat this process for
another set of weighting parameters in 1.

We can see how this method is similar to the epsilon-constraint
method, but instead of searching along lines parallel to one of the axes,
we search along lines perpendicular to the plane defined by the anchor
points. The idea is that even spacing along this plane is more likely to
lead to even spacing along the Pareto front.

Mathematically, we start by determining the anchor points, which
are just single-objective optimization problems. From the anchor
points, we define what is called the utopia point. The utopia point is an
ideal point that cannot be obtained, where every objective reaches its
minimum simultaneously (shown in the lower-left corner of Fig. 9.7):

5 ∗ =



51(G∗1)
52(G∗2)
...

5=(G∗=)


, (9.8)

where G∗8 denotes the design variables that minimize objective 58 . The
utopia point defines the equation of a plane that passes through all
anchor points,

%1 + 5 ∗ , (9.9)

9 Multiobjective Optimization 362

161. Ismail-Yahaya and Messac, Effective
generation of the Pareto frontier using the
normal constraint method, 2002.

162. Messac and Mattson, Normal con-
straint method with guarantee of even repre-
sentation of complete Pareto frontier, 2004.

163. Hancock and Mattson, The smart nor-
mal constraint method for directly generating
a smart Pareto set, 2013.

where the 8th column of % is 5 (G∗8) − 5 ∗. A single vector 1, whose length
is given by the number of objectives, defines a point on the plane.

We now define a vector (=̂) that is normal to this plane, in the
direction toward the origin. We search along this vector using a step
length
, while maintaining consistency with our objective functions
5 (G) yielding

5 (G) = %1 + 5 ∗ +
=̂ . (9.10)

Computing the exact normal (=̂) is involved, and the vector does
not need to be exactly normal. As long as the vector points toward the
Pareto front, then it will still yield well-spaced points. In practice, a
quasi-normal vector is often used, such as,

=̃ = −%4 , (9.11)

where 4 is a vector of 1s.
We now solve the following optimization problem, for a given vector

1, to yield a point on the Pareto front:

maximize
G,

subject to %1 + 5 ∗ +
=̂ = 5 (G)
6(G) ≤ 0
ℎ(G) = 0 .

(9.12)

This means that we find the point farthest away from the anchor-point
plane, starting from a given value for 1, while satisfying the original
problem constraints. The process is then repeated for additional values
of 1 to sweep out the Pareto front.

In contrast to the previouslymentionedmethods, this method yields
a more uniformly spaced Pareto front, which is desirable for computa-
tional efficiency, albeit at the cost of a more complex methodology.

For most multiobjective design problems, additional complexity
beyond the NBI method is unnecessary. However, even this method
can still have deficiencies for problems with unusual Pareto fronts,
and new methods continue to be developed. For example, the normal
constraint method uses a very similar approach,161 but with inequality
constraints to address a deficiency in the NBI method that occurs when
the normal line does not cross the Pareto front. This methodology has
undergone various improvements, including better scaling through
normalization.162 A more recent improvement performs an even more
efficient generation of the Pareto frontier by avoiding regions of the
Pareto front where minimal trade-offs occur.163

https://dx.doi.org/10.2514/6.2002-178
https://dx.doi.org/10.2514/6.2002-178
https://dx.doi.org/10.2514/6.2002-178
https://dx.doi.org/10.2514/1.8977
https://dx.doi.org/10.2514/1.8977
https://dx.doi.org/10.2514/1.8977
https://dx.doi.org/10.1007/s00158-013-0925-6
https://dx.doi.org/10.1007/s00158-013-0925-6
https://dx.doi.org/10.1007/s00158-013-0925-6

9 Multiobjective Optimization 363

∗The first application of an evolution-
ary algorithm for solving a multiobjective
problem was by Schaffer.164

164. Schaffer, Some experiments in machine
learning using vector evaluated genetic
algorithms. 1984.

51

52

Fig. 9.9 Population for a multiob-
jective GA iteration plotted against
two objectives. The nondominated
set is highlighted at the bottom left
and eventually converges toward the
Pareto front.

Example 9.3 A two-dimensional normal boundary interface problem

(5, 1)

(2, 3)

5 ∗

=̂

1 2 3 4 5 6
0

1

2

3

4

51

52

Fig. 9.8 Search directions are normal
to the line connecting anchor points.

First, we optimize the objectives one at a time, which in our example results
in the two anchor points shown in Fig. 9.8: 5 (G∗1) = (2, 3) and 5 (G∗2) = (5, 1).
The utopia point is then

5 ∗ =
[
2
1

]
.

For the matrix %, recall that the 8th column of % is 5 (G∗8) − 5 ∗:

% =

[
0 3
2 0

]
.

Our quasi-normal vector is given by −%4 (note that the true normal is
[−2,−3]):

=̃ =

[−3
−2

]
.

We now have all the parameters we need to solve Eq. 9.12.

9.3.4 Evolutionary Algorithms
Gradient-freemethods can, andoccasionally do, use all of the previously
described methods. However, evolutionary algorithms also enable a
fundamentally different approach. Genetic algorithms (GAs), a specific
type of evolutionary algorithm, were introduced in Section 7.6.∗

AGA is amenable to an extension that can handlemultiple objectives
because it keeps track of a large population of designs at each iteration.
If we plot two objective functions for a given population of a GA
iteration, we get something like that shown in Fig. 9.9. The points
represent the current population, and the highlighted points in the
lower left are the current nondominated set. As the optimization
progresses, the nondominated set moves further down and to the left
and eventually converges toward the actual Pareto front.

9 Multiobjective Optimization 364

†The NSGA-II algorithm was developed
by Deb et al.148 Some key developments
include using the concept of domination
in the selection process, preserving diver-
sity among the nondominated set, and us-
ing elitism.165

148. Deb et al., A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II, 2002.

165. Deb, Introduction to evolutionary
multiobjective optimization, 2008.

166. Kung et al., On finding the maxima of
a set of vectors, 1975.

In the multiobjective version of the GA, the reproduction and
mutation phases are unchanged from the single-objective version. The
primary difference is in determining the fitness and the selection
procedure. Here, we provide an overview of one popular approach,
the elitist nondominated sorting genetic algorithm (NSGA-II).†

A step in the algorithm is to find a nondominated set (i.e., the
current approximation of the Pareto set), and several algorithms exist
to accomplish this. In the following, we use the algorithm by Kung
et al.,166 which is one of the fastest. This procedure is described in
Alg. 9.1, where “front” is a shorthand for the nondominated set (which
is just the current approximation of the Pareto front). The algorithm
recursively divides the population in half and finds the nondominated
set for each half separately.

Algorithm 9.1 Find the nondominated set using Kung’s algorithm
Inputs:
?: A population sorted by the first objective

Outputs:
5 : The nondominated set for the population

procedure front(?)
if length(?) = 1 then If there is only one point, it is the front

return f
end if
Split population into two halves ?C and ?1
⊲ Because input was sorted, ?C will be superior to ?1 in the first objective
C = front(?C) Recursive call to find front for top half
1 = front(?1) Recursive call to find front for bottom half
Initialize 5 with the members from C merged population
for 8 = 1 to length(1) do

dominated = false Track whether anything in C dominates 18
for 9 = 1 to length(C) do

if C 9 dominates 18 then
dominated = true
break No need to continue search through C

end if
end for
if not dominated then 18 was not dominated by anything in C

Add 18 to 5
end if

end for
return 5

end procedure

https://dx.doi.org/10.1109/4235.996017
https://dx.doi.org/10.1109/4235.996017
https://dx.doi.org/10.1007/978-3-540-88908-3_3
https://dx.doi.org/10.1007/978-3-540-88908-3_3
https://dx.doi.org/10.1145/321906.321910
https://dx.doi.org/10.1145/321906.321910

9 Multiobjective Optimization 365

51

52

rank = 1
rank = 2
rank = 3
rank ≥ 4

Fig. 9.10 Points in the population
highlighted by rank.

Before calling the algorithm, the population should be sorted by
the first objective. First, we split the population into two halves, where
the top half is superior to the bottom half in the first objective. Both
populations are recursively fed back through the algorithm to find their
nondominated sets. We then initialize a merged population with the
members of the top half. All members in the bottom half are checked,
and any that are nondominated by anymember of the top half are added
to the merged population. Finally, we return the merged population as
the nondominated set.

With NSGA-II, in addition to determining the nondominated set,
we want to rank all members by their dominance depth, which is also
called nondominated sorting. In this approach, all nondominated points
in the population (i.e., the current approximation of the Pareto set) are
given a rank of 1. Those points are then removed from the set, and
the next set of nondominated points is given a rank of 2, and so on.
Figure 9.10 shows a sample population and illustrates the positions of
the points with various rank values. There are alternative procedures
that perform nondominated sorting directly, but we do not detail them
here. This algorithm is summarized in Alg. 9.2.

The new population in the GA is filled by placing all rank 1 points
in the new population, then all rank 2 points, and so on. At some point,
an entire group of constant rank will not fit within the new population.
Points with the same rank are all equivalent as far as Pareto optimality is
concerned, so an additional sorting mechanism is needed to determine
which members of this group to include.

Algorithm 9.2 Perform nondominated sorting
Inputs:
?: A population

Outputs:
rank: The rank for each member in the population

A = 1 Initialize current rank
B = ? Set subpopulation as entire population
while length(B) > 0 do

5 = front(sort(B)) Identify the current front
Set rank for every member of 5 to A
Remove all members of 5 from B
A = A + 1 Increment rank

end while

9 Multiobjective Optimization 366

51

52

Fig. 9.11 A cuboid around one
point, demonstrating the definition
of crowding distance (except that the
distances are normalized).

We perform selection within a group that can only partially fit
to preserve diversity. Points in this last group are ordered by their
crowding distance, which is a measure of how spread apart the points
are. The algorithm seeks to preserve points that are well spread. For
each point, a hypercube in objective space is formed around it, which,
in NSGA-II, is referred to as a cuboid. Figure 9.11 shows an example
cuboid considering the rank 3 points from Fig. 9.10. The hypercube
extends to the function values of its nearest neighbors in the function
space. That does not mean that it necessarily touches its neighbors
because the two closest neighbors can differ for each objective. The
sum of the dimensions of this hypercube is the crowding distance.

When summing the dimensions, each dimension is normalized by
the maximum range of that objective value. For example, considering
only 51 for the moment, if the objectives were in ascending order, then
the contribution of point 8 to the crowding distance would be

31,8 =
51 8+1 − 51 8−1
51=? − 511

. (9.13)

where =? is the size of the population. Sometimes, instead of using the
first and last points in the current objective set, user-supplied values are
used for the min and max values of 5 that appear in that denominator.
The anchor points (the single-objective optima) are assigned a crowding
distance of infinity because we want to preference their inclusion. The
algorithm for crowding distance is shown in Alg. 9.3.

Algorithm 9.3 Crowding distance
Inputs:
?: A population

Outputs:
3: Crowding distances

Initialize 3 with zeros
for 8 = 1 to number of objectives do

Set 5 as a vector containing the 8th objective for each member in ?
B = sort(5) and let � contain the corresponding indices (B = 5�)
3�1 = ∞ Anchor points receive an infinite crowding distance
3�= = ∞
for 9 = 2 to =? − 1 do Add distance for interior points

3�9 = 3�9 + (B 9+1 − B 9−1)/(B=? − B1)
end for

end for

9 Multiobjective Optimization 367

We can now put together the overall multiobjective GA, as shown
in Alg. 9.4, where we use the components previously described (non-
dominated set, nondominated sorting, and crowding distance).

Algorithm 9.4 Elitist nondominated sorting genetic algorithm
Inputs:
G: Variable upper bounds
G: Variable lower bounds

Outputs:
G∗: Best point

Generate initial population
while Stopping criterion is not satisfied do

Using a parent population %, proceed as a standard GA for selection,
crossover, andmutation, but use a crowded tournament selection to produced
an offspring population $

� = % ∪ $ Combine populations
Compute rank8 for 8 = 1, 2, . . . of � using Alg. 9.2
⊲ Fill new parent population with as many whole ranks as possible
% = ∅
A = 1
while true do

set � as all �8 with rank8 = A
if length(%) + length(�) > =? then

break
end if
add � to %
A = A + 1

end while
⊲ For last rank that does not fit, add by crowding distance
if length(%) < =? then Population is not full

d = crowding(�) Alg. 9.3, using last � from terminated previous loop
< = =? − length(%) Determine how many members to add
Sort � by the crowding distance 3 in descending order
Add the first < entries from � to %

end if
end while

The crossover and mutation operations remain the same. Tourna-
ment selection (Fig. 7.25) is modified slightly to use this algorithm’s
ranking and crowding metrics. In the tournament, a member with a
lower rank is superior. If two members have the same rank, then the

9 Multiobjective Optimization 368

0 2 4 6 8 10
0

2

4

6

8

10

A
B

CD

E
F

G

H

I

J
K

L

51

52

Fig. 9.12 Population for Ex. 9.4.

one with the larger crowding distance is selected. This procedure is
called crowded tournament selection.

After reproduction and mutation, instead of replacing the parent
generationwith the offspring generation, both the parent generation and
the offspring generation are saved as candidates for the next generation.
This strategy is called elitism, which means that the best member in the
population is guaranteed to survive.

The population size is now twice its original size (2=?), and the
selection processmust reduce the population back down to size =? . This
is done using the procedure explained previously. The new population
is filled by including all rank 1 members, rank 2 members, and so on
until an entire rank can no longer fit. Inclusion for members of that
last rank is done in the order of the largest crowding distance until
the population is filled. Many variations are possible, so although the
algorithm is based on the concepts of NSGA-II, the details may differ
somewhat.

The main advantage of this multiobjective approach is that if an evo-
lutionary algorithm is appropriate for solving a given single-objective
problem, then the extra information needed for a multiobjective prob-
lem is already there, and solving the multiobjective problem does not
incur much additional computational cost. The pros and cons of this
approach compared to the previous approaches are the same as those
of gradient-based versus gradient-free methods, except that the multi-
objective gradient-based approaches require solving multiple problems
to generate the Pareto front. Still, solving multiple gradient-based
problems may be more efficient than solving one gradient-free problem,
especially for problems with a large number of design variables.

Example 9.4 Filling a new population in NSGA-II
After reproduction and mutation, we are left with a combined population

of parents and offspring. In this small example, the combined population is of
size 12, so we must reduce it back to 6. This example has two objectives, and
the values for each member in the population are shown in the following table,
where we assign a letter to each member. The population is plotted in Fig. 9.12.

A B C D E F G H I J K L
51 5 7 10 1 3 10 5 6 9 6 9 4
52 8 9 4 4 7 6 10 3 5 1 2 10

First, we compute the ranks using Alg. 9.2, resulting in the following output:

A B C D E F G H I J K L
3 4 3 1 2 4 4 2 3 1 2 3

9 Multiobjective Optimization 369

We see that the current nondominated set consists of points D and J and that
there are four different ranks.

Next, we start filling the newpopulation in the order of rank. Ourmaximum
capacity is 6, so all rank 1 {D, J} and rank 2 {E, H, K} fit. We cannot add rank 3
{A, C, I, L} because the population size would be 9. So far, our new population
consists of {D, J, E, H, K}. To choose which items from rank 3 continue forward,
we compute the crowding distance for the members of rank 3:

A C I L
1.67 ∞ 1.5 ∞

We would then add, in order {C, L, A, I}, but we only have room for one, so we
add C and complete this iteration with a new population of {D, J, E, H, K, C}.

9.4 Summary
Multiobjective optimization is particularly useful in quantifying trade-
off sensitivities between critical metrics. It is also useful when we seek
a family of potential solutions rather than a single solution. Some
scenarios where a family of solutions might be preferred include when
the models used in optimization are low fidelity and higher-fidelity
design tools will be applied or when more investigation is needed.
A multiobjective approach can produce candidate solutions for later
refinement.

The presence of multiple objectives changes what it means for a de-
sign to be optimal. A design is Pareto optimal when it is nondominated
by any other design. The weighted-sum method is perhaps the most
well-known approach, but it is not recommended because other meth-
ods are just as easy and much more efficient. The epsilon-constraint
method is still simple yet almost always preferable to the weighted-sum
method. It typically provides a better spaced Pareto front and can
resolve any nonconvex portions of the front. If we are willing to use a
more complex approach, the normal boundary intersection method is
even more efficient at capturing a well-spaced Pareto front.

Some gradient-free methods, such as a multiobjective GA, can also
generate Pareto fronts. If a gradient-free approach is a good fit in the
single objective version of the problem, adding multiple objectives can
be done with little extra cost. Although gradient-free methods are
sometimes associated with multiobjective problems, gradient-based
algorithms may be more effective for many multiobjective problems.

9 Multiobjective Optimization 370

Problems
9.1 Answer true or false and justify your answer.

a. The solution of multiobjective optimization problems is
usually an infinite number of points.

b. It is advisable to include as many objectives as you can in
your problem formulation to make sure you get the best
possible design.

c. Multiobjective optimization can quantify trade-offs between
objectives and constraints.

d. If the objectives are separable, that means that they can be
minimized independently and that there is no Pareto front.

e. A point � dominates point � if it is better than � in at least
one objective.

f. The Pareto set is the set of points that dominate all other
points in the objective space.

g. When a point is Pareto optimal, you cannot make either of
the objectives better.

h. The weighted-sum method obtains the Pareto front by solv-
ing optimization problems with different objective functions.

i. The epsilon-constraint method obtains the Pareto front by
constraining one objective and minimizing all the others.

j. The utopia point is the point where every objective has a
minimum value.

k. It is not possible to compute a Pareto front with a single-
objective optimizer.

l. Because GAs optimize by evolving a population of diverse
designs, they can be used for multiobjective optimization
without modification.

9.2 Which of the following function value pairs would be Pareto
optimal in a multiobjective minimization problem (there may be
more than one)?

• (20, 4)
• (18, 5)
• (34, 2)
• (19, 6)

9 Multiobjective Optimization 371

9.3 You seek to minimize the following two objectives:

51(G) = G2
1 + G2

2

52(G) = (G1 − 1)2 + 20(G2 − 2)2.
Identify the Pareto front using the weighted-sum method with
11 evenly spaced weights: 0, 0.1, 0.2, . . . , 1. If some parts of the
front are underresolved, discuss how you might select weights
for additional points.

9.4 Repeat Prob. 9.3 with the epsilon-constraint method. Constrain 51
with 11 evenly spaced points between the anchor points. Contrast
the Pareto front with that of the previous problem, and discuss
whether improving the front with additional points will be easier
with the previous method or with this method.

9.5 Repeat Prob. 9.3 with the normal boundary intersection method
using the following 11 evenly spaced points:

1 = [0, 1], [0.1, 0.9], [0.2, 0.8], . . . , [1, 0].
9.6 Consider a two-objective populationwith the following combined

parent/offspring population (objective values shown for all 16
members):

51 52

6.0 8.0
6.0 4.0
5.0 6.0
2.0 8.0
10.0 5.0
6.0 0.5
8.0 3.0
4.0 9.0
9.0 7.0
8.0 6.0
3.0 1.0
7.0 9.0
1.0 2.0
3.0 7.0
1.5 1.5
4.0 6.5

Develop code based on the NSGA-II procedure and determine
the new population at the end of this iteration. Detail the results
of each step during the process.

Optimizer

Surrogate
model

Model

G

G 5 , 6

5̂ , 6̂

Fig. 10.1 Surrogate-based optimiza-
tion replaces the original model with
a surrogatemodel in the optimization
process.

10Surrogate-Based Optimization
A surrogate model, also known as a response surface model or metamodel,
is an approximate model of a functional output that represents a “curve
fit” to some underlying data. The goal of a surrogate model is to build
a model that is much faster to compute than the original function, but
that still retains sufficient accuracy away from known data points.

Surrogate-based optimization (SBO) performs optimization using
the surrogate model, as shown in Fig. 10.1. When used in optimization,
the surrogate might define the full optimization model (i.e., the inputs
are design variables, and the outputs are objective and constraint
functions), or the surrogate could be just a component of the overall
model. SBO is more targeted than the broader field of surrogate
modeling. Instead of aiming for a globally accurate surrogate, SBO just
needs the surrogate model to be accurate enough to lead the optimizer
to the true optimum.

In SBO, the surrogate model is usually improved during optimiza-
tion as needed but can sometimes be constructed beforehand and
remain fixed during optimization. Some optimization algorithms inter-
rogate both the surrogate model and the original model, an approach
that is sometimes called surrogate-assisted optimization.

By the end of this chapter you should be able to:

1. Identify and describe the steps in surrogate-based opti-
mization.

2. Understand and use sampling methods.

3. Optimize parameters for a given surrogate model.

4. Perform cross-validation as part of model selection.

5. Describe different surrogate-based optimization ap-
proaches and the infill process.

373

10 Surrogate-Based Optimization 374

10.1 When to Use a Surrogate Model
There are various scenarios for which surrogate models are helpful.
One scenario is when the original model is computationally expensive.
Surrogate models can be queried with minimal computational cost, but
constructing them requires multiple evaluations of the original model.
Suppose the number of evaluations needed to build a sufficiently
accurate surrogate model is less than that needed to optimize the
original model directly. In that case, SBO may be a worthwhile option.
Constructing a surrogate model becomes even more compelling when
it is reused in multiple optimizations.

Surrogate modeling can be effective in handling noisy models
because they create a smooth representation of noisy data. This can be
particularly advantageous when using gradient-based optimization.

One scenario that leads to both expensive evaluation and noisy
output is experimental data. When the model data are experimental
and the optimizer cannot query the experiment in an automated way,
we can construct a surrogate model based on the experimental data.
Then, the optimizer can query the surrogate model in the optimization.

Surrogate models are also helpful when we want to understand
the design space, that is, how the objective and constraints (outputs)
vary with respect to the design variables (inputs). By constructing a
continuous model over discrete data, we obtain functional relationships
that can be visualized more effectively.

When multiple sources of data are available, surrogate models can
fuse the data to build a single model. The data could come from
numerical models with different levels of fidelity or experimental data.
For example, surrogate models can calibrate numerical model data
using experimental data. This is helpful because experimental data is
usually much more scarce than numerical data. The same reasoning
applies to low- versus high-fidelity numerical data.

One potential issue with surrogate models is the curse of dimension-
ality, which refers to poor scalability with the number of inputs. The
larger the number of inputs, the more model evaluations are needed
to construct a surrogate model that is accurate enough. Therefore, the
reasons for using surrogate models cited earlier might not be enough if
the optimization problem has a large number of design variables.

The SBO process is shown in Fig. 10.2. First, we use sampling
methods to choose the initial points to evaluate the function or conduct
experiments. These points are sometimes referred to as training data.
Next, we build a surrogate model from the sampled points. We can
then perform optimization by querying the surrogate model. Based

10 Surrogate-Based Optimization 375

Sample

Construct
surrogate

Perform
optimization

Converged?

Done

Infill

Yes

No

Fig. 10.2 Overview of surrogate-
based optimization procedure.

on the results of the optimization, we include additional points in the
sample and reconstruct the surrogate (infill). We repeat this process
until some convergence criterion or a maximum number of iterations is
reached. In some procedures, infill is omitted; the surrogate is entirely
constructed upfront and not subsequently updated.

The optimization step can be performed using any of the methods
we covered previously. Because surrogate models are smooth and
their gradients are easily computed, gradient-based optimization is
preferred (see Chapter 4). However, some surrogate models can be
highly multimodal, in which case a global search is preferred, either
using gradient-based with multistart (see Tip 4.8) or a global gradient-
free method (see Chapter 7).

This chapter discusses sampling, constructing a surrogate, and
infill with some associated optimization strategies. We devote separate
sections to two surrogate modeling methods that are more involved
and widely used: kriging and deep neural nets. Many of the concepts
discussed in this chapter have a wide range of applications beyond
optimization.

Tip 10.1 Surrogate models can be useful within your model
In the context of SBO, we usually replace the function evaluation with a

surrogate model, as shown in Fig. 10.1. However, it might not be advantageous
to replace the whole model, but replace only part of that model instead. If a
component of the model is evaluated frequently and does not have too many
inputs, this approach might be worthwhile.

For example, when performing trajectory optimization of an aircraft, we
need to evaluate the lift and drag of the aircraft at each point of the trajectory.
This typically requires many points, and computing the lift and drag at each
point might be prohibitive. Therefore, it might be worthwhile to use surrogate
models that predict the lift and drag as functions of the angle of attack. If the
optimization design variables include parameters that change the lift and drag
characteristics, such as the wing shape, then the surrogate model needs to be
rebuilt at every optimization iteration.

10.2 Sampling
Sampling methods, also known as sampling plans, select the evaluation
points to construct the initial surrogate. These evaluation pointsmust be
chosen carefully. A straightforward approach is full factorial sampling,
where we discretize each dimension and evaluate at all combinations

10 Surrogate-Based Optimization 376

of the resulting grid. This is not efficient because it scales exponentially
with the number of input variables.

Example 10.1 Full factorial sampling is not scalable
Imagine a numerical model that computes the endurance of an aircraft.

Suppose we only wanted to understand how endurance varied with one
variable, such as wingspan. In that case, we could evaluate the model multiple
times and fit a curve that could predict endurance at wingspans that we did
not directly evaluate. If the model evaluation is computationally expensive, so
that evaluating many points is prohibitive, we might use a relatively coarse
sampling (say, 12 points). As long as the endurance changes are gradual across
the domain, fitting a spline through these few points can generate a useful
predictive model.

Now imagine that we have nine additional input variables that we care
about: wing area, taper ratio, wing root twist, wingtip twist, wing dihedral,
propeller spanwise position, battery size, tail area, and tail longitudinal position.
If we discretized all 10 variables with the same coarse 12 intervals each, a
full factorial sample would require 1210 model evaluations (approximately 62
billion) to assess all combinations. Thus, this type of sampling plan is not
scalable.

Example 10.1 highlights one of the significant challenges of sampling
methods: the curse of dimensionality. For SBO, even with better
sampling plans, using a large number of variables is costly. We need to
identify the most important or most influential variables. Knowledge
of the particular domain is helpful, as is exploring the magnitude of
the entries in a gradient vector (Chapter 6) across multiple points in the
domain. We can use various strategies to help us decidewhich variables
matter most, but for our purposes, we assume that the most influential
variables have already been determined so that the dimensionality is
reasonable. Having selected a set of variables, we are now interested in
sampling methods that characterize the design space of interest more
efficiently than full factorial sampling.

In addition to their use in SBO, the sampling strategies discussed in
this section are useful in many other applications, including various
applications discussed in this book: initializing a genetic algorithm
(Section 7.6), particle swarm optimization (Section 7.7) or a multistart
gradient-based algorithm (Tip 4.8), or choosing the points to run
in a Monte Carlo simulation (Section 12.3.3). Because the function
behavior at each sample is independent, we can efficiently parallelize
the evaluation of the functions.

10 Surrogate-Based Optimization 377

Fig. 10.4 A two-dimensional design
space divided into eight intervals in
each dimension.

10.2.1 Latin Hypercube Sampling
Latin hypercube sampling (LHS) is a popular sampling method that is
built on a random process but is more effective and efficient than pure
random sampling. Random sampling scales better than full factorial
searches, but it tends to exhibit clustering and requires many points
to reach the desired distribution (i.e., the law of large numbers). For
example, Fig. 10.3 compares 50 randomly generated points across uni-
form distributions in two dimensions versus Latin hypercube sampling.
In random sampling, each sample is independent of past samples, but
in LHS, we choose all samples beforehand to ensure a well-spread
distribution.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

G1

G2

Random

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

G1

G2

Latin hypercube sampling

Fig. 10.3 Contrast between random
and Latin hypercube sampling with
50 points using uniform distribu-
tions.

To describe the methodology, consider two random variables with
bounds, whose design space we can represent as a square. Say we
wanted only eight samples; we could divide the design space into
eight intervals in each dimension, generating the grid of cells shown in
Fig. 10.4.

A full factorial search would identify a point in each cell, but that
does not scale well. To be as efficient as possible and still cover the
variation, wewouldwant each row and each column to have one sample
in it. In other words, the projection of points onto each dimension
should be uniform. For example, the left side of Fig. 10.5 shows the
projection of a uniform LHS onto each dimension. We see that the
points create a uniformly spread histogram.

The concept where one and only one point exists in any given row
or column is called a Latin square, and the generalization to higher
dimensions is called a Latin hypercube. There are many ways to achieve
this, and some choices are better than others. Consider the sampling

10 Surrogate-Based Optimization 378

G1

G2

Uniform distribution in each direction
G1

G2

Normal distribution in each direction

Fig. 10.5 Example LHS with projec-
tions onto the axes.

plan shown on the left of Fig. 10.6. This plan meets our criteria but
clearly does not fill the space and likelywill not capture the relationships
between design parameterswell. Alternatively, the right side of Fig. 10.6
has a sample in each row and column while also spanning the space
much more effectively.

A sampling strategy whose projec-
tion uniformly spans each dimension
but does not fill the space well

A sampling strategy whose projec-
tion uniformly spans each dimension
and fills the space more effectively

Fig. 10.6 Contrasting sampling strate-
gies that both fulfill the uniform pro-
jection requirement.

LHS can be posed as an optimization problem where we seek to
maximize the distance between the samples. The constraint is that the
projection on each axis must follow a chosen probability distribution.
The specified distribution is often uniform, as in the previous examples,
but it could also be any distribution, such as a normal distribution, as
shown on the right side of Fig. 10.5. This optimization problem does not
have a unique solution, so random processes are used to determine the
combination of points. Additionally, points are not usually placed in
cell centers but at a random location within a given cell to allow for the
possibility of reaching any point in the domain. The advantage of the

10 Surrogate-Based Optimization 379

∗PDFs and CDFs are reviewed in Ap-
pendix A.9.

LHS approach is that rather than relying on the law of large numbers to
fill out our chosen probability distributions, we enforce it as a constraint.
This method may still require many samples to characterize the design
space accurately, but it usually requires far fewer than pure random
sampling.

Instead of defining LHS as an optimization problem, amuch simpler
approach is typically used in which we ensure one sample per interval,
but we rely on randomness to choose point combinations. Although
this does not necessarily yield a maximum spread, it works well in
practice and is simple to implement. Before discussing the algorithm,
we discuss how to generate other distributions besides just uniform
distributions.

We can convert from uniformly sampled points to an arbitrary
distribution using a technique called inversion sampling. Assume that
we want to generate samples G from an arbitrary probability density
function (PDF) ?(G) or, equivalently, from the corresponding cumulative
distribution function (CDF) %(G).∗ The probability integral transform
states that for any continuous CDF, H = %(G), the variable H is uniformly
distributed (a simple proof, but it is not shown here to avoid introducing
additional notation). The procedure is to randomly sample from a
uniform distribution (e.g., generate H), then compute the corresponding
G such that %(G) = H, which we denote as G = %−1H. This latter step is
known as an inverse CDF, a percent-point function, or a quantile function.
This process is depicted in Fig. 10.7 for a normal distribution. This
same procedure allows us to use LHS with any distribution, simply by
generating the samples on a uniform distribution.

CDF

PDF

−4 −3 −2 −1 0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

G

H

Fig. 10.7 An example of inversion
sampling with a normal distribution.
A few uniform samples are shown on
the H-axis. The points are evaluated
by the inverse CDF, represented by
the arrows passing through the CDF
for a normal distribution. If enough
samples are drawn, the resulting dis-
tribution will be the PDF of a normal
distribution.

A typical algorithm is described in Alg. 10.1. For each axis, we parti-
tion the CDF in =B evenly spaced regions (evenly spaced along the CDF,

10 Surrogate-Based Optimization 380

0 0.25 0.5 0.75 1
−3

−2

−1

0

1

2

3

G1

G2

Fig. 10.8 An example from the LHS
algorithm showing uniform distribu-
tion in G1 and a Gaussian distribution
in G2 with eight sample points. The
equiprobable bins are shown as grid
lines.

which means that each region is equiprobable). We generate a random
number within each evenly spaced interval, where 0 corresponds to the
bottom of the interval and 1 to the top. We then evaluate the inverse
CDF as described previously so that the points match our specified
distribution (the CDF for a uniform distribution is just a line %(G) = G,
so the output is not changed). Next, the column of points for that axis
is randomly permuted. This process is repeated for each axis according
to its specified probability distribution.

Algorithm 10.1 Latin hypercube sampling
Inputs:
=B : Number of samples
=3 : Number of dimensions
% = {%1 , . . . , %=3 }: (optionally) A set of cumulative distribution functions

Outputs:
- = {G1 , . . . , G=B }: Set of sample points

for 9 = 1 to =3 do
for 8 = 1 to =B do

+8 9 =
8
=B
− '8 9
=B

where '8 9 ∈ U[0, 1] Randomly choose a value in each equally
spaced cell from uniform distribution

end for
-∗9 = %−1

9 (+∗9)where %9 is a CDF Evaluate inverse CDF
Randomly permute the entries of this column -∗9 Alternatively, permute the

indices 1 . . . =B in the prior for loop
end for

An example using Alg. 10.1 for eight points is shown in Fig. 10.8.
In this example, we use a uniform distribution for G1 and a normal
distribution for G2. There is one point in each equiprobable interval. As
stated before, randomness does not necessarily ensure a good spread,
but optimizing the spread is difficult because the function is highly
multimodal. Instead, to encourage high spread, we could generate
multiple Latin hypercube samples with this algorithm and select the
one with the largest sum of the distance between points.

10.2.2 Low-Discrepancy Sequences
Low-discrepancy sequences generate deterministic sequences of points
that are well spread. Each new point added in the sequence maintains
low discrepancy—discrepancy refers to the variation in point density
throughout the domain. Hence, a low-discrepancy set is close to even

10 Surrogate-Based Optimization 381

density (i.e., well spread). These sequences are called quasi-random
because they often serve as suitable replacements for applications
that use random sequences, but they are not random or even pseudo-
random.

An advantage of low-discrepancy sequences over LHS is that most
of the approaches do not require selecting all the samples beforehand.
These methods generate deterministic sequences; in other words, we
generate the same sequence of points whether we choose them before-
hand or add more later. This property is particularly advantageous in
iterative procedures. We may choose an initial sampling plan and add
more well-spread points to the sample later. This is not necessarily an
advantage for the methods of this chapter because the optimization
drives the selection of new points rather than continuing to seek spread-
out samples. However, this feature is useful for other applications, such
as quadrature, Monte Carlo simulations, and other problems where an
iterative sampling process is used to determine statistical convergence
(see Section 12.3). Low-discrepancy sequences add more points that
are well spread without having to throw out the existing samples. Even
in non-iterative procedures, these sampling strategies can be a useful
alternative.

Several of these sequences are built on generalizations of the one-
dimensional van der Corput sequence to more than one dimension. Such
sequences are defined by representing an integer 8 in a given integer
base 1 (the van der Corput sequence is always base 2):

8 = 00 + 011 + 0212 + . . . + 0A1A where 0 ∈ [0, 1 − 1] . (10.1)

If the base is 2, this is just a standard binary sequence (Section 7.6.1).
After determining the relevant coefficients (0 9), the 8th element of the
sequence is

)1(8) = 00
1
+ 01
12 +

02
13 + . . . +

0A
1A+1 . (10.2)

An algorithm to generate an element in this sequence, also known as a
radical inverse function for base 1, is given in Alg. 10.2.

For base 2, the sequence is as follows:
1
2 ,

1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
8 ,

7
8 ,

1
16 ,

9
16 , (10.3)

The interval is divided in half, and then each subinterval is also halved,
with new points spreading out across the domain (see Fig. 10.9).

Similarly, for base 3, the interval is split into thirds, then each
subinterval is split into thirds, and so on:

1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 ,

5
9 ,

8
9 ,

1
27 , (10.4)

10 Surrogate-Based Optimization 382

8 = 1

2

3

4

5

6

7

8

9
1
2

1
4

3
4

1
8

5
8

3
8

7
8

1
16

9
16

Fig. 10.9 Van Der Corput sequence.

†A set of numbers is pairwise prime if
there is no positive integer that can evenly
divide any pair of them, except 1. Typi-
cally, though,we just use thefirst =G prime
numbers.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

G1

G2

Fig. 10.10 Halton sequence with base
2 for G1 and base 3 for G2. First, 30
points are selected (in blue), and then
20 points are added (in red). These
points would be identical to 50 points
chosen at once.

Algorithm 10.2 Radical inverse function
Inputs:
8: 8th point in sequence
1: Base (integer)

Outputs:
): Generated point

13 = 1 Base used in denominator
) = 0
while 8 > 0 do

0 = mod(8 , 1) Coefficient
) =) + 0/13
13 = 13 · 1 Increase exponent in denominator
8 = Int(8/1) Integer division

end while

Halton Sequence
A Halton sequence uses pairwise prime numbers (larger than 1) for the
base of each dimension of the problem.† The 8th point in the Halton
sequence is

)(8 , 11),)(8 , 12), . . . ,)(8 , 1=G) , (10.5)

where the 1 9 set is pairwise prime. As an example in two dimensions,
Fig. 10.10 shows 30 generated points of the Halton sequence where G1
uses base 2, and G2 uses base 3, and then a subsequent 20 generated
points are added (in another color), showing the reuse of existing points.

If the dimensionality of the problem is high, then some of the
base combinations lead to points that are highly correlated and thus

10 Surrogate-Based Optimization 383

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

G1

G2

Fig. 10.12 Hammersley sequence
with base 2 for the G2-axis.

undesirable for a sampling plan. For example, the left of Fig. 10.11
shows 50 generated points where G1 uses base 17, and G2 uses base 19.
To avoid this issue, we can use a scrambled Halton sequence.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

G1

G2

Standard Halton sequence

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

G1

G2

Scrambled Halton

Fig. 10.11 Halton sequence with base
17 for G1 and base 19 for G2.

Scrambling can be accomplished by generating a permutation array
containing a random permutation of the integers ? = [0, 1, . . . , 1 − 1].
Then, rather than using the integers 0 directly in Eq. 10.2, we use
the entries of 0 as the indices of the permutation array. If ? is the
permutation array, we have:

)1(8) =
?00

1
+ ?01

12 +
?02

13 + . . . +
?0A
1A+1 . (10.6)

The permutation array is fixed for all digits 0 and for all =? points in the
domain. The right side of Fig. 10.11 shows the same example (with base
17 and base 19) but with scrambling to weaken the strong correlations.

Hammersley Sequence
The Hammersley sequence is closely related to the Halton sequence.
However, it provides better spacing if we know beforehand the number
of points (=?) that we are going to use. This approach only needs =G − 1
bases (still pairwise prime) because the first dimension uses regular
spacing:

8
=?
,)(8 , 11),)(8 , 12), . . . ,)(8 , 1=G−1) . (10.7)

Because this sequence needs to know the number of points (=?) be-
forehand, it is less useful for iterative procedures. However, the imple-
mentation is straightforward, and so it may still be a useful alternative
to LHS. Figure 10.12 shows 50 points generated from a Hammersley
sequence where the G2-axis uses base 2.

10 Surrogate-Based Optimization 384

167. Faure, Discrépance des suites associées
à un systéme de numération (en dimension
s). 1982.
168. Faure and Lemieux, Generalized
Halton sequences in 2008: A comparative
study, 2009.

169. Sobol, On the distribution of points
in a cube and the approximate evaluation of
integrals, 1967.

170. Niederreiter, Low-discrepancy and
low-dispersion sequences, 1988.

Interpolation

Regression

G

5

Fig. 10.13 Interpolation models
match the training data at the pro-
vided points, whereas regression
models minimize the error between
the training data and a function with
an assumed trend.

Other Sequences
A wide variety of other low-discrepancy sequences exist. The Faure
sequence is similar to the Halton, but it uses the same base for all
dimensions and uses permutation scrambling for each dimension in-
stead.167,168 Sobol sequences use base 2 sequences but with a reordering
based on “direction numbers”.169 Niederreiter sequences are effectively
a generalization of Sobol sequences to other bases.170

10.3 Constructing a Surrogate
Once sampling is completed, we have a list of data points, often called
training data: (

G(8) , 5 (8)
)
, (10.8)

where G(8) is an input vector from the sampling plan, and 5 (8) contains
the corresponding outputs from evaluating the model: 5 (8) = 5

(
G(8)

)
.

We seek to construct a surrogate model from this data set. Surrogate
models can be based on physics, mathematics, or a combination of
the two. Incorporating known physics into a model is often desirable
to improve model accuracy. However, functional relationships are
unknown for many complex problems, and a data-driven mathematical
model can be more effective.

Surrogate-basedmodels can be based on interpolation or regression,
as illustrated in Fig. 10.13. Interpolation builds a function that exactly
matches the provided training data. Regression models do not try to
match the training data points exactly; instead, they minimize the
error between a smooth trend function and the training data. The
nature of the training data can help decide between these two types
of surrogate models. Regression is particularly useful when the data
are noisy. Interpolatory models may produce undesirable oscillations
when fitting the noise. In contrast, regression models can find a smooth
function that is less sensitive to the noise. Interpolation is useful when
the data are highly multimodal (and not noisy). This is because a
regression model may smooth over variations that are actually physical,
whereas an interpolatory model can accurately capture those variations.

There are two main steps involved in either type of surrogate model.
First, we select a set of basis functions, which represent the form for
the model. Second, we determine the model parameters that provide
the best fit to the provided data. Determining the model parameters
is an optimization problem, which we discuss first. We discuss linear
regression and nonlinear regression, which are techniques for choosing
model parameters for a given set of basis functions. Next, we discuss

https://dx.doi.org/10.4064/aa-41-4-337-351
https://dx.doi.org/10.4064/aa-41-4-337-351
https://dx.doi.org/10.4064/aa-41-4-337-351
https://dx.doi.org/10.1145/1596519.1596520
https://dx.doi.org/10.1145/1596519.1596520
https://dx.doi.org/10.1145/1596519.1596520
https://dx.doi.org/10.1016/0041-5553(67)90144-9
https://dx.doi.org/10.1016/0041-5553(67)90144-9
https://dx.doi.org/10.1016/0041-5553(67)90144-9
https://dx.doi.org/10.1016/0022-314X(88)90025-X
https://dx.doi.org/10.1016/0022-314X(88)90025-X

10 Surrogate-Based Optimization 385

∗The choice of minimizing the sum of the
squares rather than the sum of the abso-
lute values or some other metric is not ar-
bitrary. The motivation for using the sum
of the squares is discussed further in the
following section.

cross validation,which is a critical technique for selecting an appropriate
model form. Finally, we discuss common basis functions.

10.3.1 Linear Least Squares Regression
A linear regression model does not mean that the surrogate is linear in
the input variables but rather that the model is linear in its coefficients
(i.e., linear in the parameters we are estimating). For example, the
following equation is a two-dimensional linear regressionmodel, where
we use 5̂ to represent our estimated model of the function 5 :

5̂ (G) = F1G2
1 + F2G1G2 + F3 exp(G2) + F4G1 + F5 . (10.9)

This function is highly nonlinear, but it is classified as a linear regression
model because the regression seeks to choose the appropriate values
for the coefficients F8 (and the function is linear in F).

A general linear regression model can be expressed as

5̂ = Fᵀ#(G) =
∑
8

F8#8(G) , (10.10)

where F is a vector of weights, and # is a vector of basis functions.
In this section, we assume that the basis functions are provided. In
general, the basis functions can be any set of functions that we choose
(and typically they are nonlinear). It is usually desirable for these
functions to be orthogonal.

Example 10.2 Data fitting can be posed as a linear regression model
Consider a quadratic fit: 5̂ (G) = 0G2 + 1G + 2. This can be posed as a linear

regression model (Eq. 10.10) where the coefficients we wish to estimate are
F = [0, 1, 2] and the basis functions are # = [G2 , G, 1]. For a more general
=-dimensional polynomial model, the basis functions would be polynomials
with terms combining the dependencies on all input variables G up to a certain
order. For example, for two input variables up to second order, the basis
functions would be # = [1, G1 , G2 , G1G2 , G2

1 , G
2
2], and F would consist of seven

coefficients.

The coefficients are chosen to minimize the error between our
predicted function values 5̂ and the actual function values 5 (8). Because
we want to minimize both positive and negative errors, we minimize
the sum of the square of the errors (or a weighted sum of squared
errors):∗

10 Surrogate-Based Optimization 386

minimize
F

∑
8

(
5̂
(
F; G(8)

)
− 5 (8)

)2
. (10.11)

The solution to this optimization problem is called a least squares solution.
If the regression model is linear, we can simplify this objective and
solve the problem analytically. Recall that 5̂ = #ᵀF, so the objective
can be written as

minimize
F

∑
8

(
#

(
G(8)

)ᵀ
F − 5 (8)

)2
. (10.12)

We can express this in matrix form by defining the following:

Ψ =



— #
(
G(1)

)ᵀ —
— #

(
G(2)

)ᵀ —
...

— #
(
G(=B)

)ᵀ —


. (10.13)

The matrixΨ is of size (=B × =F), where =B is the number of samples,
=F the number of parameters in F, and =B ≥ =F . This means that there
should be more equations than unknowns or that we have sampled
more points than the number of coefficients we need to estimate. This
should make sense because our surrogate function is only an assumed
form and generally not an exact fit to the actual underlying function.
Thus, we need more data to create a good fit.

Then the optimization problem can be written in matrix form as:

minimize
F

‖ΨF − 5 ‖22 . (10.14)

Expanding the squared norm (i.e., ‖G‖22 = GᵀG) gives
minimize

F
FᵀΨᵀΨF − 2 5 ᵀΨF + 5 ᵀ 5 . (10.15)

We can omit the last term from the objective because our optimization
variables are F, and the last term has no F dependence:

minimize
F

FᵀΨᵀΨF − 2 5 ᵀΨF . (10.16)

This fits the general form for an unconstrained quadratic programming
(QP) problem, as shown in Section 5.5.1:

minimize
G

1
2G

ᵀ&G + @ᵀG , (10.17)

where

& = 2ΨᵀΨ (10.18)
@ = −2Ψᵀ 5 . (10.19)

10 Surrogate-Based Optimization 387

Recall that an equality constrained QP (of which unconstrained is a
subset) has an analytic solution as long as the QP is positive definite.
In our case, we can show that & is positive definite as long asΨ is full
rank:

Gᵀ&G = 2GᵀΨᵀΨG = 2‖ΨG‖22 > 0 . (10.20)
This is not surprising because the objective is a sum of squared values.
Referring back to the solution in Section 5.5.1, and removing the portions
associated with the constraints, the solution is

&G = −@ . (10.21)

In our case, this becomes

2ΨᵀΨF = 2Ψᵀ 5 . (10.22)

After simplifying, we have an analytic solution for the weights:

F = (ΨᵀΨ)−1Ψᵀ 5 . (10.23)

We sometimes express the linear relationship in Eq. 10.12 asΨF = 5 ,
although the case where there are more equations than unknowns does
not typically have a solution (the problem is overdetermined). Instead, we
seek the solution that minimizes the error ‖ΨF − 5 ‖2, that is, Eq. 10.23.
The quantityΨ† = (ΨᵀΨ)−1Ψᵀ is called the pseudoinverse ofΨ (or more
specifically, the Moore–Penrose pseudoinverse), and thus we can write
Eq. 10.23 in the more compact form

F = Ψ† 5 . (10.24)

This allows for a similar form to solving a linear system of equations
where an inverse would be used instead. In solving both a linear system
and the linear least-squares equation (Eq. 10.23), we do not explicitly
invert a matrix. For linear least squares, a QR factorization is commonly
used for improved numerical conditioning as compared to solving
Eq. 10.23 directly.

Tip 10.2 Least squares is not the same as a linear system solution
In MATLAB or Julia, the backslash operator is overloaded, so you can solve

an overdetermined system of equations �G = 1 with x = A\b, but keep in mind
that for an � of size (< × =), where < > =, this syntax performs a least-squares
solution, not a linear system solution as it would for a full rank (= × =) system.
The overloading of this operator is generally not used in other languages; for
example, in Python, rather than using numpy.linalg.solve, you would use
numpy.linalg.lstsq.

10 Surrogate-Based Optimization 388

−2 −1 0 1 2

0

10

20

G

5

Fig. 10.14 Linear least squares exam-
ple with a quadratic fit on a one-
dimensional function.

Example 10.3 Linear regression
Consider the quadratic fit discussed in Ex. 10.2. We are provided the data

points, G and 5 , shown as circles in Fig. 10.14. From these data, we construct
the matrixΨ for our basis functions as follows:

Ψ =



G(1)2 G(1) 1

G(2)2 G(2) 1
...

G(=B)2 G(=B) 1


.

We can then solve for the coefficients F using the linear least squares solution
(Eq. 10.23). Substituting the coefficients and respective basis functions into
Eq. 10.10, we obtain the surrogate model,

5̂ (G) = F1G
2 + F2G + F3 ,

which is also plotted in Fig. 10.14 as a solid line.

A common variation of this approach is to use regularized least
squares, which adds a term in the objective. The new objective is

minimize
F

‖ΨF − 5 ‖22 + �‖F‖22 , (10.25)

where � is a weight assigned to the second term. This second term
attempts to reduce the magnitudes of the entries in F while balancing
the fit in the first term. This approach is particularly beneficial if the
data contain strong outliers or are particularly noisy. The rationale for
this approach is that we may want to accept a higher error (quantified
by the first term) in exchange for smaller values for the coefficients.
This generally leads to simpler, more generalizable models (e.g., by
reducing the influence of some terms). A related extension uses a
second term of the form ‖F −F0‖22. The idea is that we want a good fit,
while maintaining parameters that are close to some known nominal
values F0.

A regularized least squares problem can be solved with the same
linear least squares approach. We can write the previous problem using
concatenated matrices and vectors:

minimize
F

[
Ψ√
��

]
F −

[
5
0

]

2

2
. (10.26)

This is of the same linear form as before (‖�F − 1‖2), so we can reuse
the solution (Eq. 10.23):

F∗ = (�ᵀ�)−1 �ᵀ1

=
(
ΨᵀΨ + ��)−1Ψᵀ 5 .

(10.27)

10 Surrogate-Based Optimization 389

For linear least squares (with or without regularization), we have
seen that the optimization problem of determining the appropriate
coefficients can be found analytically. We can also add linear constraints
to the problem (equality or inequality), and the optimization remains
a QP. In that case, the problem is still convex. Although it does not
generally have an analytic solution, we can still quickly find the global
optimum. This topic is discussed in Section 11.3.

10.3.2 Maximum Likelihood Interpretation
This section presents an alternative motivation for the sum of squared
error approach used in the previous section. It is somewhat of a
diversion from the present discussion, but it will be helpful in several
results later in this chapter. In the previous section, we assumed linear
models of the form

5̂ (8) = FᵀG(8) , (10.28)

where we use G for simplicity in writing instead of #(G(8)). The deriva-
tion remains the same for any arbitrary function of G. The function 5̂ is
just a model, so we could say that it is equal to our actual observations
5 (8) plus an error term:

5 (8) = FᵀG(8) + �(8) , (10.29)

where � captures the error associated with the 8th data point. We
assume that the error is normally distributed with mean zero and a
standard deviation of �:

?
(
�(8)

)
=

1
�
√

2�
exp

(
− �
(8)2

2�2

)
. (10.30)

The use of Gaussian uncertainty can be motivated by the central
limit theorem, which states that for large sample sizes, the sum of
random variables tends toward a Gaussian distribution regardless of
the original distribution associated with each variable. In other words,
the sample distribution of the sample mean is approximately Gaussian.
Because we assume the error terms to be the sum of various random,
independent perturbations, then by the central limit theorem, we expect
the errors to be normally distributed.

We now substitute Eq. 10.29 into Eq. 10.30 to show the probability
of 5 conditioned on G and parameterized by F:

?
(
5 (8) |G(8);F

)
=

1
�
√

2�
exp

(
−

(
5 (8) − FᵀG(8)

)2

2�2

)
. (10.31)

10 Surrogate-Based Optimization 390

Once we include all the data points G(8), we would like to compute the
probability of observing 5 conditioned on the inputs G for a given set
of parameters in F. We call this the likelihood function !(F). In this case,
assuming all errors are independent, the total probability for observing
the outputs is the product of the probability of observing each output:

!(F) =
=B∏
8=1

1
�
√

2�
exp

(
−

(
5 (8) − FᵀG(8)

)2

2�2

)
. (10.32)

Nowwe can pose this as an optimization problem where we wish to
find the parameters F that maximize the likelihood function; in other
words, we maximize the probability that our model is consistent with
the observed data. Because the objective is a product of multiple terms,
it is helpful to take the logarithm of the objective. Maximizing ! or
maximizing ℓ = ln(!) does not change the solution to the problem but
makes it easier to solve. We call this the log likelihood function:

ℓ (F) = ln

(
=B∏
8=1

1
�
√

2�
exp

(
−

(
5 (8) − FᵀG(8)

)2

2�2

))
(10.33)

=
=B∑
8=1

ln

(
1

�
√

2�
exp

(
−

(
5 (8) − FᵀG(8)

)2

2�2

))
(10.34)

= =B ln
(

1
�
√

2�

)
−

=B∑
8=1

(
5 (8) − FᵀG(8)

)2

2�2 . (10.35)

The first term has no dependence on F, and so when optimizing ℓ (F);
it is just a scalar term that can be removed as follows:

maximize
F

ℓ (F) ⇒ (10.36)

maximize
F

(
−

=B∑
8=1

(
5 (8) − FᵀG(8)

)2

2�2

)
⇒ (10.37)

minimize
F

=B∑
8=1

(5 (8) − FᵀG(8))2
2�2 . (10.38)

Similarly, the denominator of the second term has no dependence on F
and is just a scalar that can also be removed:

maximize
F

ℓ (F) ⇒ minimize
F

=B∑
8=1

(
5 (8) − FᵀG(8)

)2
. (10.39)

Thus, maximizing the log likelihood function (maximizing the prob-
ability of observing the data) is equivalent to minimizing the sum of
squared errors (the least-squares formulation). This derivation provides
another motivation for using the sum of squared errors in regression.

10 Surrogate-Based Optimization 391

10.3.3 Nonlinear Least Squares Regression
A surrogate model can be nonlinear in the coefficients. For example,
building on the simple function shown earlier in Eq. 10.9 we can add
the coefficients F6 and F7 as follows:

5̂ (G) = F1G
F6
1 + F2G1G2 + F3 exp(F7G2) + F4G1 + F5 . (10.40)

The addition of F6 and F7 makes this function nonlinear in the coeffi-
cients. We can still estimate these parameters, but not analytically.

Equation 10.11 is still relevant; we still seek to minimize the sum of
the squared errors:

minimize
F

∑
8

(
5̂
(
F; G(8)

)
− 5 (8)

)2
. (10.41)

For general nonlinear regression models, we cannot write a more
specific form for 5̂ as we could for the linear case, so we leave the
objective as it is.

This is a nonlinear least-squares problem. The optimization problem is
unconstrained, so any of the methods from Chapter 4 apply. We could
also easily add constraints, for example, bounds on parameters, known
relationships between parameters, and so forth, and use the methods
from Chapter 5.

In contrast to the linear case, we need to provide a starting point, our
best guess for the parameters, and we may need to deal with scaling,
noise, multimodality, or any of the other potential challenges of general
nonlinear optimization. Still, this is a relatively straightforwardproblem
within the broader realm of engineering optimization problems.

Although the methods of Chapter 4 can be used if the problem
remains unconstrained, there are more specialized methods available
that take advantage of the specific structure of the problem. One
popular approach to solving the nonlinear least-squares problem is the
Levenberg–Marquardt algorithm, which we discuss in this section.

As a stepping stone towards the Levenberg–Marquardt algorithm,
we first derive the Gauss–Newton algorithm, which is a modification
of Newton’s method (Section 3.8) for solving nonlinear least-squares
problems. One way to think of this algorithm is as an iterative lin-
earization of the residual. Once it is linearized, we can apply the same
methods we derived for linear least squares. We linearize the residual
A = 5̂ (F) − 5 at iteration : as

A(F) ≈ A(F:) + �AΔF , (10.42)

10 Surrogate-Based Optimization 392

where ΔF is the step and the Jacobian is

�A 89 =
%A8
%F 9

. (10.43)

After the linearization, the objective becomes

minimize ‖�AΔF + A‖22 . (10.44)

This is now the same form as linear least squares (Eq. 10.14), so we can
reuse its solution (Eq. 10.23) to solve for the step

ΔF = − (
�ᵀA �A

)−1 �ᵀA A . (10.45)

We now have an update formula for the coefficients at each iteration:

F:+1 = F: −
(
�ᵀA �A

)−1 �ᵀA A . (10.46)

An alternative derivation for this formula is to consider a Newton
step for an unconstrained optimizer. The objective is 4 =

∑
8 A

2
8 , and the

formula for a Newton step (Section 4.4.3) is

F:+1 = F: − �−1
4 ∇4 . (10.47)

The gradient is

∇4 9 = 2A8
%A8
%F 9

, (10.48)

or in matrix form:
∇4 = 2�ᵀA A . (10.49)

The Hessian in index notation is

�4 9: = 2 %A8
%F 9

%A8
%F:
+ 2A8

%2A8
%F 9%F:

. (10.50)

We can write it in matrix form as follows:

�4 = 2�ᵀA �A + 2A�A . (10.51)

If we neglect the second term in the Hessian, then the Newton update
is:

F:+1 = F: − 1
2

(
�ᵀA �A

)−1 2�ᵀA A

= F: −
(
�ᵀA �A

)−1 �ᵀA A ,
(10.52)

which is the same update as before.
Thus, another interpretation of this method is that a Gauss–Newton

step is a modified Newton step where the second derivatives of the

10 Surrogate-Based Optimization 393

residual are neglected (and thus, a quasi-Newton approach to estimate
second derivatives is not needed). This method is particularly effective
near convergence because as A → 0 (i.e., as we approach the solution to
our residual minimization), the neglected term also approaches zero.
The appeal of this approach is that we can often obtain an accurate
prediction for the Hessian using only the first derivatives because of
the known structure of the objective.

When the second term is not small, then the Gauss–Newton step
may be too inaccurate. We could use a line search, but the Levenberg–
Marquardt algorithm utilizes a different strategy. The idea is to regular-
ize the problem as discussed in the previous section or, in other words,
provide the ability to dampen the steps as needed. Each linearized
subproblem becomes

minimize
ΔF

‖�AΔF + A‖22 + �‖ΔF‖22 . (10.53)

Recall that the solution to this problem (see Eq. 10.27) is

ΔF = − (
�ᵀA �A + ��

)−1 �ᵀA A . (10.54)

If � = 0, then we retain the Gauss–Newton step. Conversely, as �
becomes large, so that the �ᵀA �A is negligible, the step becomes

ΔF = − 1
�
�ᵀA A . (10.55)

This is precisely the steepest-descent direction for our objective (see
Eq. 10.49), although with a small magnitude because � is large. The
parameter � provides some control for directions ranging between
Gauss–Newton and steepest descent.

The Levenberg–Marquardt algorithm has been revised to improve
the scaling for components of the gradient that are small. The second
minimization term weights all parameters equally. The scaling can be
improved by multiplying by a diagonal matrix in the regularization as
follows:

minimize
ΔF

‖�AΔF + A‖22 + �‖�ΔF‖22 , (10.56)

where � is defined as

�2 = diag
(
�ᵀA �A

)
. (10.57)

This matrix scales the objective by the diagonal elements of the Hessian.
Thus, when � is large, and the direction tends toward the steepest de-
scent, the components of the gradient are scaled by the curvature, which

10 Surrogate-Based Optimization 394

reduces the amount of zigzagging. The solution to the minimization
problem of Eq. 10.56 is

ΔF = − (
�ᵀA �A + �diag

(
�ᵀA �A

))−1 �ᵀA A . (10.58)

Finally, we describe one of the possible heuristics for selecting and
updating the damping parameter �. After a successful step (a sufficient
reduction in the objective), � is increased by a factor of �. Conversely,
an unsuccessful step is rejected, and � is reduced by a factor (� = �/�).

Rather than returning a scalar objective (
∑
8 A

2
8), the user function

should return a vector of the residuals because that vector is needed
in the update steps (Eq. 10.58). A potential convergence metric is a
tolerance on objective value changes between subsequent iterations.
The full procedure is described in Alg. 10.3.

Algorithm 10.3 Levenberg–Marquardt algorithm for solving a nonlinear leastsquares problem
Inputs:
G0: Starting point
�0: Initial damping parameter
�: Damping parameter factor

Outputs:
G∗: Optimal solution

: = 0
G = G0
� = �0
A, � = residual(G)
4 = ‖A‖22 Residual error
while |Δ| > � do

B = − (
�ᵀ� + �diag(�ᵀ�))−1 �ᵀA Evaluate step

AB , �B = residual(G + B)
4B = ‖AB ‖22
Δ = 4B − 4 Change in residual error
if Δ < 0 then Objective decreased; accept step

G = G + B
A, � , 4 = AB , �B , 4B
� = �/�

else Reject step
� = � · � Increase damping

end if
: = : + 1

end while

10 Surrogate-Based Optimization 395

Example 10.4 Rosenbrock as a nonlinear least-squares problem
The Rosenbrock function is a sum of squared terms, so it can be posed as a

nonlinear least squares problem:

A(G) =
[(1 − G1)
10(G2 − G2

1)
]
.

In the following example, we use the same starting point as Ex. 4.18
(G0 = [−1.2,−1]), an initial damping parameter of � = 0.01, an update factor
of � = 10, and a tolerance of � = 10−6 (change in sum of squared errors). The
iteration path is shown on the left of Fig. 10.15, and the convergence of the sum
of squared errors is shown on the right side.

G0 G∗

42 iterations

−1 0 1

0

1

2

G1

G2

Iteration history

0 10 20 30 40
10−16

10−13

10−10

10−7

10−4

10−1

102

:

‖A‖22

Convergence of the sum of squared
residuals

Fig. 10.15 Levenberg–Marquardt al-
gorithm applied to the minimization
of the Rosenbrock function.

10.3.4 Cross Validation
The other important consideration for developing a surrogate model
is the choice of the basis functions in #. In some instances, we may
know something about the model behavior and thus what type of basis
functions should be used, but generally, the best way to determine the
basis functions is through cross validation. Cross validation is also
helpful in characterizing error, even if we already have a chosen set
of basis functions. One of the reasons we use cross validation is to
prevent overfitting. Overfitting occurs when we have too many degrees
of freedom and closely fit a given set of data, but the resulting model
has a poor predictive ability. In other words, we are fitting noise. The
following example illustrates this idea with a one-dimensional function.

10 Surrogate-Based Optimization 396

Example 10.5 The dangers of overfitting
Consider the set of training data (Fig. 10.16, left), which we use to create a

surrogate function. This is a one-dimensional problem so that it can be easily
visualized. In general, however, visualization is limited, and determining the
right basis functions to use can be difficult. If we use a polynomial basis, we
might attempt to determine the appropriate order by trying each case (e.g.,
quadratic, cubic, quartic) and measuring the error in our fit (Fig. 10.16, center).

−3 −2 −1 0 1 2

−2

0

2

4

G

5

Training data

0 5 10 15 20
0

1

2

3

4

5

Order of polynomial

Er
ro

r

The error in fitting the data decreases
with the order of the polynomial

−3 −2 −1 0 1 2

−2

0

2

4

G

5

A 19th-order polynomial fit to the
data has low error but poor predic-
tive ability

Fig. 10.16 Fitting different order poly-
nomials to data.

It seems as if the higher the order of the polynomial, the lower the error.
For example, a 20th-order polynomial reduces the error to almost zero. The
problem is that although the error is low on this set of data, the predictive
capability of such a model for other data points is poor. For example, the right
side of Fig. 10.16 shows a 19th-order polynomial fit to the data. The model
passes right through the points, but it does not work well for many of the
points that are not part of the training set (which is the whole purpose of the
surrogate).

The opposite of overfitting is underfitting, which is also a potential issue.
When underfitting, we do not have enough degrees of freedom to create a
useful model (e.g., imagine using a linear fit for the previous example).

The solution to the overfitting problem highlighted in Ex. 10.5 is
cross validation. Cross validationmeans that we use one set of data for
training (creating the model) and a different set of data for assessing
its predictive error. There are many different ways to perform cross
validation; we describe two. Simple cross validation is illustrated in
Fig. 10.17 and consists of the following steps:

1. Randomly split your data into a training set and a validation set
(e.g., a 70–30 split).

10 Surrogate-Based Optimization 397

2. Train each candidate model (the different options for #) using
only the training set, but evaluate the error with the validation set.
The error on previously unseen data is called the generalization
error (46 in Fig. 10.17).

3. Choose the model with the lowest generalization error, and
optionally retrain that model using all of the data.

Train Test

Regression 46 =

 5̂ (

G(8)
)
− 5 (8)

2

2

G(8) , 5 (8) G(8) , 5 (8)

5̂
Fig. 10.17 Simple cross-validation
process.

An alternative option that is more involved but uses the data more
effectively is called :-fold cross validation. It is particularly advantageous
whenwe have a small data set wherewe cannot afford to leavemuch out.
This procedure is illustrated in Fig. 10.18 and consists of the following
steps:

1. Randomly split your data into = sets (e.g., = = 10).
2. Train each candidate model using the data from all sets except

one (e.g., 9 of the 10 sets) and use the remaining set for valida-
tion. Repeat for all = possible validation sets and average the
performance.

3. Choose the model with the lowest average generalization error.
Optionally, retrain with all the data.

The extreme version of this process, when training data are very limited,
is leave-one-out cross validation (i.e., each testing subset consists of one
data point).

46 = 1
=
∑=
:=1 46 :

TrainTest 461

TrainTest 462

Train Test 46=

...
...

Fig. 10.18 Diagram of :-fold cross-
validation process.

10 Surrogate-Based Optimization 398

−3 −2 −1 0 1 2

−2

0

2

4

G

5

Fig. 10.20 A fourth-order polynomial
fit to the data.

Example 10.6 Cross validation helps to avoid overfitting

5 10 15 20
0

1

2

3
·104

Order of polynomial

Er
ro

r

2 4 6 8 10 12
0

5

10

15

Order of polynomial

Er
ro

r
Fig. 10.19 Error from :-fold cross val-
idation.

This example continues from Ex. 10.5. First, we perform :-fold cross
validation using 10 divisions. The average error across the divisions using the
training data is shown in Fig. 10.19 (with a smaller H-axis scale on the right).

The error increases dramatically as the polynomial order increases. Zoom-
ing in on the flat region, we see a range of options with similar errors. Among
the similar solutions, we generally prefer the simplest model. In this case,
a fourth-order polynomial seems reasonable. A fourth-order polynomial is
compared against the data in Fig. 10.20. Thismodel has amuch better predictive
ability.

10.3.5 Common Basis Functions
Although cross validation can help us find the lowest generalization
error among a provided set of basis functions, we still need to determine
what sets of options to consider. This selection is crucial because our
model is only as good as the available options, but increasing the
number of options increases computational time. The possibilities for
basis functions are as numerous as the types of function. As stated
before, it is generally desirable that they form an orthogonal set. We
focus on a few commonly used functions.

Polynomials
Polynomials, of which we have already seen a few examples, are useful
inmany applications. However, we typically use low-order polynomials
for regression because high-order polynomials rarely generalize well.
Polynomials can be particularly effective in cases where a knowledge
of the physics suggests them to be an appropriate choice (e.g., drag
varies quadratically with speed) Because a lot of structure is already

10 Surrogate-Based Optimization 399

†https://smt.readthedocs.io/

171. Bouhlel et al., A Python surrogate
modeling framework with derivatives, 2019.

172. Bouhlel and Martins, Gradient-
enhanced kriging for high-dimensional
problems, 2019.

built into the model form, fewer data points are needed to create a
reasonable model (e.g., a quadratic function in = dimensions needs
at least =(= + 1)/2 + = + 1 points, so this amounts to 6 points in two
dimensions, 10 points in three dimensions, and so on).

Radial Basis Functions
Another common type of basis function is a radial basis function. Radial
basis functions are functions that depend on the distance from some
center point and can be written as follows:

#(8) = #
(

G − 2(8)

) = #

(
A(8)

)
, (10.59)

where 2 is the center point, and A is the radius about the center point.
Although the center points can be placed anywhere, we usually choose
the sampling data as centering points:

#(8) = #
(

G − G(8)

) . (10.60)

This is often a useful choice because it captures the idea that our
ability to predict function behavior is related to how close we are to
known function values (in other words, nearby points are more highly
correlated). This form naturally lends itself to interpolation, although
regularization can be added to allow for regression. Polynomials are
often combined with radial basis functions because the polynomial can
capture global function behavior, while the radial basis functions can
introduce modifications to capture local behavior.

One popular radial basis function is the Gaussian basis:

#(8)(G) = exp ©­«
−

∑
9

�9

���G − G(8)9
���2ª®¬

, (10.61)

where �9 are the model parameters. One of the forms of kriging
discussed in the following section can be viewed as a radial basis
function model with a Gaussian basis.

Tip 10.3 Surrogate modeling toolbox
The surrogate modeling toolbox (SMT)† is a useful package for surrogate

modeling, with a particular focus on providing derivatives for use in gradient-
based optimization.171 SMT includes surrogatemodeling techniques that utilize
gradients as training data to enhance accuracy and scalability with the number
of inputs.172

https://smt.readthedocs.io/
https://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2019.03.005
https://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2019.03.005
https://dx.doi.org/10.1007/s00366-018-0590-x
https://dx.doi.org/10.1007/s00366-018-0590-x
https://dx.doi.org/10.1007/s00366-018-0590-x

10 Surrogate-Based Optimization 400

∗Kernel functions must be symmetric and
positive definite because a covariance ma-
trix is always symmetric and positive def-
inite.

10.4 Kriging
Kriging is a popular surrogate modeling technique that can build
approximations of highly nonlinear engineering simulations. We may
not have a simple parametric form for such simulations that we can use
with regression and expect a good fit. Instead of tuning the parameters
of a functional form that describes what the function is, kriging tunes the
parameters of a statistical model that describes how the function behaves.

The kriging statistical model that approximates 5 consists of two
terms: a function �(G) that is meant to capture some of the function
behavior and a random variable /(G). Thus, we can write the kriging
model as

�(G) = �(G) + /(G) where /(G) ∼ N(0, �2) . (10.62)

When we evaluate the function we want to approximate at point G, we
get a scalar value 5 (G). In contrast, when we evaluate the stochastic
process (Eq. 10.62) at G, we get a random variable �(G) that has a normal
distribution with mean � and variance �2. Although we wrote � as a
function of G, most kriging models consider this to be constant because
the random variable term alone is effective in capturing the function
behavior. For the rest of this section, we discuss the case with constant
�, which is called ordinary kriging. Kriging is also referred to asGaussian
process interpolation, or more generally in the regression case discussed
later in this section, as Gaussian process regression.

The power of the statistical model lies in how it treats the correlation
between the randomvariables. Althoughwedonot know the exact form
of the error term /(G), we can still make some reasonable assumptions
about it. Consider two points in a sampling plan, G(8) and G(9), and
the corresponding terms, /

(
G(8)

)
and /

(
G(9)

)
. Intuitively, we expect

/
(
G(8)

)
to be close to /

(
G(9)

)
whenever G(8) is close to G(9). Therefore, it

seems reasonable to assume that the correlation between /
(
G(8)

)
and

/
(
G(9)

)
is a function of the distance between the two points.

In kriging, we assume that this correlation is given by a kernel
function

(
G(8) , G(9)

)
:

(
G(8) , G(9)

)
= corr

(
/

(
G(8)

)
, /

(
G(9)

))
(10.63)

As a matrix, the kernel is represented as 8 9 =
(
G(8) , G(9)

)
. Various

kernel functions are used with kriging.∗ The most commonly used
kernel function is

(
G(8) , G(9)

)
= exp

(
−

=3∑
;=1

�;

���G(8); − G(9);
���?;

)
, (10.64)

10 Surrogate-Based Optimization 401

†There are other ways to derive kriging
that do not require making assumptions
on the random variable distribution type.

‡Covariance and correlation are briefly re-
viewed in Appendix A.9.

where �; ≥ 0, 0 ≤ ?; ≤ 2, and =3 is the number of dimensions (i.e., the
length of the vector G). If every ?; = 2, this becomes a Gaussian kernel.

Let us examine how the statistical model � defined in Eq. 10.62
captures the typical behavior of the function 5 . The parameter �
captures the typical value, and �2 captures the expected variance. The
kernel (or correlation) function (Eq. 10.64) implicitly models continuous
functions. If 5 is continuous, we know that, as |G(8) − G(9) | → 0, then
| 5 (G(8)) − 5 (G(9))| → 0. This is captured in the kernel function because
as |G(8) − G(9) | → 0, the correlation approaches 1. The parameter �;
captures how active the function 5 is in the ;th coordinate direction.
A unit difference in variable ; (|G(8); − G

(9)
; | = 1) has a more significant

impact on the correlation when �; is large. The exponent ?; describes
the smoothness of the function in the ;th coordinate direction. Values
of ?; close to 2 produce smooth functions, whereas values closer to zero
produce functions with more variation.

Kriging surrogate modeling involves two main steps. The first step
consists of using the data to estimate the statistical model parameters
�, �2, �1 , . . . , �=3 , and ?1 , . . . , ?=3 . The second step consists of making
predictions using the statistical model and these estimated parameter
values.

The parameter estimation uses the same maximum likelihood ap-
proach from Section 10.3.2, but now it is more complicated. Let us
denote the random variable as �(8) ≡ � (

G(8)
)
and the vector of random

variables as � =
[
�(1) , . . . , �(=B)

]
, where =B is the number of samples.

Similarly, 5 (8) ≡ 5
(
G(8)

)
and the vector of observed function values is

5 ≡ [5 (1) , . . . , 5 (=B)]. Using this notation, we can say that the vector � is
jointly normally distributed. This is also known as a multivariate Gaus-
sian distribution.† The probability density function (PDF) (the likelihood
that � = 5) is

?(5) = 1
(2�)=B/2 |Σ|1/2 exp

[
−1

2 (5 − 4�)
ᵀΣ−1(5 − 4�)

]
, (10.65)

where 4 is a vector of 1s with size =B , and |Σ| is the determinant of the
covariance,

Σ8 9 = �2
(
G(8) , G(9)

)
. (10.66)

The covariance between two elements �(8) and �(9) of � is related to
correlation by the following definition:‡

Σ8 9 = cov
(
�(8) , �(9)

)
= �2corr

(
�(8) , �(9)

)
= �2

(
G(8) , G(9)

)
. (10.67)

We assume stationarity of the second moment, that is, the variance �2

is constant in the domain.

10 Surrogate-Based Optimization 402

The statistical model parameters �1 , . . . , �=3 and ?1 , . . . , ?=3 enter
the likelihood (Eq. 10.65) via their effect on the kernel (Eq. 10.64) and
hence on the covariance matrix Σ (Eq. 10.66).

We estimate the parameters using the maximum log likelihood
approach from Section 10.3.2; that is, we maximize the probability of
observing our data 5 conditioned on the parameters � and Σ. Using
a PDF (Eq. 10.65) where � is constant and the covariance is Σ = �2 ,
yields the following likelihood function:

!(�, �, �, ?) = 1
(2�)=B/2�=B | |1/2 exp

[
−(5 − 4�)

ᵀ −1(5 − 4�)
2�2

]
.

We now need to find the parameters �, �, �8 , and ?8 that maximize
this likelihood function, that is, maximize the probability of our obser-
vations 5 . As before, we take the logarithm to form the log likelihood
function:

ℓ (�, �, �, ?) = −=B2 ln(2�) − =B2 ln
(
�2)

− 1
2 ln | | − (5 − 4�)

ᵀ −1(5 − 4�)
2�2 . (10.68)

We can maximize part of this term analytically by taking derivatives
with respect to � and �, setting them equal to zero, and solving for their
optimal values to obtain:

�∗ =
4ᵀ −1 5

4ᵀ −14

�∗2 =
(5 − 4�∗)ᵀ −1(5 − 4�∗)

=B
.

(10.69)

(10.70)

We now substitute these values back into the log likelihood function
(Eq. 10.68), which yields

ℓ (�, ?) = −=B2 ln
(
�∗2

)
− 1

2 ln | | . (10.71)

This function, also called the concentrated likelihood function, only de-
pends on the kernel , which depends on � and ?.

We cannot solve for optimal values of � and ? analytically. Instead,
we rely on numerical optimization tomaximize Eq. 10.71. Because � can
vary across a broad range, it is often better to search using logarithmic
scaling. Once we solve that optimization problem, we compute the
mean and variance in Eqs. 10.69 and 10.70.

Now that we have a fitted model, we can make predictions at new
points where we have not sampled. We do this by substituting G? into

10 Surrogate-Based Optimization 403

§Jones173 provides the complete deriva-
tion; here we show only a few key steps.

173. Jones, A taxonomy of global optimiza-
tion methods based on response surfaces,
2001.

a formula called the kriging predictor. The formula is unique, but there
are many ways to derive it. One way to derive it is to find the function
value at G? that is the most consistent with the behavior of the function
captured by the fitted kriging model.

Let 5? be our guess for the value of the function at G? . One way
to assess the consistency of our guess is to add (G? , 5?) as an artificial
point to our training data (so that we now have =B + 1 points) and
estimate the likelihood using the parameters from our fitted kriging
model. The likelihood of this augmented data can now be thought of
as a function of 5? : high values correspond to guessed values of 5? that
are consistent with function behavior captured by the fitted kriging
model. Therefore, the value of 5? that maximizes the likelihood of this
augmented data set is a natural way to predict the value of the function.
This is an optimization problem with a closed-form solution, and the
corresponding formula is the kriging predictor.

Now we outline the derivation of the kriging predictor.§ With the
augmented point, our function values are 5̄ = [5 , 5?], where 5 is the
=B-vector of function values from the original training data. Then, the
correlation matrix with the additional data point is

 ̄ =

[
 :
:ᵀ 1

]
, (10.72)

where : is the correlation of the new point with the training data given
by

: =


corr

(
�

(
G(1)

)
, �(G?)

)
=

(
G(1) , G?

)
...

corr
(
�

(
G(=B)

)
, �(G?)

)
=

(
G(=B) , G?

)

. (10.73)

The 1 in the bottom right of the augmented correlationmatrix (Eq. 10.72)
is because the correlation of the new variable �(G?) with itself is 1. The
log likelihood function with these new augmented vectors and the
previously determined parameters is as follows (see Eq. 10.68):

ℓ (5?) = −=B2 ln(2�) − =B2 ln(�∗2) − 1
2 ln | ̄ | − (5̄ − 4�

∗)ᵀ ̄−1(5̄ − 4�∗)
2�∗2

.

We want to maximize this function with respect to 5? . Because only the
last term depends on 5? (it is a part of 5̄) we can omit the other terms
and formulate the following:

maximize
5?

ℓ (5?) = −

(
5̄ − 4E)ᵀ ̄−1(5̄ − 4�∗

)
2�∗2

. (10.74)

https://dx.doi.org/10.1023/A:1012771025575
https://dx.doi.org/10.1023/A:1012771025575

10 Surrogate-Based Optimization 404

¶The formula formean squared error does
not come from the augmented likelihood
approach, but is a byproduct of showing
that the kriging predictor is the “best lin-
ear unbiased predictor” for the assumed
statistical model.174

174. Sacks et al., Design and analysis of
computer experiments, 1989.

Actual

Kriging model

0 5 10

−0.5

0

0.5

1

G

5

Fig. 10.21Krigingmodel showing the
training data (dots), the kriging pre-
dictor (blue line) and the confidence
interval corresponding to ±1 stan-
dard error (shaded areas), compared
to the actual function (gray line).

This problem can be solved analytically, yielding the mean value of the
kriging prediction,

5? = �∗ + :ᵀ −1(5 − 4�∗) . (10.75)

The mean square error of the kriging prediction (that is, the expected
squared value of the error) is given by¶

�2
? = �∗2

[
1 − :ᵀ −1: + (1 − :

ᵀ −14)2
4ᵀ −14

]
. (10.76)

One attractive feature of krigingmodels is that they are interpolatory
and thus match the training data exactly. To see how this is true, if
G? is the same as one of the training data points, G(8), then : is just 8th
column of . Hence, −1: is a vector 48 , with all zeros except for 1 in
the 8th element. In the prediction (Eq. 10.75), :ᵀ −1 = 4ᵀ8 and so the
last term is 5 (8) − �∗, which means that 5? = 5 (8).

In the mean square error (Eq. 10.76), :ᵀ −1: is the same as :ᵀ48 .
This is the 8th element of :, which is 1. Therefore, the first two terms in
the brackets in Eq. 10.76 cancel, and the last term is zero, yielding �2

? = 0.
This is expected; if we already sampled the point, the uncertainty about
its function value should be zero.

When describing a fitted kriging model, we often refer to the
standard error as the square root of this quantity (i.e.,

√
�2
?). The

standard error is directly related to the confidence interval (e.g., ±1
standard error corresponds to a 68 percent confidence interval).

Example 10.7 One-dimensional kriging model
In this example, we consider the decaying sinusoid:

5 (G) = exp(−0.1G) sin(G) .
We assume, however, that this function is unknown, and we sample at the

following points:
G = [0.5, 2, 2.5, 9, 10] .

We can fit a kriging model to this data by following the procedure in this
section. This includes solving the optimization problem of Eq. 10.71 using a
gradient-based method with exact derivatives. We fix ? = 2 and search for � in
the range [10−3, 102]with the exponent as the optimization variable.

The resulting interpolation is shown in Fig. 10.21, where we plot the mean
line. The shaded area represents the uncertainty corresponding to ±1 standard
error. The uncertainty goes to zero at the known data points and is largest
when far from known data points.

https://dx.doi.org/10.2307/2245858
https://dx.doi.org/10.2307/2245858

10 Surrogate-Based Optimization 405

If we can provide the gradients of the function at the training data
points (in addition to the function values), we can use that information
to build amore accurate krigingmodel. This approach is called gradient-
enhanced kriging (GEK). The methodology is the same as before, except
we addmore observed outputs (i.e., in addition to the function values at
the sampled points, we add their gradients). In addition to considering
the correlation between the function values at different sampled points,
the kernel matrix needs to be expanded to consider correlations
between function values and gradients, gradients and function values,
and among gradient components.

We can use still use equation (Eq. 10.75) for the GEK predictor and
equation (Eq. 10.76) for the mean square error if we plug in “expanded
versions” of the outputs 5 , the vector :, the matrix , and the vector of
1s, 4.

We expand the output vector to include not just the function values
at the sampled points but also their gradients:

5GEK ≡



51
...
5=B
∇ 51
...
∇ 5=B



. (10.77)

This vector is of length =B + =B=3, where =3 is the dimension of G. The
gradients are usually provided at the same G locations as the function
samples, but that is not required.

Recall that the term 4�∗ in Eq. 10.75 for the kriging predictor
represents the expected value of the random variables �(1) , . . . , �(=B).
Now that we have expanded the outputs to include the gradients at the
sampled points, the mean vector needs to be expanded to include the
expected values of ∇�(8), which are all zero. We can still use 4�∗ in the
formula for the predictor if we use the following definition:

4GEK ≡ [1, . . . , 1, 0, . . . , 0] , (10.78)

where 1 occurs for the first =B entries, and 0 for the remaining =B=3
entries.

The additional correlations (between function values andderivatives
and between the derivatives themselves) are as follows:

corr
(
�

(
G(8)

)
, �

(
G(9)

))
= 8 9

10 Surrogate-Based Optimization 406

corr

(
�

(
G(8)

)
,
%�

(
G(9)

)
%G;

)
=

% 8 9

%G(9);

corr

(
%�

(
G(8)

)
%G;

, �
(
G(9)

))
=

% 8 9

%G(8);

corr

(
%�

(
G(8)

)
%G;

,
%�

(
G(9)

)
%G:

)
=

%2 8 9

%G(8); %G(9):
.

(10.79)

Here, we use ; and : to represent a component of a vector, and we
use 8 9 ≡

(
G(8) , G(9)

)
as shorthand. For our particular kernel choice

(Eq. 10.64), these correlations become the following:

 8 9 = exp

(
−

=3∑
:=1

�;
(
G(8); − G

(9)
;

)2
)

% 8 9

%G(9);
= 2�;

(
G(8); − G

(9)
;

)
 8 9

% 8 9

%G(8);
= − % 8 9

%G(9);

%2 8 9

%G(8); %G(9):
=



−4�;�:

(
G(8): − G

(9)
:

) (
G(8); − G

(9)
;

)
 8 9 ; ≠ :

−4�2
;

(
G(8); − G

(9)
;

)2
 8 9 + 2�; 8 9 ; = : ,

(10.80)

where we used ? = 2. Putting this all together yields the expanded
correlation matrix:

 GEK ≡
[
 �
�ᵀ �

]
, (10.81)

where the (=B × =B=3) block representing the first derivatives is

� =



% 11

%G(1)
ᵀ

. . .
% 1=B

%G(=B)

ᵀ

...
. . .

...
% =B1
%G(1)

ᵀ

. . .
% =B=B
%G(=B)

ᵀ


(10.82)

and the (=B=3 × =B=3)matrix of second derivatives is

� =



%2 11

%G(1)%G(1)
. . .

%2 1=B

%G(1)%G(=B)
...

. . .
...

%2 =B1
%G(=B)%G(1)

. . .
%2 =B=B

%G(=B)%G(=B)


. (10.83)

10 Surrogate-Based Optimization 407

Actual

Fit

0 5 10

−0.5

0

0.5

1

G

5

Fig. 10.22 A GEK fit to the input data
(circles) and a shaded confidence in-
terval.

We can still get the estimates �∗ and �∗2 with Eqs. 10.69 and 10.70
using the expanded versions of , 4, 5 and replacing =B in Eq. 10.76
with =B(=3 + 1), which is the new length of the outputs.

The predictor equations (Eqs. 10.75 and 10.76) also apply with the
expanded matrices and vectors. However, we also need to expand : in
these computations to include the correlations between the gradients
at the sampled points with the gradient at the point G where we make
a prediction. Thus, the expanded : is:

:GEK ≡



:

corr

(
%�

(
G(1)

)
%G(1)

, �(G?)
)
=
%

(
G(1) , G?

)
%G(1)

...

corr

(
%�

(
G(=B)

)
%G(=B)

, �(G?)
)
=
%

(
G(=B) , G?

)
%G(=B)



. (10.84)

Example 10.8 Gradient-enhanced kriging
We repeat Ex. 10.7 but this time include the gradients (Fig. 10.22). The

standard error reduces dramatically betweenpoints. The additional information
contained in the derivatives significantly helps in creating a more accurate fit.

Example 10.9 Two-dimensional kriging
The Jones function (Appendix D.1.4) is shown on the left in Fig. 10.23. Using

GEK with only 10 training points from a Hammersley sequence (shown as the
dots), created the surrogate model on the right. A reasonable representation of
this multimodal space can be captured even with a small number of samples.

−1 0 1 2 3

−1

0

1

2

3

G1

G2

Original function

−1 0 1 2 3

−1

0

1

2

3

G1

G2

Kriging fit

Fig. 10.23 Kriging fit to the multi-
modal Jones function.

10 Surrogate-Based Optimization 408

175. Han et al.,Weighted gradient-enhanced
kriging for high-dimensional surrogate
modeling and design optimization, 2017.

172. Bouhlel and Martins, Gradient-
enhanced kriging for high-dimensional
problems, 2019.

176. Forrester et al., Engineering Design
via Surrogate Modelling: A Practical Guide,
2008.

One difficulty with GEK is that the kernel matrix quickly grows in
size as the dimension of the problem increases, the number of samples
increases, or both. Various approaches have been proposed to improve
the scaling with higher dimensions, such as a weighted sum of smaller
correlation matrices175 or a partial least squares approach.172

The version of kriging in this section is interpolatory. For noisy
data, a regression approach can be used by modifying the correlation
matrix as follows:

 reg ≡ + �� , (10.85)

with � > 0. This adds a positive constant along the diagonal, so the
model no longer correlates perfectly with the provided points. The
parameter � is then an additional parameter to estimate in themaximum
likelihood optimization. Even for interpolatory models, this term is
often still added to the covariance matrix with a small constant value
of � (near machine precision) to ensure that the correlation matrix is
invertible. This section focused on the most common choices when
using kriging, but many other versions exist.176

10.5 Deep Neural Networks
Like kriging, deep neural nets can be used to approximate highly non-
linear simulations where we do not need to provide a parametric form.
Neural networks follow the same basic steps described for other surro-
gate models but with a unique model leading to specialized approaches
for derivative computation and optimization strategy. Neural networks
loosely mimic the brain, which consists of a vast network of neurons.
In neural networks, each neuron is a node that represents a simple
function. A network defines chains of these simple functions to obtain
composite functions that are much more complex. For example, three
simple functions, 5 (1) , 5 (2), and 5 (3), may be chained into the composite
function (or network):

5 (G) = 5 (3)
(
5 (2)

(
5 (1)(G)

))
. (10.86)

Even though each function may be simple, the composite function
can express complex behavior. Most neural networks are feedforward
networks, meaning that information flows from inputs G to outputs 5 .
Recurrent neural networks include feedback connections.

Figure 10.24 shows a diagram of a neural network. Each node
represents a neuron. The neurons are connected between consecutive
layers, forming a dense network. The first layer is the input layer, the
last one is the output layer, and the middle ones are the hidden layers.

https://dx.doi.org/10.2514/1.J055842
https://dx.doi.org/10.2514/1.J055842
https://dx.doi.org/10.2514/1.J055842
https://dx.doi.org/10.1007/s00366-018-0590-x
https://dx.doi.org/10.1007/s00366-018-0590-x
https://dx.doi.org/10.1007/s00366-018-0590-x
https://books.google.com/books?vid=ISBN0470770791
https://books.google.com/books?vid=ISBN0470770791

10 Surrogate-Based Optimization 409

The total number of layers is called the network’s depth. Deep neural
networks have many layers, enabling the modeling of complex behavior.

Input layer Hidden layers Output layer

Fig. 10.24 Deep neural network with
two hidden layers.

The first and last layers can be viewed as the inputs and outputs
of a surrogate model. Each neuron in the hidden layer represents a
function. This means that the output from a neuron is a number, and
thus the output from a whole layer can be represented as a vector G.
We represent the vector of values for layer : by G(:), and the value for
the 8th neuron in layer : by G(:)8 .

Consider a neuron in layer :. This neuron is connected to many
neurons from the previous layer : − 1 (see the first part of Fig. 10.25).
We need to choose a functional form for each neuron in the layer that
takes in the values from the previous layer as inputs. Chaining together
linear functions would yield another linear function. Therefore, some
layers must use nonlinear functions.

The most common choice for hidden layers is a layer of linear
functions followed by a layer of functions that create nonlinearity. A
neuron in the linear layer produces the following intermediate variable:

I =
=∑
9=1

F 9G
(:−1)
9 + 1 . (10.87)

In vector form:
I = FᵀG(:−1) + 1 . (10.88)

The first term is a weighted sum of the values from the neurons in the
previous layer. The F vector contains the weights. The term 1 is the
bias, which is an offset that scales the significance of the overall output.

10 Surrogate-Based Optimization 410

F1

F2

F3

F=

G(:−1)
1

G(:−1)
2

G(:−1)
3

...

G(:−1)
=

I1

I2

I3

I4 =
∑
9

(
F 9G

(:−1)
9

)
+ 14

I5

...

I<

G(:) = 0(I) G(:)4

Inputs Weights Summation
and bias Activation Output

Fig. 10.25 Typical functional form for
a neuron in the neural net.

−5 5

0.2

0.4

0.6

0.8

1

Sigmoid

I

0(I)

−5 5

2

4

ReLU

I

0(I)

Fig. 10.26 Activation functions.

These two terms are analogous to the weights used in the previous
section but with the constant term separated for convenience. The
second column of Fig. 10.25 illustrates the linear (summation and bias)
layer.

Next, we pass I through an activation function, which we call 0(I).
Historically, one of the most common activation functions has been the
sigmoid function:

0(I) = 1
1 + 4−I . (10.89)

This function is shown in the top plot of Fig. 10.26. The sigmoid function
produces values between 0 and 1, so large negative inputs result in
insignificant outputs (close to 0), and large positive inputs produce
outputs close to 1.

Most modern neural nets use a rectified linear unit (ReLU) as the
activation function:

0(I) = max(0, I) . (10.90)

This function is shown in the bottom plot of Fig. 10.26. The ReLU
has been found to be far more effective than the sigmoid function in
producing accurate neural nets. This activation function eliminates
negative inputs. Thus, the bias term can be thought of as a threshold

10 Surrogate-Based Optimization 411

establishing what constitutes a significant value. The final two columns
of Fig. 10.25 illustrate the activation step.

Combining the linear functionwith the activation function produces
the output for the 8th neuron:

G(:)8 = 0
(
FᵀG(:−1) + 18

)
. (10.91)

To compute the outputs for all the neurons in this layer, the weights
F for one neuron form one row in a matrix of weights, and we can
write:



G(:)1
...

G(:)8
...

G(:)=:



= 0

©­­­­­­­­«



,1,1 · · · ,1, 9 · · · ,1,=:−1
...

...
...

,8 ,1 · · · ,8 , 9 · · · ,8 ,=:−1
...

...
...

,=: ,1 · · · ,=: , 9 · · · ,=: ,=:−1





G(:−1)
1
...

G(:−1)
9
...

G(:−1)
=:−1



+



11
...
18
...
G=:



ª®®®®®®®®¬
(10.92)

or
G(:) = 0

(
,G(:−1) + 1

)
. (10.93)

The activation function is applied separately for each row. The following
equation is more explicit (where F8 is the 8th row of,):

G(:)8 = 0
(
Fᵀ
8 G
(:−1)
8 + 18

)
. (10.94)

This neural net is now parameterized by a number of weights. Like
other surrogate models, we need to determine the optimal value for
these parameters (i.e., train the network) using training data. In the
example of Fig. 10.24, there is a layer of 5 neurons, 7 neurons, 7 neurons,
and then 4 neurons, and so there would be 5 × 7 + 7 × 7 + 7 × 4 weights
and 7 + 7 + 4 bias terms, giving a total of 130 variables. This represents
a small neural net because there are few inputs and few outputs. Large
neural nets can have millions of variables. We need to optimize those
variables to minimize a cost function.

As before, weuse amaximum likelihood estimatewhereweoptimize
the parameters � (weights and biases in this case) to maximize the
probability of observing the output data H conditioned on our inputs
G. As shown in Section 10.3.2, this results in a sum of squared errors
function:

minimize
�

=∑
8=1

(
5̂
(
�; G(8)

)
− 5 (8)

)2
. (10.95)

10 Surrogate-Based Optimization 412

∗The machine learning community inde-
pendently developed backpropagation be-
fore becoming aware of the connection to
reverse-mode AD.58

58. Baydin et al., Automatic differentiation
in machine learning: A survey, 2018.

We now have the objective and variables in place to train the neural
net. As with the other models discussed in this chapter, it is critical to
set aside some data for cross validation.

Because the optimization problem (Eq. 10.95) often has a large
number of parameters�, wegenerallyuse agradient-basedoptimization
algorithm (however the algorithms of Chapter 4 are modified as we will
discuss shortly). To solve Eq. 10.95 using gradient-based optimization,
we require the derivatives of the objective function with respect to the
weighs �. Because the objective is a scalar and the number of weights
is large, reverse-mode algorithmic differentiation (AD) (see Section 6.6)
is ideal to compute the required derivatives.

Reverse-mode AD is known in the machine learning community as
backpropagation.∗ Whereas general-purpose reverse-mode AD operates
at the code level, backpropagation usually operates on larger sets of
operations and data structures defined in machine learning libraries.
Although less general, this approach can increase efficiency and stability.
The ReLU activation function (Fig. 10.26, bottom) is not differentiable
at I = 0, but in practice, this is generally not problematic—primarily
because these methods typically rely on inexact gradients anyway, as
discussed next.

The objective function in Eq. 10.95 consists of a sum of subfunctions,
each of which depends on a single data point (G(8) , 5 (8)). Objective
functions vary across machine learning applications, but most have this
same form:

minimize
�

5 (�) , (10.96)

where

5 (�) =
=∑
8=1

ℓ
(
�; G(8) , 5 (8)

)
=

=∑
8=1

ℓ8(�) . (10.97)

As previously mentioned, the challenge with these problems is that
we often have large training sets where = may be in the billions. That
means that computing the objective can be costly, and computing the
gradient can be even more costly.

If we divide the objective by = (which does not change the solution),
the objective function becomes an approximation of the expected value
(see Appendix A.9):

5 (�) = 1
=

=∑
8=1

ℓ8(�) = E(ℓ (�)) (10.98)

From probability theory, we know that we can estimate an expected
value from a smaller set of random samples. For the application of
estimating a gradient, we call this subset of random samples aminibatch

https://dx.doi.org/10.5555/3122009.3242010
https://dx.doi.org/10.5555/3122009.3242010

10 Surrogate-Based Optimization 413

(=
{
G(1) . . . G(<)

}
, where < is usually between 1 and a few hundred.

The entries G(1) , . . . , G(<) do not correspond to the first = entries but are
drawn randomly from a uniform probability distribution (Fig. 10.27).
Using the minibatch, we can estimate the gradient as the sum of the
subfunction gradients at different training points:

∇� 5 (�) ≈ 1
<

∑
8∈(
∇�ℓ

(
�; G(8) , 5 (8)

)
. (10.99)

Thus, we divide the training data into these minibatches and use a new
minibatch to estimate the gradients at each iteration in the optimization.

Training data Testing data

Minibatch 1 Minibatch 2 Minibatch 3

Fig. 10.27 Minibatches are randomly
drawn from the training data.

This approach works well for these specific problems because of
the unique form for the objective (Eq. 10.98). As an example, for one
million training samples, a single gradient evaluation would require
evaluating all one million training samples. Alternatively, for a similar
cost, a minibatch approach can update the optimization variables a
million times using the gradient estimated from one training sample
at a time. This latter process usually converges much faster, mainly
because we are only fitting parameters against limited data in these
problems, so we generally do not need to find the exact minimum.

Typically, this gradient is used with steepest descent methods (Sec-
tion 4.4.1), more typically referred to as gradient descent in the machine
learning communities. As discussed in Chapter 4, steepest descent
is not the most effective optimization algorithm. However, steepest
descent with the minibatch updates, called stochastic gradient descent,
has been found to work well in machine learning applications. This
suitability is primarily because (1) many machine learning optimiza-
tions are performed repeatedly, (2) the true objective is difficult to
formalize, and (3) finding the absolute minimum is not as important as
finding a good enough solution quickly. One key difference in stochastic
gradient descent relative to the steepest descent method is that we do
not perform a line search. Instead, the step size (called the learning rate
in machine learning applications) is a preselected value that is usually
decreased between major optimization iterations.

10 Surrogate-Based Optimization 414

177. Ruder, An overview of gradient descent
optimization algorithms, 2016.

178. Goh,Why momentum really works,
2017.

Stochastic minibatching is easily applied to first-order methods and
has thusdriven thedevelopment of improvements on stochastic gradient
descent, such asmomentum, Adagrad, andAdam.177 Although some of
these methods may seem somewhat ad hoc, there is mathematical rigor
to many of them.178 Batching makes the gradients noisy, so second-
order methods are generally not pursued. However, ongoing research
is exploring stochastic batch approaches that might effectively leverage
the benefits of second-order methods.

10.6 Optimization and Infill
Once a surrogate model has been built, optimization may be performed
using the surrogate function values. That is, instead of minimizing the
expensive function 5 (G), we minimize the model 5̂ (G), as previously
illustrated in Fig. 10.1.

The surrogate model may be static, but more commonly, it is
updated between optimization iterations by adding new training data
and rebuilding the model.

The process by which we select new data points is called infill. There
are two main approaches to infill: prediction-based exploitation and
error-based exploration. Typically, only one infill point is chosen at a
time. The assumption is that evaluating the model is computationally
expensive, but rebuilding and evaluating the surrogate is cheap.

10.6.1 Exploitation
For models that do not provide uncertainty estimates, the only real
option is exploitation. A prediction-based exploitation infill strategy
adds an infill point wherever the surrogate predicts the optimum. The
reasoning behind this approach is that in SBO, we do not necessarily
care about having a globally accurate surrogate; instead, we only care
about having an accurate surrogate near the optimum.

The most logical point to sample is thus the optimum predicted by
the surrogate. Likely, the location predicted by the surrogate will not
be at the true optimum. However, evaluating this point adds valuable
information in the region of interest.

We rebuild the surrogate and re-optimize, repeating theprocess until
convergence. This approach usually results in the quickest convergence
to an optimum, which is desirable when the actual function is expensive
to evaluate. The downside is that we may converge prematurely to an
inferior local optimum for problems with multiple local optima.

Even though the approach is called exploitation, the optimizer used
on the surrogate can be a global search method (gradient-based or

https://http://arxiv.org/abs/1609.04747
https://http://arxiv.org/abs/1609.04747
https://dx.doi.org/10.23915/distill.00006

10 Surrogate-Based Optimization 415

145. Jones et al., Efficient global optimiza-
tion of expensive black-box functions, 1998.

gradient-free), although it is usually a local search method. If uncer-
tainty is present, using the mean value of the surrogate as the infill
criteria results in essentially an exploitation strategy.

The algorithm is outlined in Alg. 10.4. Convergence could be based
on a maximum number of iterations or a tolerance for the objective
function’s fractional change.

Algorithm 10.4 Exploitation-driven surrogate-based optimization
Inputs:
=B : Number of initial samples
G, G: Variable lower and upper bounds
�: Convergence tolerance

Outputs:
G∗: Best point identified
5 ∗: Corresponding function value

G(8) = sample(=B , =3) Sample
5 (8) = 5

(
G(8)

)
Evaluate function

: = 0
while : < :max and

(
5̂ ∗ − 5new

)
/ 5̂ ∗ < � do

5̂ = surrogate
(
G(8) , 5 (8)

)
Construct surrogate model

G∗ , 5̂ ∗ = min 5̂ (G) Perform optimization on the surrogate function
5new = 5 (G∗) Evaluate true function at predicted optimum
G(8) = G(8) ∪ G∗ Append new point to training data
5 (8) = 5 (8) ∪ 5new Append corresponding function value
: = : + 1

end while

10.6.2 Efficient Global Optimization
An alternative approach to infill uses error-based exploration. This
approach requires using kriging (Section 10.4) or another surrogate
approach that predicts not just function values but also error estimates.
Although many infill metrics exist within this category, we focus on a
popular one called expected improvement, and the associated algorithm,
efficient global optimization (EGO).145

As stated previously, sampling where the mean is low is an ex-
ploitation strategy, but we do not necessarily want to sample where
the uncertainty is high. That may lead to wasteful function calls in
regions of the design space where the surrogate model is inaccurate
but which are far from any optimum. In effect, this strategy would be

https://dx.doi.org/10.1023/A:1008306431147
https://dx.doi.org/10.1023/A:1008306431147

10 Surrogate-Based Optimization 416

like a larger sampling plan aiming to reduce error everywhere in the
surrogate. Instead, we want to sample where we have the maximum
probability of finding a better point.

Let the best solution we have found so far be 5 ∗ = 5 (G∗). The
improvement for any new test point G is then given by

�(G) = max
(
5 ∗ − 5 (G), 0) . (10.100)

If 5 (G) ≥ 5 ∗, there is no improvement, but if 5 (G) < 5 ∗, the improvement
is positive. However, 5 (G) is not a deterministic value in this model but
rather a probability distribution. Thus, the expected improvement is
the expected value (or mean) of the improvement:

��(G) = E (
max(5 ∗ − 5 (G), 0)) . (10.101)

The expected value for a kriging model can be found analytically as:

��(G) = (5 ∗ − � 5 (G))Φ
(
5 ∗ − � 5 (G)
� 5 (G)

)
+ � 5 (G))

(
5 ∗ − � 5 (G)
� 5 (G)

)
,

(10.102)

where Φ and) are the CDF and PDF, respectively, for the standard
normal distribution, and � 5 and � 5 are the mean and standard error
functions produced from kriging (Eqs. 10.75 and 10.76).

The algorithm is similar to that of the previous section (Alg. 10.4),
but instead of choosing the minimum of the surrogate, the selected
infill point is the point with the greatest expected improvement. The
corresponding algorithm is detailed in Alg. 10.5.

Algorithm 10.5 Efficient global optimization
Inputs:
=B : Number of initial samples
G, G: Lower and upper bounds
�: Minimum expected improvement

Outputs:
G∗: Best point identified
5 ∗: Corresponding function value

G(8) = sample(=B , =3) Sample
5 (8) = 5 (G(8)) Evaluate function
5 ∗ = min{ 5 (8)} Best point so far; also update corresponding G∗
: = 0
while : < :max and 548 > � do

10 Surrogate-Based Optimization 417

(G∗ , 5 ∗)
0 5 10

−0.5

0

0.5

1

Gtest

G

5

Fig. 10.28At a given test point (Gtest =
3.25), wehighlight the probability dis-
tribution and the expected improve-
ment in the shaded red region.

�(G), �(G) = GP(G(8) , 5 (8)) Construct Gaussian process surrogate model
G: , 548 = max��(G) Maximize expected improvement
5: = 5 (G:) Evaluate true function at predicted optimum
5 ∗ = min{ 5 ∗ , 5:} Update best point and G∗ if necessary
G(8) ← [G(8) , G:] Add new point to training data
5 (8) ← [5 (8) , 5:]
: = : + 1

end while

Example 10.10 Expected improvement
Consider the same one-dimensional function of Ex. 10.7 using kriging

(without gradients), where the data points and fit are shown again in Fig. 10.28.
The best point we have found so far is denoted in the figure as G∗ , 5 ∗. For
a Gaussian process model, the fit also provides a 1-standard-error region,
represented by the shaded region in Ex. 10.7.

Now imagine we want to evaluate this function at some new test point,
Gtest = 3.25. In Fig. 10.28, the full probability distribution for the objective
at Gtest is shown in red. This probability distribution occurs at a fixed value
of G, so we can visualize it in a dimension coming out of the page. The
integral of the shaded red region is the probability of improvement over the
best point. The expected value is similar to the probability of improvement.
However, rather than returning a probability, it returns the expected magnitude
of improvement. That magnitude may be more helpful in defining stopping
criteria than quantifying a probability; that is, if the amount of improvement is
negligible, it does not matter that the associated probability is high.

Now, let us evaluate the expected improvement not just at Gtest, but across
the domain. The result is shown by the red function in the top left of Fig. 10.29.
The highest peak suggests that we expect the largest improvement close to
our best known point at this first iteration. We also see significant potential
for improvement in the middle region of high uncertainty. The expected
improvement metric does not simply capture regions with high uncertainty
but rather regions that are likely to lead to improvement (which may also have
high uncertainty). On the left side of the figure, for example, we anticipate zero
expected improvement. For our next sample, we would choose the location
with the greatest expected improvement, rebuild the surrogate model, and
repeat.

A few select iterations in the convergenceprocess are shown in the remaining
panes of Fig. 10.29. On the top right, after the first promising valley is well
explored, the middle region becomes the most likely location of potential
improvements. Eventually, the potential improvements are minor, below our
convergence threshold, and we terminate (bottom right).

10 Surrogate-Based Optimization 418

0 2 4 6 8 10 12

−0.5

0

0.5

1

G

5

: = 1

0
1
2
3
4
·10−2

��(G)

0 2 4 6 8 10 12

−0.5

0

0.5

1

G

5

: = 5

0
2
4
6
8
·10−3

��(G)

0 2 4 6 8 10 12

−0.5

0

0.5

1

G

5

: = 10

0
0.5

1
1.5

·10−3

��(G)

0 2 4 6 8 10 12

−0.5

0

0.5

1

G

5

: = 12

0

0.5

1
·10−5

��(G)

Fig. 10.29 Expected improvement
evaluated across the domain.

10.7 Summary
Surrogate-based optimization can be an effective approach to optimiza-
tion problems where models are expensive to evaluate or noisy. The
first step in building a surrogate model is sampling, in which we select
the points that are evaluated to obtain the training data. Full factorial
searches are too expensive for even a modest number of variables,
and random sampling does not provide good coverage, so we need
techniques that provide good coverage with a small number of sam-
ples. Popular techniques for this kind of sampling include LHS and
low-discrepancy sequences.

The next step is surrogate selection and construction. For a given
choice of basis functions, regression is used to select optimal model

10 Surrogate-Based Optimization 419

parameters. Cross validation is a critical component of this process. We
want good predictive capability, whichmeans that themodelsworkwell
on data that the model has not been trained against. Model selection
often involves trade-offs of more rigid models that do not need as much
training data versus more flexible models that require more training
data. Polynomials are often used for regression problems because
a relatively small number of samples can be used to capture model
behavior. Radial basis functions are more often used for interpolation
because they can handle multimodal behavior but may require more
training data.

Kriging and deep neural nets are two options that model more com-
plex and multimodal design spaces. When using these models, special
considerations are needed for efficiency, such as using symmetricmatrix
factorizations and gradients for kriging and using backpropagation
and stochastic gradients for deep neural nets.

The last step of the process is infill, where points are sampled
during optimization to update the surrogate model. Some approaches
are exploitation-based, where we perform optimization using the
surrogate and then use the optimal solution to update the model.
Other approaches are exploration-based, where we sample not just
at the deterministic optimum but also at points where the expected
improvement is high. Exploration-based approaches require surrogate
models that provide uncertainty estimates, such as kriging models.

10 Surrogate-Based Optimization 420

Problems
10.1 Answer true or false and justify your answer.

a. You should use surrogate-based optimization when a prob-
lem has an expensive simulation and many design variables
because it is immune to the “curse of dimensionality”.

b. Latin hypercube sampling is a random process that is more
efficient than pure random sampling.

c. LHS seeks to minimize the distance between the samples,
with the constraint that the projection on each axis must
follow a chosen probability distribution.

d. Polynomial regressions are not considered to be surrogate
models because they are too simple and do not consider any
of the model physics.

e. There can be some overlap between the training points and
cross-validation points, as long as that overlap is small.

f. Cross validation is a required step in selecting basis functions
for SBO.

g. In addition to modeling the function values, kriging surro-
gate models also provide an estimate of the uncertainty in
the values.

h. A prediction-based exploitation infill strategy adds an infill
point wherever the surrogate predicts the largest error.

i. Maximizing the expected improvement maximizes the prob-
ability of finding a better function value.

j. Neural networks require many nodes with a variety of
sophisticated activation functions to represent challenging
nonlinear models.

k. Backpropagation is the computation of the derivatives of
the neural net error with respect to the activation function
weights using reverse-mode AD.

10.2 Latin hypercube sampling. Implement an LHS sampling algorithm
and plot 20 points across two dimensions with uniform projection
in both dimensions. Overlay the grid to check that one point
occurs in each bin.

10.3 Inversion sampling. Use inversion sampling with Latin hypercube
sampling to create and plot 100 points across two dimensions.
Each dimension should follow a normal distribution with zero

10 Surrogate-Based Optimization 421

mean and a standard deviation of 1 (cross-terms in covariance
matrix are 0).

10.4 Linear regression. Use the following trainingdata sampled at Gwith
the resulting function value 5 (also tabulated on the resources
website):

G = [− 2.0000,−1.7895,−1.5789,−1.3684,−1.1579,
− 0.9474,−0.7368,−0.5263,−0.3158,−0.1053,
0.1053, 0.3158, 0.5263, 0.7368, 0.9474,
1.1579, 1.3684, 1.5789, 1.7895, 2.0000]

5 = [7.7859, 5.9142, 5.3145, 5.4135, 1.9367,
2.1692, 0.9295, 1.8957,−0.4215, 0.8553,
1.7963, 3.0314, 4.4279, 4.1884, 4.0957,
6.5956, 8.2930, 13.9876, 13.5700, 17.7481].

Use linear regression todetermine the coefficients for a polynomial
basis of [G2 , G, 1] to predict 5 (G). Plot your fit against the training
data and report the coefficients for the polynomial bases.

10.5 Cross validation. Use the following training data sampled at G with
resulting function value 5 (also tabulated on resources website):

G = [− 3.0,−2.6053,−2.2105,−1.8158,−1.4211,
− 1.0263,−0.6316,−0.2368, 0.1579, 0.5526,
0.9474, 1.3421, 1.7368, 2.1316, 2.5263,
2.9211, 3.3158, 3.7105, 4.1053, 4.5]

5 = [43.1611, 28.1231, 12.9397, 3.7628,−2.5457,
− 4.267, 2.8101,−0.6364, 1.1996,−0.9666,
− 2.7332,−6.7556,−9.4515,−7.0741,−7.6989,
− 8.4743,−7.9017,−2.0284, 11.9544, 33.7997].

a. Create a polynomial surrogate model using the set of poly-
nomial basis functions G 8 for 8 = 0 to =. Plot the error in the
surrogate model while increasing = (the maximum order of
the polynomial model) from 1 to 20.

b. Plot the polynomial fit for = = 16 against the data and
comment on its suitability.

10 Surrogate-Based Optimization 422

c. Re-create the error plot versus polynomial order using :-fold
cross validation with 10 divisions. Be sure to limit the H-axes
to the area of interest.

d. Plot the polynomial fit against the data for a polynomial order
that produces low error under cross validation, and report
the coefficients for the polynomial. Justify your selection.

10.6 Nonlinear least squares. Implement a Levenberg–Marquardt al-
gorithm and demonstrate its performance on the Rosenbrock
function from three different starting points.

10.7 Kriging. Implement kriging (without gradients) and demonstrate
its fit on the following one-dimensional function:

H = exp(−G) cos(5G),

where G ∈ [0, 2.5], using the following five sample points: G =
[0, 0.2, 1.0, 1.2, 2.2].

10.8 Efficient global optimization. Use EGO with the function from the
previous problem, showing the iteration history until the expected
improvement reduces below 0.001.

179. Diamond and Boyd, Convex optimiza-
tion with abstract linear operators, 2015.

11Convex Optimization
General nonlinear optimization problems are difficult to solve. De-
pending on the particular optimization algorithm, they may require
tuning parameters, providing derivatives, adjusting scaling, and trying
multiple starting points. Convex optimization problems do not have
any of those issues and are thus easier to solve. The challenge is that
these problems must meet strict requirements. Even for candidate
problems with the potential to be convex, significant experience is
usually needed to recognize and utilize techniques that reformulate the
problems into an appropriate form.

By the end of this chapter you should be able to:

1. Understand the benefits and limitations of convex opti-
mization.

2. Identify and solve linear and quadratic optimization prob-
lems.

3. Formulate and solve convex optimization problems.

4. Identify and solve geometric programming problems.

11.1 Introduction
Convex optimization problems have desirable characteristics that make
them more predictable and easier to solve. Because a convex prob-
lem has provably only one optimum, convex optimization methods
always converge to the global minimum. Solving convex problems is
straightforward and does not require a starting point, parameter tuning,
or derivatives, and such problems scale well up to millions of design
variables.179

All we need to solve a convex problem is to set it up appropriately;
there is no need to worry about convergence, local optima, or noisy
functions. Some convex problems are so straightforward that they
are not recognized as an optimization problem and are just thought

423

https://dx.doi.org/10.1109/iccv.2015.84
https://dx.doi.org/10.1109/iccv.2015.84

11 Convex Optimization 424

∗An affine function consists of a linear
transformation and a translation. Infor-
mally, this type of function is often re-
ferred to as linear (including in this book),
but strictly, these are distinct concepts. For
example: �G is a linear function in G,
whereas �G + 1 is an affine function in
G.

G1 G2

5 (G1)

5 (G2)

Fig. 11.1 Convex function definition
in the one-dimensional case: The
function (black line) must be below a
line that connects any two points in
the domain (blue line).

of as a function or operation. A familiar example of the latter is the
linear-least-squares problem (described previously in Section 10.3.1
and revisited in a subsequent section).

Although these are desirable properties, the catch is that convex
problems must satisfy strict requirements. Namely, the objective and
all inequality constraints must be convex functions, and the equality
constraints must be affine.∗

A function 5 is convex if

5
((1 − �)G1 + �G2

) ≤ (1 − �) 5 (G1) + � 5 (G2) (11.1)

for all G1 and G2 in the domain, where 0 ≤ � ≤ 1. This requirement is
illustrated in Fig. 11.1 for the one-dimensional case. The right-hand
side of the inequality is just the equation of a line from 5 (G1) to 5 (G2)
(the blue line), whereas the left-hand side is the function 5 (G) evaluated
at all points between G1 and G2 (the black curve). The inequality says
that the function must always be below a line joining any two points in
the domain. Stated informally, a convex function looks something like
a bowl.

Unfortunately, even these strict requirements are not enough. In
general, we cannot identify a given problem as convex or take advantage
of its structure to solve it efficiently and must therefore treat it as
a general nonlinear problem. There are two approaches to taking
advantage of convexity. The first one is to directly formulate the
problem in a known convex form, such as a linear program or a
quadratic program (discussed later in this chapter). The second option
is to use disciplined convex optimization, a specific set of rules and
mathematical functions that we can use to build up a convex problem.
By following these rules, we can automatically translate the problem
into an efficiently solvable form.

Althoughboth of these approaches are straightforward to apply, they
also expose the main weakness of these methods: we need to express
the objective and inequality constraints using only these elementary
functions and operations. In most cases, this requirement means that
themodelmust be simplified. Often, a problem is not directly expressed
in a convex form, and a combination of experience and creativity is
needed to reformulate the problem in an equivalent manner that is
convex.

Simplifying models usually results in a fidelity reduction. This
is less problematic for optimization problems intended to be solved
repeatedly, such as in optimal control and machine learning, which are
domains in which convex optimization is heavily used. In these cases,
simplification by local linearization, for example, is less problematic

11 Convex Optimization 425

†Boyd and Vandenberghe86 is the most
cited textbook on convex optimization.

86. Boyd and Vandenberghe, Convex
Optimization, 2004.

‡Several references exist with examples
for those categories that we do not discuss
in detail.180–181

180. Lobo et al., Applications of second-
order cone programming, 1998.

181. Parikh and Boyd, Block splitting for
distributed optimization, 2013.

182. Vandenberghe and Boyd, Semidefi-
nite programming, 1996.

183. Vandenberghe and Boyd, Applica-
tions of semidefinite programming, 1999.

Graph form programming
(GFP)

Cone programming
(CP)

Semidefinite programming
(SDP)

Second-order cone
programming (SOCP)

Quadratic
programming (QP)

Linear programming
(LP)

Fig. 11.2 Relationship between vari-
ous convex optimization problems.

because the linearization can be updated in the next time step. However,
this fidelity reduction is problematic for design applications.

In design scenarios, the optimization is performed once, and the
design cannot continue to be updated after it is created. For this reason,
convex optimization is less frequently used for design applications, ex-
cept for some limited uses in geometric programming, a topic discussed
in more detail in Section 11.6.

This chapter just introduces convex optimization and is not a re-
placement formore comprehensive textbooks on the topic.† We focus on
understanding what convex optimization is useful for and describing
the most widely used forms.

The known categories of convex optimization problems include
linear programming, quadratic programming, second-order cone pro-
gramming, semidefinite programming, cone programming, and graph
form programming. Each of these categories is a subset of the next
(Fig. 11.2).‡

We focus on the first three because they are the most widely used,
including in other chapters in this book. The latter three forms are
less frequently formulated directly. Instead, users apply elementary
functions and operations and the rules specified by disciplined convex
programming, and a software tool transforms the problem into a
suitable conic form that can be solved. Section 11.5 describes this
procedure.

After covering the three main categories of convex optimization
problems, we discuss geometric programming. Geometric program-
ming problems are not convex, but with a change of variables, they
can be transformed into an equivalent convex form, thus extending the
types of problems that can be solved with convex optimization.

11.2 Linear Programming
A linear program (LP) is an optimization problem with a linear objective
and linear constraints and can be written as

minimize
G

5 ᵀG

subject to �G + 1 = 0
�G + 3 ≤ 0 ,

(11.2)

where 5 , 1, and 3 are vectors and � and � are matrices. All LPs are
convex.

https://books.google.com/books?vid=ISBN0521833787
https://books.google.com/books?vid=ISBN0521833787
https://dx.doi.org/10.1016/s0024-3795(98)10032-0
https://dx.doi.org/10.1016/s0024-3795(98)10032-0
https://dx.doi.org/10.1007/s12532-013-0061-8
https://dx.doi.org/10.1007/s12532-013-0061-8
https://dx.doi.org/10.1137/1038003
https://dx.doi.org/10.1137/1038003
https://dx.doi.org/10.1016/s0168-9274(98)00098-1
https://dx.doi.org/10.1016/s0168-9274(98)00098-1

11 Convex Optimization 426

Example 11.1 Formulating a linear programming problem
Suppose we are shopping and want to find how best to meet our nutritional

needs for the lowest cost. We enumerate all the food options and use the
variable G 9 to represent how much of food 9 we purchase. The parameter 2 9 is
the cost of a unit amount of food 9. The parameter #8 9 is the amount of nutrient
8 contained in a unit amount of food 9. We need to make sure we have at least
A8 of nutrient 8 to meet our dietary requirements. We can now formulate the
cost objective as

minimize
G

∑
9

2 9G 9 = 2ᵀG .

To meet the nutritional requirement of nutrient 8, we need to satisfy∑
9

#8 9G 9 ≥ A8 ⇒ #G ≥ A .

Finally, we cannot purchase a negative amount of food, so G ≥ 0. The objective
and all of the constraints are linear in G, so this is an LP (where 5 ≡ 2, � ≡ −# ,
3 ≡ A in Eq. 11.2). We do not need to artificially restrict which foods we include
in our initial list of possibilities. The formulation allows the optimizer to select
a given food item G8 to be zero (i.e., do not purchase any of that food item),
according to what is optimal.

As a concrete example, consider a simplified version (and a reductionist
view of nutrition) with 10 food options and three nutrients with the amounts
listed in the following table.

Food Cost Nutrient 1 Nutrient 2 Nutrient 3

A 0.46 0.56 0.29 0.48
B 0.54 0.84 0.98 0.55
C 0.40 0.23 0.36 0.78
D 0.39 0.48 0.14 0.59
E 0.49 0.05 0.26 0.79
F 0.03 0.69 0.41 0.84
G 0.66 0.87 0.87 0.01
H 0.26 0.85 0.97 0.77
I 0.05 0.88 0.13 0.13
J 0.60 0.62 0.69 0.10

If the amount of each food is G, the cost column is 2, and the nutrient
columns are =1 , =2, and =3, we can formulate the LP as

minimize
G

2ᵀG

subject to 5 ≤ =ᵀ1 G ≤ 8

7 ≤ =ᵀ2 G
1 ≤ =ᵀ3 G ≤ 10

G ≤ 4 .

11 Convex Optimization 427

∗See Section 2.3 for a brief historical back-
ground on the development of LP and its
applications.

The last constraint ensures that we do not overeat any one item and get tired of
it. LP solvers are widely available, and because the inputs of an LP are just a
table of numbers some solvers do not even require a programming language.
The solution for this problem is

G = [0, 1.43, 0, 0, 0, 4.00, 0, 4.00, 0.73, 0] ,

suggesting that our optimal diet consists of items B, F,H, and I in the proportions
shown here. The solution reached the upper limit for nutrient 1 and the lower
limit for nutrient 2.

LPs frequently occur with allocation or assignment problems, such
as choosing an optimal portfolio of stocks, deciding what mix of
products to build, deciding what tasks should be assigned to each
worker, or determining which goods to ship to which locations. These
types of problems frequently occur in domains such as operations
research, finance, supply chain management, and transportation.∗

A common consideration with LPs is whether or not the variables
should be discrete. In Ex. 11.1, G8 is a continuous variable, and purchas-
ing fractional amounts of food may or may not be possible, depending
on the type of food. Suppose we were performing an optimal stock
allocation. In that case, we can purchase fractional amounts of stock.
However, if we were optimizing how much of each product to man-
ufacture, it might not be feasible to build 32.4 products. In these
cases, we need to restrict the variables to be integers using integer
constraints. These types of problems require discrete optimization
algorithms, which are covered in Chapter 8. Specifically, we discussed
a mixed-integer LP in (Section 8.3).

11.3 Quadratic Programming
A quadratic program (QP) has a quadratic objective and linear constraints.
Quadratic programming was introduced in Section 5.5 in the context of
sequential quadratic programming. A general QP can be expressed as
follows:

minimize
G

1
2 G

ᵀ&G + 5 ᵀG
subject to �G + 1 = 0

�G + 3 ≤ 0 .

(11.3)

A QP is only convex if the matrix & is positive semidefinite. If & = 0, a
QP reduces to an LP.

11 Convex Optimization 428

One of the most common QP examples is least squares regression,
which was discussed previously in Section 10.3.1 and is used in many
applications such as data fitting.

The linear least-squares problem has an analytic solution if � has
full rank, so the machinery of a QP is not necessary. However, we can
add constraints in QP form to solve constrained least squares problems,
which do not have analytic solutions in general.

Example 11.2 A constrained least squares QP
The left pane of Fig. 11.3 shows some example data that are both noisy and

biased relative to the true (but unknown) underlying curve, represented as a
dashed line. Given the data points, we would like to estimate the underlying
functional relationship. We assume that the relationship is cubic and write it as

H(G) = 01G
3 + 02G

2 + 03G + 04 .

We need to estimate the coefficients 01 , . . . , 04. As discussed previously, this
can be posed as a QP problem or, even more simply, as an analytic problem.
The middle pane of Fig. 11.3 shows the resulting least squares fit.

−2 −1 0 1 2

0

10

20

30

G

H

−2 −1 0 1 2

0

10

20

30

G

H

−2 −1 0 1 2

0

10

20

30

G

H

Fig. 11.3 True function on the left,
least squares in the middle, and con-
strained least squares on the right.

Suppose that we know the upper bound of the function value based on
measurements or additional data at a few locations. In this example, assume
that we know that 5 (−2) ≤ −2, 5 (0) ≤ 4, and 5 (2) ≤ 26. These requirements
can be posed as linear constraints:


(−2)3 (−2)2 −2 1

0 0 0 1
23 22 2 1




01
02
03
04


≤


−2
4
26


.

After adding these linear constraints and retaining a quadratic objective
(the sum of the squared error), the resulting problem is still a QP. The resulting
solution is shown in the right pane of Fig. 11.3, which results in a much more
accurate fit.

11 Convex Optimization 429

∗This is an example of a multiobjective
function, which is explained in Chapter 9.

Example 11.3 Linear-quadratic regulator (LQR) controller
Another common example of a QP occurs in optimal control. Consider the

following discrete-time linear dynamic system:

GC+1 = �GC + �DC ,

where GC is the deviation from a desired state at time C (e.g., the positions and
velocities of an aircraft), and DC represents the control inputs that we want to
optimize (e.g., control surface deflections). This dynamic equation can be used
as a set of linear constraints in an optimization problem, but we must decide
on an objective.

We would like to have small GC because that would mean reducing the error
in our desired state quickly, but we would also like to have small DC because
small control inputs require less energy. These are competing objectives, where
a small control input will take longer to minimize error in a state, and vice
versa.

One way to express this objective is as a quadratic function,

minimize
G,D

1
2

=∑
C=0

(
GᵀC &GC + D

ᵀ
C 'DC

)
,

where the weights in & and ' reflect our preferences on how important it is
to have a small state error versus small control inputs.∗ This function has a
form similar to kinetic energy, and the LQR problem could be thought of as
determining the control inputs that minimize the energy expended, subject
to the vehicle dynamics. This choice of the objective function was intentional
because the problem is a convex QP (as long as we choose positive weights).
Because it is convex, this problem can be solved reliably and efficiently, which
are necessary conditions for a robust control law.

11.4 Second-Order Cone Programming
A second-order cone program (SOCP) has a linear objective and a second-
order cone constraint:

minimize
G

5 ᵀG

subject to ‖�8G + 18 ‖2 ≤ 2ᵀ8 G + 38
�G + ℎ = 0 .

(11.4)

If �8 = 0, then this form reduces to an LP.
One useful subset of SOCP is a quadratically constrained quadratic

program (QCQP). A QCQP is the same as a QP but has quadratic

11 Convex Optimization 430

46. Grant et al., Disciplined convex pro-
gramming, 2006.

inequality constraints instead of linear ones, that is,

minimize
G

1
2 G

ᵀ&G + 5 ᵀG
subject to �G + 1 = 0

1
2 G

ᵀ'8G + 2ᵀ8 G + 38 ≤ 0 for 8 = 1, . . . , < ,

(11.5)

where & and ' must be positive semidefinite for the QCQP to be
convex. A QCQP reduces to a QP if ' = 0. We formulated QCQPs
when solving trust-region problems in Section 4.5. However, for trust-
region problems, only an approximate solution method is typically
used.

Every QCQP can be expressed as an SOCP (although not vice versa).
The QCQP in Eq. 11.5 can be written in the equivalent form,

minimize
G,�

�

subject to

�G + 6

2 ≤ �

�G + 1 = 0
‖�8G + ℎ8 ‖2 ≤ 0 .

(11.6)

If we square both sides of the first and last constraints, this formulation
is exactly equivalent to the QCQP where & = 2�ᵀ�, 5 = 2�ᵀ6, '8 =
2�ᵀ

8 �8 , 28 = 2�ᵀ
8 ℎ8 , and 38 = ℎ

ᵀ
8 ℎ8 . Thematrices � and �8 are the square

roots of the matrices & and '8 , respectively (divided by 2), and would
be computed from a factorization.

11.5 Disciplined Convex Optimization
Disciplined convex optimization builds convexproblemsusing a specific
set of rules and mathematical functions. By following this set of
rules, the problem can be translated automatically into a conic form
that we can efficiently solve using convex optimization algorithms.46
Table 11.1 shows several examples of convex functions that can be used
to build convex problems. Notice that not all functions are continuously
differentiable because this is not a requirement of convexity.

A disciplined convex problem can be formulated using any of these
functions for the objective and inequality constraints. We can also use
various operations that preserve convexity to build up more complex
functions. Some of the more common operations are as follows:

• Multiplying a convex function by a positive constant
• Adding convex functions

https://dx.doi.org/10.1007/0-387-30528-9_7
https://dx.doi.org/10.1007/0-387-30528-9_7

11 Convex Optimization 431

Functions Examples

40G

 ↑

{
−G0 if 0 ≤ 0 ≤ 1
G0 otherwise

 ≤ 0

 ≥ 1

0 ≤
 ≤ 1

− log(G)

‖G‖1 , ‖G‖2 , . . .

max(G1 , G2 , . . . , G=)

ln (4G1 + 4G2 + . . . + 4G=)
Table 11.1 Examples of convex func-
tions.

• Composing a convex function with an affine function (i.e., if 5 (G)
is convex, then 5 (�G + 1) is also convex)

• Taking the maximum of two convex functions

Although these functions and operations greatly expand the types
of convex problems that we can solve beyond LPs and QPs, they are
still restrictive within the broader scope of nonlinear optimization. Still,
for objectives and constraints that require only simple mathematical
expressions, there is the possibility that the problem can be posed as a
disciplined convex optimization problem.

The original expression of a problem is often not convex but can be
made convex through a transformation to a mathematically equivalent
problem. These transformation techniques include implementing a
change of variables, adding slack variables, or expressing the objective

11 Convex Optimization 432

∗https://stanford.edu/~boyd/software.
html

in a different form. Successfully recognizing and applying these
techniques is a skill requiring experience.

Tip 11.1 Software for disciplined convex programming
CVX and its variants are free popular tools for disciplined convex program-

ming with interfaces for multiple programming languages.∗

Example 11.4 A supervised learning classification problem
A classification problem seeks to determine a decision boundary between

two sets of data. For example, given a large set of engineering parts, each
associated with a label identifying whether it was defective or not, we would
like to determine an optimal set of parameters that allow us to predict whether
a new part will be defective or not. First, we have to decide on a set of features, or
properties that we use to characterize each data point. For an engineering part,
for example, these features might include dimensions, weights and moments
of inertia, or surface finish.

If the data are separable, we could find a hyperplane,

5 (G) = 0ᵀG + � ,
that separates the two data sets, or in other words, a function that classifies the
objects. For example, if we call one data set H8 , for 8 = 1 . . . =H , and the other
I8 , for 8 = 1 . . . =I , we need to satisfy the following constraints:

0ᵀH8 + � ≥ �

0ᵀI8 + � ≤ −� ,
(11.7)

for some small tolerance �. In general, there are an infinite number of separating
hyperplanes, so we seek the one that maximizes the distance between the points.
However, such a problem is not yet well defined because we can multiply 0 and
� in the previous equations by an arbitrary constant to achieve any separation
we want, so we need to normalize or fix some reference dimension (only the
ratio of the parameters matters in defining the hyperplane, not their absolute
magnitudes). We define the optimization problem as follows:

maximize �

by varying �, 0, �

subject to 0ᵀH8 + � ≥ � for 8 = 1 . . . =H
0ᵀI 9 + � ≤ −� for 9 = 1, . . . , =I
‖0‖ ≤ 1 .

The last constraint provides a normalization to prevent the problem from being
unbounded. This norm constraint is always active (‖0‖ = 1), but we express
it as an inequality so that the problem remains convex (recall that equality

https://stanford.edu/~boyd/software.html
https://stanford.edu/~boyd/software.html

11 Convex Optimization 433

2�

G1

G2

Fig. 11.4 Two separable data sets are
shown as points with two different
colors. A classification boundary
with maximum width is shown.

†In the machine learning community, this
optimization problem is known as a sup-
port vector machine. This problem is an ex-
ample of supervised learning because clas-
sification labels were provided. Classifi-
cation can be done without labels but re-
quires a different approach under the um-
brella of unsupervised learning.

2
‖0‖

G1

G2

Fig. 11.5 A classification boundary is
shown for nonseparable data using a
regularization approach.

constraintsmust be affine, but inequality constraints can be any convex function).
The objective and inequality constraints are all convex functions, so we can
solve it in a disciplined convex programming environment. Alternatively, in
this case, we could employ a change of variables to put the problem in QP form
if desired.

An example is shown in Fig. 11.4 for data with two features for easy
visualization. The middle line shows the separating hyperplane and the outer
lines are a distance of � away, just passing through a data point from each set.

If the data are not completely separable, we need to modify our approach.
Even if the data are separable, outliers may undesirably pull the hyperplane
so that points are closer to the boundary than is necessary. To address these
issues, we need to relax the constraints. As discussed, Eq. 11.7 can always be
multiplied by an arbitrary constant. Therefore, we can equivalently express the
constraints as follows:

0ᵀH8 + � ≥ 1
0ᵀI 9 + � ≤ −1 .

To relax these constraints, we add nonnegative slack variables, D8 and E 9 :

0ᵀH8 + � ≥ 1 − D8
0ᵀI 9 + � ≤ −(1 − E 9) ,

where we seek to minimize the sum of the entries in D and E. If they sum
to 0, we have the original constraints for a completely separable function.
However, recall that we are interested in not just creating separation but also in
maximizing the distance to the classification boundary. To accomplish this, we
use a regularization approach where our two objectives include maximizing
the distance from the boundary and maximizing the sum of the classification
margins. The width between the two planes 0ᵀG + � = 1 and 0ᵀG + � = −1 is
2/‖0‖. Therefore, to maximize the separation distance, we minimize ‖0‖. The
optimization problem is defined as follows:†

minimize ‖0‖ + $ ©­«
∑
8

D8 +
∑
9

E 9
ª®¬

by varying 0, �, D, E

subject to 0ᵀH8 + � ≥ (1 − D8), 8 = 1, . . . , =H
0ᵀI 9 + � ≤ −(1 − E 9), 9 = 1, . . . , =I
D ≥ 0
E ≥ 0 .

Here, $ is a user-chosen weight reflecting a preference for the trade-offs in
separation margin and stricter classification. The problem is still convex, and
an example is shown in Fig. 11.5 with a weight of $ = 1.

The methodology can handle nonlinear classifiers by using a different form
with kernel functions like those discussed in Section 10.4.

11 Convex Optimization 434

11.6 Geometric Programming
A geometric program (GP) is not convex but can be transformed into an
equivalent convex problem. GPs are formulated using monomials and
posynomials. A monomial is a function of the following form:

5 (G) = 2G01
1 G

02
2 · · · G0<< , (11.8)

where 2 > 0, and all G8 > 0. A posynomial is a sum of monomials:

5 (G) =
=∑
9=1

2 9G
019
1 G

029
2 · · · G

0<9
< , (11.9)

where all 2 9 > 0.

Example 11.5 Monomials and posynomials in engineering models
Monomials and posynomials appear in many engineering models. For

example, the calculation of lift from the definition of the lift coefficient is a
monomial:

! = �!
1
2�+

2(.

Total incompressible drag, a sum of parasitic and induced drag, is a posynomial:

� = ��?@(+
�2
!

��'4
@(.

A GP in standard form is written as follows:

minimize
G

50(G)
subject to 58(G) ≤ 1

ℎ8(G) = 1 ,

(11.10)

where 58 are posynomials, and ℎ8 aremonomials. This problemdoes not
fit into any of the convex optimization problems defined in the previous
section, and it is not convex. This formulation is useful because we can
convert it into an equivalent convex optimization problem.

First, we take the logarithm of the objective and of both sides of the
constraints:

minimize
G

ln 50(G)
subject to ln 58(G) ≤ 0

ln ℎ8(G) = 0 .

(11.11)

11 Convex Optimization 435

Let us examine the equality constraints further. Recall that ℎ8 is a
monomial, so writing one of the constraints explicitly results in the
following form:

ln
(
2G01

1 G
02
2 . . . G0<<

)
= 0 . (11.12)

Using the properties of logarithms, this can be expanded to the equiva-
lent expression:

ln 2 + 01 ln G1 + 02 ln G2 + . . . + 0< ln G< = 0 . (11.13)

Introducing the change of variables H8 = ln G8 results in the following
equality constraint:

01H1 + 02H2 + . . . + 0<H< + ln 2 = 0 , 0ᵀH + ln 2 = 0 , (11.14)

which is an affine constraint in H.
The objective and inequality constraints are more complex because

they are posynomials. The expression ln 58 written in terms of a
posynomial results in the following:

ln ©­«
=∑
9=1

2 9G
019
1 G

029
2 . . . G

0<9
<

ª®¬
. (11.15)

Because this is a sum of products, we cannot use the logarithm to
expand each term. However, we still introduce the same change of
variables (expressed as G8 = 4H8):

ln 58 = ln ©­«
=∑
9=1

2 9 exp
(
H1019

)
exp

(
H2029

)
. . . exp

(
H<0<9

)ª®¬
= ln ©­«

=∑
9=1

2 9 exp
(
H1019 + H2029 + H<0<9

)ª®¬
= ln ©­«

=∑
9=1

exp
(
0ᵀ9 H + 1 9

)ª®¬
, where 1 9 = ln 2 9 .

(11.16)

This is a log-sum-expof an affine function. Asmentioned in the previous
section, log-sum-exp is convex, and a convex function composed of an
affine function is a convex function. Thus, the objective and inequality
constraints are convex in H. Because the equality constraints are also
affine, we have a convex optimization problem obtained through a
change of variables.

11 Convex Optimization 436

∗Based on an example from Boyd et al.184

184. Boyd et al., A tutorial on geometric
programming, 2007.

185. Hoburg et al., Data fitting with
geometric-programming-compatible soft-
max functions, 2016.

Example 11.6 Maximizing volume of a box as a geometric program
Suppose we want to maximize the volume of a box with a constraint on the

total surface area (i.e., the material used), and a constraint on the aspect ratio of
the base of the box.∗ We parameterize the box by its height Gℎ , width GF , and
depth G3 :

maximize GℎGFG3
by varying Gℎ , GF , G3
subject to 2(GℎGF + GℎG3 + GFG3) ≤ �

; ≤ GF
G3
≤
ℎ .

We can express this problem in GP form (Eq. 11.10):

minimize G−1
ℎ G−1

F G−1
3

by varying Gℎ , GF , G3

subject to 2
�
GℎGF + 2

�
GℎG3 + 2

�
GFG3 ≤ 1

1

ℎ

GFG−1
3 ≤ 1

;G3G
−1
F ≤ 1.

We can now plug this into a GP solver. For this example, we use the
following parameters:
; = 2,
ℎ = 8, � = 100. The solution is G3 = 2.887, Gℎ =
3.849, GF = 5.774, with a total volume of 64.16.

Unfortunately, many other functions do not fit this form (e.g., de-
sign variables that can be positive or negative, terms with negative
coefficients, trigonometric functions, logarithms, and exponents). GP
modelers use various techniques to extend usability, including using a
Taylor series across a restricted domain, fitting functions to posynomi-
als,185 and rearranging expressions to other equivalent forms, including
implicit relationships. Creativity and some sacrifice in fidelity are
usually needed to create a corresponding GP from a general nonlinear
programming problem. However, if the sacrifice in fidelity is not too
great, there is a significant advantage because the formulation comes
with all the benefits of convexity—guaranteed convergence, global
optimality, efficiency, no parameter tuning, and limited scaling issues.

One extension to geometric programming is signomial program-
ming. A signomial program has the same form, except that the coeffi-
cients 28 can be positive or negative (the design variables G8 must still
be strictly positive). Unfortunately, this problem cannot be transformed
into a convex one, so a global optimum is no longer guaranteed. Still, a
signomial program can usually be solved using a sequence of geometric

https://dx.doi.org/10.1007/s11081-007-9001-7
https://dx.doi.org/10.1007/s11081-007-9001-7
https://dx.doi.org/10.1007/s11081-016-9332-3
https://dx.doi.org/10.1007/s11081-016-9332-3
https://dx.doi.org/10.1007/s11081-016-9332-3

11 Convex Optimization 437

186. Kirschen et al., Application of signo-
mial programming to aircraft design, 2018.

187. York et al., Turbofan engine sizing and
tradeoff analysis via signomial programming,
2018.
†https://gpkit.readthedocs.io

programs, so it ismuchmore efficient than solving the general nonlinear
problem. Signomial programs have been used to extend the range
of design problems that can be solved using geometric programming
techniques.186,187

Tip 11.2 Software for geometric programming
GPkit† is a freely available software package for posing and solving geo-

metric programming (and signomial programming) models.

11.7 Summary
Convex optimization problems are highly desirable because they do not
require parameter tuning, starting points, or derivatives and converge
reliably and rapidly to the global optimum. The trade-off is that the form
of the objective and constraintsmustmeet stringent requirements. These
requirements often necessitate simplifying the physics models and
implementing clever reformulations. The reduction in model fidelity is
acceptable in domains where optimizations are performed repeatedly
in time (e.g., controls, machine learning) or for high-level conceptual
design studies. Linear programming and quadratic programming, in
particular, are widely used across many domains and form the basis of
many of the gradient-based algorithms used to solve general nonconvex
problems.

https://dx.doi.org/10.2514/1.c034378
https://dx.doi.org/10.2514/1.c034378
https://dx.doi.org/10.2514/1.c034463
https://dx.doi.org/10.2514/1.c034463
https://gpkit.readthedocs.io

11 Convex Optimization 438

Problems
11.1 Answer true or false and justify your answer.

a. The optimum found through convex optimization is guaran-
teed to be the global optimum.

b. Cone programming problems are a special case of quadratic
programming problems.

c. It is sometimes possible to obtain distinct feasible regions in
linear optimization.

d. A quadratic problem is a problem with a quadratic objective
and quadratic constraints.

e. A quadratic problem is only convex if the Hessian of the
objective function is positive definite.

f. Solving a quadratic problem is easy because the solution can
be obtained analytically.

g. Least squares regression is a type of quadratic programming
problem.

h. Second-order cone programming problems feature a linear
objective and a second-order cone constraint.

i. Disciplined convex optimization builds convex problems by
using convex differentiable functions.

j. It is possible to transform some nonconvex problems into
convex ones by using a change of variables, adding slack
variables, or reformulating the objective function.

k. A geometric program is not convex but can be transformed
into an equivalent convex program.

l. Convex optimization algorithms work well as long as a good
starting point is provided.

11.2 Solve the following using a convex solver (not a general nonlinear
solver):

minimize G2
1 + 3G2

2

subject to G1 + 4G2 ≥ 2
3G1 + 2G2 ≥ 5
G1 ≥ 0, G2 ≥ 0 .

11.3 The following foods are available to you at your nearest grocer:

11 Convex Optimization 439

Food Cost Nutrient 1 Nutrient 2 Nutrient 3

A 7.68 0.16 1.41 2.40
B 9.41 0.47 0.58 3.95
C 6.74 0.87 0.56 1.78
D 3.95 0.62 1.59 4.50
E 3.13 0.29 0.42 2.65
F 6.63 0.46 1.84 0.16
G 5.86 0.28 1.23 4.50
H 0.52 0.25 1.61 4.70
I 2.69 0.28 1.11 3.11
J 1.09 0.26 1.88 1.74

Minimize the amount you spend while making sure you get at
least 5 units of nutrient 1, between 8 and 20 units of nutrient 2,
and between 5 and 30 units of nutrient 3. Also be sure not to buy
more than 4 units of any one food item, just for variety. Determine
the optimal amount of each item to purchase and the total cost.

11.4 Consider the aircraft wing design problem described in Ap-
pendix D.1.6. Modify or approximate the model as needed to
formulate it as a GP. Solve the new formulation using a GP solver.

If you want to make it more challenging, do not read the hints
that follow. All equations except the Gaussian efficiency curve
are compatible with GP. However, you may need additional
optimization variables and constraints. For example, you could
add ! and E to a set of variables and impose

! =
1
2�E

212�!

as an equality constraint. This is equivalent to a GP-compatible
monomial constraint

�E212�!
2! = 1 .

The efficiency curve can be approximated by a posynomial func-
tion. For example, assuming that the optimal speed is E∗ ≈ 18m/s,
you may use

4
(

�

�max

)10

+ 16 = E ,

which is only valid if � ∈ [0, �max] and E ∈ [16, 20]m/s.

∗Although we maintain a distinction in
this book, some of the literature includes
both of these concepts under the umbrella
of “robust optimization”.

12Optimization Under Uncertainty
Uncertainty is always present in engineering design. Manufacturing
processes create deviations from the specifications, operating conditions
vary from the ideal, and some parameters are inherently variable.
Optimization with deterministic inputs can lead to poorly performing
designs. Optimization under uncertainty (OUU) is the optimization of
systems in the presence of random parameters or design variables. The
objective is to produce robust and reliable designs. A design is robust
when the objective function is less sensitive to inherent variability. A
design is reliable when it is less prone to violating a constraint when
accounting for the variability.∗

This chapter discusses how uncertainty can be used in the objective
function to obtain robust designs and how it can be used in constraints
to get reliable designs. We introduce methods that propagate input un-
certainties through a computational model to produce output statistics.

We assume familiaritywith basic statistics concepts such as expected
value, variance, probability density functions (PDFs), cumulative distri-
bution functions (CDFs), and some common probability distributions.
A brief review of these topics is provided in Appendix A.9 if needed.

By the end of this chapter you should be able to:

1. Define robustness and reliability in the context of opti-
mization under uncertainty.

2. Describe and use several strategies for both robust opti-
mization and reliability.

3. Understand the pros and cons for the following forward-
propagation methods: first-order perturbation methods,
direct quadrature, Monte Carlo methods, and polynomial
chaos.

4. Use forward-propagation methods in optimization.

441

12 Optimization Under Uncertainty 442

12.1 Robust Design
We call a design robust if its performance is less sensitive to inher-
ent variability. In optimization, “performance” is directly associated
with the objective function. Satisfying the design constraints is a
requirement, but adding a margin to a constraint does not increase
performance in the standard optimization formulation. Thus, for a
robust design, the objective function is less sensitive to variations in
the random design variables and parameters. We can achieve this by
formulating an objective function that considers such variations and
reflects uncertainty.

A common example of robust design is considering the performance
of an engineering device at different operating conditions. If we had
deterministic operating conditions, it would make sense to maximize
the performance for those conditions. For example, suppose we knew
the exact wind speeds and wind directions a sailboat would experience
in a race. In that case, we could optimize the hull and sail design
to minimize the time around the course. Unfortunately, if variability
does exist, the sailboat designed for deterministic conditions will likely
perform poorly in off-design conditions. A better strategy considers the
uncertainty in the operating conditions and maximizes the expected
performance across a range of conditions. A robust design achieves
good performance even with uncertain wind speeds and directions.

There are many options for formulating robust design optimization
problems. The most common OUU objective is to minimize the expected
value of the objective function (min � 5 (G)). This yields robust designs
because the average performance under variability is considered.

Consider the function shown on the left in Fig. 12.1. If G is determin-
istic, minimizing this function yields the global minimum on the right.
Now consider what happens when G is uncertain. “Uncertain” means
that G is no longer a deterministic input. Instead, it is a random variable
with some probability distribution. For example, G = 0.5 represents a
random variable with a mean of �G = 0.5. We can compute the average
value of the objective � 5 at each G from the expected value of a function
(Eq. A.65):

� 5 (G) =
∫ ∞

−∞
5 (I)?(I)dI, where ?(I) ∼ N(G, �G) , (12.1)

and I is a dummy variable for integration. Repeating this integral at
each G value gives the expected value as a function of G.

Figure 12.1 shows the expected value of the objective for three
different standard deviations. The probability distribution of G for

12 Optimization Under Uncertainty 443

0.8

1

1.2

1.4

1.6

1.8

2

5

−1 −0.5 0 0.5 1 1.5 2
0
5

10
15

G

?(G)

�G = 0.01

0.8

1

1.2

1.4

1.6

1.8

2

5

−1 −0.5 0 0.5 1 1.5 2
0
1
2
3

G

?(G)

�G = 0.10

5 (G)

� 5 (G)

0.8

1

1.2

1.4

1.6

1.8

2

5

−1 −0.5 0 0.5 1 1.5 2
0

0.5
1

1.5

G

?(G)

�G = 0.20

Fig. 12.1 The global minimum of the
expected value � 5 can shift depend-
ing on the standard deviation of G,
�G . The bottom row of figures shows
the normal probability distributions
at G = 0.5.

� 5

� 5

Fig. 12.2 When designing for robust-
ness, there is an inherent trade-off
between risk (represented by the vari-
ance, � 5) and reward (represented by
the expected value, � 5).

a mean value of G = 0.5 and three different standard deviations is
shown on the bottom row the figure. For a small variance (�G =
0.01), the expected value function � 5 (G) is indistinguishable from the
deterministic function 5 (G), and the global minimum is the same for
both functions. However, for �G = 0.2, the minimum of the expected
value function is different from that of the deterministic function.
Therefore, the minimum on the right is not as robust as the one on
the left. The minimum one on the right is a narrow valley, so the
expected value increases rapidly with increased variance. The opposite
is true for the minimum on the left. Because it is in a broad valley, the
expected value is less sensitive to variability in G. Thus, a design whose
performance changes rapidly with respect to variability is not robust.

Of course, the mean is just one possible statistical output metric.
Variance, or standard deviation (� 5), is another common metric. How-
ever, directly minimizing the variance is less common because although
low variability is often desirable, such an objective has no incentive to
improve mean performance and so usually performs poorly. These two
metrics represent a trade-off between risk (variance) and reward (mean).
The compromise between these two metrics can be quantified through
multiobjective optimization (see Chapter 9), which would result in a
Pareto front with the notional behavior illustrated in Fig. 12.2. Because
both multiobjective optimization and uncertainty quantification are
costly, the overall cost of producing such a Pareto front might be pro-
hibitive. Therefore, we might instead seek to minimize the expected
value while constraining the variance to a value that the designer
can tolerate. Another option is to minimize the mean plus weighted
standard deviations.

12 Optimization Under Uncertainty 444

∗For more details on this type of prob-
lem and on the aerodynamic shape opti-
mization framework that produced these
results, see Martins.127

127. Martins, Perspectives on aerodynamic
design optimization, 2020.

Baseline

Single-point

Multi-point

0.64 0.66 0.68 0.7 0.72 0.74

100

120

140

160

180

200

220
·10−4

Mach number

23

Fig. 12.3 Single-point optimization
performs the best at the target speed
but poorly away from the condition.
Multipoint optimization is more ro-
bust to changes in speed.
†See other wind farm OUU problems
with coupled farm and turbine optimiza-
tion,188 multiobjective trade-offs in mean
and variance,189 andmore involved uncer-
tainty quantification techniquesdiscussed
later in this chapter.190

188. Stanley and Ning, Coupled wind
turbine design and layout optimization with
non-homogeneous wind turbines, 2019.

189. Gagakuma et al., Reducing wind farm
power variance from wind direction using
wind farm layout optimization, 2021.

190. Padrón et al., Polynomial chaos to
efficiently compute the annual energy pro-
duction in wind farm layout optimization,
2019.

Many other relevant statistical objectives do not involve statistical
moments like mean or variance. Examples include minimizing the
95th percentile of the distribution or employing a reliability metric,
Pr(5 (G) > 5crit), thatminimizes the probability that the objective exceeds
some critical value.

Example 12.1 Robust airfoil optimization
Consider an airfoil optimization, where the profile shape of a wing is

optimized to minimize the drag coefficient while constraining the lift coefficient
to be equal to a target value. Figure 12.3 shows how the drag coefficient of an
RAE 2822 airfoil varies with the Mach number (the airplane speed) in blue, as
evaluated by a Navier–Stokes flow solver.∗ This is a typical drag rise curve,
where increasing the Mach number leads to stronger shock waves and an
associated increase in wave drag.

Now let us optimize the airfoil shape so that we can fly faster without a
large increase in drag. Minimizing the drag of this airfoil at Mach 0.71 results in
the red drag curve shown in Fig. 12.3. The drag is much lower at Mach 0.71 (as
requested!), but any deviation from the target Mach number causes significant
drag penalties. In other words, the design is not robust.

One way to improve the design is to use multipoint optimization, where we
minimize a weighted sum of the drag coefficient evaluated at different Mach
numbers. In this case, we use Mach = 0.68, 0.71, 0.725. Compared with the
single-point design, the multipoint design has a higher drag at Mach 0.71 but a
lower drag at the other Mach numbers, as shown in Fig. 12.3. Thus, a trade-off
in peak performance was required to achieve enhanced robustness.

A multipoint optimization is a simplified example of OUU. Effectively, we
have treated the Mach number as a random parameter with a given probability
at three discrete values. We then minimized the expected value of the drag.
This simple change significantly increased the robustness of the design.

Example 12.2 Robust wind farm layout optimization
Wind farm layout optimization is another example of OUU but has a

more involved probability distribution than the multipoint formulation.† The
positions of wind turbines on a wind farm have a substantial impact on overall
performance because their wakes interfere. The primary goal of wind farm
layout optimization is to position the wind turbines to reduce interference and
thus maximize power production. In this example, we optimized the position
of nine turbines subject to the constraints that the turbines must stay within a
specified boundary and must not be too close to any other turbine.

One of the primary challenges of wind farm layout optimization is that
the wind is uncertain and highly variable. To keep this example simple, we
assume that wind speed is constant, and only the wind direction is an uncertain

https://dx.doi.org/10.2514/6.2020-0043
https://dx.doi.org/10.2514/6.2020-0043
https://dx.doi.org/10.5194/wes-4-99-2019
https://dx.doi.org/10.5194/wes-4-99-2019
https://dx.doi.org/10.5194/wes-4-99-2019
https://dx.doi.org/10.1177/0309524X20988288
https://dx.doi.org/10.1177/0309524X20988288
https://dx.doi.org/10.1177/0309524X20988288
https://dx.doi.org/10.5194/wes-4-211-2019
https://dx.doi.org/10.5194/wes-4-211-2019
https://dx.doi.org/10.5194/wes-4-211-2019

12 Optimization Under Uncertainty 445

‡Instead of using expected power directly,
wind turbine designers use annual energy
production, which is the expected power
multiplied by utilization time.

parameter. Figure 12.4 shows a PDF of the wind direction for an actual wind
farm, known as a wind rose, which is commonly visualized as shown in the
plot on the right. The predominant wind directions are from the west and the
south. Because of the variable nature of the wind, it would be challenging to
intuit the optimal layout.

0 90 180 270 360
0

2

4

6

8
·10−3

Wind direction (deg)

Re
la

tiv
e

Pr
ob

ab
ili

ty

E

NE

N

NW

W

SW

S

SE

Fig. 12.4 Probability density function
of wind direction (left) and corre-
sponding wind rose (right).

We solve this problem using two approaches. The first approach is to
solve the problem deterministically (i.e., ignore the variability). This is usually
done by using mean values for uncertain parameters, often assuming that the
variability is Gaussian or at least symmetric. The wind direction is periodic and
asymmetric, so we optimize using the most probable wind direction (261◦).

The second approach is to treat this as an OUU problem. Instead of
maximizing the power for one direction, we maximize the expected value of the
power for all directions. This is straightforward to compute from the definition
of expected value because this is a one-dimensional function. Section 12.3
explains other ways to perform forward propagation.

Figure 12.5 shows the power as a function of wind direction for both cases.
The deterministic approach results in higher power production when the wind
comes from the west (and 180◦ from that), but that power reduces considerably
for other directions. In contrast, the OUU result is less sensitive to changes in
wind direction. The expected value of power is 58.6 MW for the deterministic
case and 66.1 MW for the OUU case, an improvement of over 12 percent.‡

1 dir

OUU

0 90 180 270 360

30

40

50

60

70

80

Wind direction [deg]

Po
w

er
[M

W
]

E

NE

N

NW

W

SW

S

SE

Fig. 12.5 Wind farm power as a func-
tion of wind direction for two opti-
mization approaches: deterministic
optimization using themost probable
direction and OUU.

12 Optimization Under Uncertainty 446

We can also analyze the trade-off in the optimal layouts. The left side of
Fig. 12.6 shows the optimal layout using the deterministic formulation, with
the wind coming from the predominant direction (the direction we optimized
for). The wakes are shown in blue, and the boundaries are depicted with a
dashed line. The optimization spaced the wind turbines out so that there is
minimal wake interference. However, the performance degrades significantly
when the wind changes direction. The right side of Fig. 12.6 shows the same
layout but with the wind coming from the second-most-probable direction. In
this case, many of the turbines are operating in the wake of another turbine
and produce much less power.

Fig. 12.6 Deterministic cases with the
primary wind direction (left) and the
secondary wind direction (right).

In contrast, the robust layout is shown in Fig. 12.7, with the predominant
wind direction on the left and the second-most-probable direction on the right.
In both cases, the wake effects are relatively minor. The turbines are not ideally
placed for the predominant direction, but trading the performance for that
one direction yields better overall performance when considering other wind
directions.

Fig. 12.7 OUU cases with the pri-
mary wind direction (left) and the
secondary wind direction (right).

12 Optimization Under Uncertainty 447

12.2 Reliable Design
We call a design reliablewhen it is less prone to failure under variability.
In otherwords, the constraints have a lower probability of being violated
under variations in the random design variables and parameters. In
a robust design, we consider the effect of uncertainty on the objective
function. In reliable design, we consider that effect on the constraints.

A common example of reliability is structural safety. Consider
Ex. 3.9, where we formulated a mass minimization subject to stress
constraints. In such structural optimization problems, many of the
stress constraints are active at the optimum. Constraining the stress
to be equal to or below the yield stress value as if this value were
deterministic is probably not a good idea because variations in the
material properties or manufacturing could result in structural failure.
Instead, we might want to include this variability so that we can reduce
the probability of failure.

To generate a reliable design, we want the probability of satisfying
the constraints to exceed some preselected reliability level. Thus, we
change deterministic inequality constraints 6(G) ≤ 0 to ensure that the
probability of constraint satisfaction exceeds a specified reliability level
A, that is,

Pr(6(G) ≤ 0) ≥ A . (12.2)

For example, if we set A8 = 0.999, then constraint 8must be satisfied with
a probability of 99.9 percent. Thus, we can explicitly set the reliability
level that we wish to achieve, with associated trade-offs in the level of
performance for the objective function.

Example 12.3 Reliability with the Barnes function
Consider the Barnes problem shown on the left side of Fig. 12.8. The three

red lines are the three nonlinear constraints of the problem, and the red regions
highlight regions of infeasibility. With deterministic inputs, the optimal value
is on the constraint line. An uncertainty ellipse shown around the optimal
point highlights the fact that the solution is not reliable. Any variability in the
inputs can cause one or more constraints to be violated.

Conversely, the right side of Fig. 12.8 shows a reliable optimum, with the
same uncertainty ellipse. In this case, it is much more probable that the design
will satisfy all constraints under the input variations. However, as noted in
the introduction, increased reliability presents a performance trade-off, with a
corresponding increase in the objective function. The higher the reliability we
seek, the more we need to give up on performance.

12 Optimization Under Uncertainty 448

G1

G2

G1

G2
Fig. 12.8 The deterministic optimum
design is on the constraint line (left),
and the constraint might be violated
if there is variability. The reliable
design optimum (right) satisfies the
constraints despite the variability.

∗Even characterizing input uncertainty
might not be straightforward, but for for-
ward propagation, we assume this infor-
mation is provided.

In some engineering disciplines, increasing reliability is handled
simply through safety factors. These safety factors are deterministic
but are usually derived through statistical means.

Example 12.4 Relating safety factors to reliability
If we were constraining the stress (�) in a structure to be less than the

material’s yield stress (�H), we would not want to use a constraint of the
following form:

�(G) ≤ �H .

This would be dangerous because we know there is inherent variability in the
loads and uncertainty in the yield stress of the material. Instead, we often use
a simple safety factor and enforce the following constraint:

�(G) ≤ ��H ,

where � is a total safety factor that accounts for safety factors from loads,
materials, and failure modes. Of course, not all applications have standards-
driven safety factors already determined. The statistical approach discussed in
this chapter is useful in these situations to obtain reliable designs.

12.3 Forward Propagation
In the previous sections, we have assumed that we know the statistics
(e.g., mean and standard deviation) of the outputs of interest (objectives
and constraints). However, we generally do not have that information.
Instead,wemight only know thePDFs of the inputs.∗ Forward-propagation
methods propagate input uncertainties through a numerical model to
compute output statistics.

Uncertainty quantification is a large field unto itself, and we only
provide an introduction to it in this chapter. We introduce four well-
known nonintrusive methods for forward propagation: first-order
perturbation methods, direct quadrature, Monte Carlo methods, and
polynomial chaos.

12 Optimization Under Uncertainty 449

12.3.1 First-Order Perturbation Method
Perturbation methods are based on a local Taylor series expansion
of the functional output. In the following, 5 represents an output of
interest, and G represents all the randomvariables (not necessarily all the
variables that 5 depends on). A first-order Taylor series approximation
of 5 about the mean of G is given by

5 (G) ≈ 5 (�G) +
=∑
8=1

% 5
%G8
(G8 − �G 8) , (12.3)

where = is the dimensionality of G. We can estimate the average value
of 5 by taking the expected value of both sides and using the linearity
of expectation as follows:

� 5 = E(5 (G))

≈ E(5 (�G)) +
∑
8

E

(
% 5
%G8
(G8 − �G 8)

)

= 5 (�G) +
∑
8

% 5
%G8

(
E(G8) − �G 8

)

= 5 (�G) +
∑
8

% 5
%G8

(
�G 8 − �G 8

)
.

(12.4)

The last first-order term is zero, so we can write

� 5 = 5 (�G) . (12.5)

That is, when considering only first-order terms, the mean of the function
is the function evaluated at the mean of the input.

The variance of 5 is given by

�2
5 = E(5 (G)2) −

(
E(5 (G)))2

≈ E
[
5 (�G)2 + 2 5 (�G)

∑
8

% 5
%G8
(G8 − �G 8)+

∑
8

∑
9

% 5
%G8

% 5
%G 9
(G8 − �G 8)(G 9 − �G 9)


− 5 (�G)2

=
∑
8

∑
9

% 5
%G8

% 5
%G 9
E

[
(G8 − �G 8)(G 9 − �G 9)

]
.

(12.6)

The expectation term in this equation is the covariance matrix Σ(G8 , G 9),
so we can write this in matrix notation as

�2
5 = (∇G 5)ᵀΣ(∇G 5) . (12.7)

12 Optimization Under Uncertainty 450

†Higher-order Taylor series can also be
used,191 but they are less common be-
cause of their increased complexity.

191. Cacuci, Sensitivity & Uncertainty
Analysis, 2003.

192. Parkinson et al., A general approach
for robust optimal design, 1993.

We often assume that each random input variable is mutually indepen-
dent. This is true for the design variables for a well-posed optimization
problem, but the parameters may or may not be independent.

When the parameters are independent (this assumption is often
made even if not strictly true), the covariance matrix is diagonal, and
the variance estimation simplifies to

�2
5 =

=∑
8=1

(
% 5
%G8

�G8

)2

. (12.8)

These equations are frequently used to propagate errors from experi-
mental measurements. Major limitations of this approach are that (1) it
relies on a linearization (first-order Taylor series), which has limited
accuracy;† (2) it assumes that all uncertain parameters are uncorrelated,
which is true for design variables but is not necessarily true for parame-
ters (this assumption can be relaxed by providing the covariances); and
(3) it implicitly assumes symmetry in the input distributions because
we neglect all higher-order moments (e.g., skewness, kurtosis) and is,
therefore, less applicable for problems that are highly asymmetric, such
as the wind farm example (Ex. 12.2).

We have not assumed that the input or output distributions are
normal probability distributions (i.e., Gaussian). However, we can only
estimate the mean and variance with a first-order series and not the
higher-order moments.

The equation for the variance (Eq. 12.8) is straightforward, but
the derivative terms can be challenging when using gradient-based
optimization. The first-order derivatives in Eq. 12.7 can be computed
using any of the methods from Chapter 6. If they are computed
efficiently using a method appropriate to the problem, the forward
propagation is efficient as well. However, second-order derivatives
are required to use gradient-based optimization (assuming some of
the design variables are also random variables). That is because the
uncertain objectives and constraints now contain derivatives, and we
need derivatives of those functions. Because computing accurate second
derivatives is costly, these methods are used less often than the other
techniques discussed in this chapter.

We can use a simpler approach if we ignore variability in the
objective and focus only on the variability in the constraints (reliability-
based optimization). In this case, we can approximate the effect of
the uncertainty by pulling it outside of the optimization iterations.
We demonstrate one such approach, where we make the additional
assumption that each constraint is normally distributed.192

https://dx.doi.org/10.1201/9780203498798
https://dx.doi.org/10.1201/9780203498798
https://dx.doi.org/10.1115/1.2919328
https://dx.doi.org/10.1115/1.2919328

12 Optimization Under Uncertainty 451

If 6(G) is normally distributed, we can rewrite the probabilistic
constraint (Eq. 12.2) as

6(G) + I�6 ≤ 0 , (12.9)

where I is chosen for the desired reliability level A. For example, I = 2
implies a reliability level of 97.72 percent (one-sided tail of the normal
distribution). In many cases, an output distribution is reasonably
approximated as normal, but this method tends to be less effective for
cases with nonnormal output.

Withmultiple active constraints, wemust be careful to appropriately
choose the reliability level for each constraint such that the overall
reliability is in the desired range. We often simplify the problem by
assuming that the constraints are uncorrelated. Thus, the total reliability
is the product of the reliabilities of each constraint.

This simplified approach has the following steps:

1. Compute the deterministic optimum.
2. Estimate the standard deviation of each constraint �6 using

Eq. 12.8.
3. Adjust the constraints to 6(G)+I�6 ≤ 0 for some desired reliability

level and re-optimize.
4. Repeat steps 1–3 as needed.

This method is easy to use, and although approximate, the magnitude
of error is usually appropriate for the conceptual design phase. If the
errors are unacceptable, the standard deviation can be computed inside
the optimization. The major limitation of this method is that it only
applies to reliability-based optimization.

Example 12.5 Iterative reliability-based optimization
Consider the following problem:

minimize 5 = G2
1 + 2G2

2 + 3G2
3

by varying G1 , G2 , G3

subject to 61 = −2G1 − G2 − 2G3 + 6 ≤ 0
62 = −5G1 + G2 + 3G3 + 10 ≤ 0 .

All the design variables are random variables with standard deviations �G1 =
�G2 = 0.033, and �G3 = 0.0167. We seek a reliable optimum, where each
constraint has a target reliability of 99.865 percent.

First, we compute the deterministic optimum, which is

G∗ = [2.3515, 0.375, 0.460], 5 ∗ = 6.448 .

12 Optimization Under Uncertainty 452

Reliable

Deterministic

−0.5 0 0.5
0

1

2

3

4

5

·104

‖6(G∗)‖∞

N
um

be
r

of
sa

m
pl

es

Fig. 12.9Histogramofmaximum con-
straint violation across 100,000 sam-
ples for both the deterministic and
reliability-based optimization.

We compute the standard deviation of each constraint, using Eq. 12.8, about
the deterministic optimum, yielding �61 = 0.081, �62 = 0.176. Using an
inverse CDF function (discussed in Section 10.2.1) shows that a CDF of 0.99865
corresponds to a I-score of 3. We then re-optimize with the new reliability
constraints to obtain the solution:

G∗ = [2.462, 0.3836, 0.4673], 5 ∗ = 7.013 .

In this case, we sacrificed approximately 9 percent in the objective value to
obtain a more reliable design. Because there are two constraints, and each had
a target reliability of 99.865 percent, the estimated overall reliability (assuming
independence of constraints) is 99.865 percent × 99.865 percent = 99.73 percent.

To check these results, we use Monte Carlo simulations (explained in
Section 12.3.3) with 100,000 samples to produce the output histograms shown
in Fig. 12.9. The deterministic optimum fails often (‖6(G)‖∞ > 0), so its
reliability is a surprisingly poor 34.6 percent. The reliable optimum shifts the
distribution to the left, yielding a reliability of 99.75 percent, which is close to
our design target.

12.3.2 Direct Quadrature
Another approach to estimating statistical outputs of interest is to
apply numerical integration (also known as quadrature) directly to their
definitions. For example:

� 5 =
∫

5 (G)?(G)dG (12.10)

�2
5 =

∫
5 (G)2?(G)dG − �2

5 . (12.11)

Discretizing G using = points, we get the summation

∫
5 (G)dG ≈

=∑
8=1

5 (G8)F8 . (12.12)

The quadrature strategy determines the evaluation nodes (G8) and the
corresponding weights (F8).

The most common quadratures originate from composite Newton–
Cotes formulas: the composite midpoint, trapezoidal, and Simpson’s
rules. These methods use equally spaced nodes, a specification that
can be relaxed but still results in a predetermined set of fixed nodes. To
reach a specified level of accuracy, it is often desirable to use nesting. In
this strategy, a refined mesh (smaller spacing between nodes) reuses
nodes from the coarser spacing. For example, a simple nesting strategy

12 Optimization Under Uncertainty 453

is to add a new node between all existing nodes. Thus, the accuracy of
the integral can be improved up to a specified tolerance while reusing
previous function evaluations.

Although straightforward to apply, the Newton–Cotes formulas are
usually much less efficient than Gaussian quadrature, at least for smooth,
nonperiodic functions. Efficiency is highly desirable because the output
functions must be called many times for forward propagation, as well
as throughout the optimization. The Newton–Cotes formulas are based
on fitting polynomials: constant (midpoint), linear (trapezoidal), and
quadratic (Simpson’s).The weights are adjusted between the different
methods, but the nodes are fixed. Gaussian quadrature includes the
nodes as degrees of freedom selected by the quadrature strategy. The
method approximates the integrand as a polynomial and then efficiently
evaluates the integral for the polynomial exactly. Because some of the
concepts from Gaussian quadrature are used later in this chapter, we
review them here.

An =-point Gaussian quadrature has 2= degrees of freedom (= node
positions and = corresponding weights), so it can be used to exactly
integrate any polynomial up to order 2=−1 if the weights and nodes are
appropriately chosen. For example, a 2-point Gaussian quadrature can
exactly integrate all polynomials up to order 3. To illustrate, consider
an integral over the bounds −1 to 1 (we will later see that these bounds
can be used as a general representation of any finite bounds through a
change of variables):∫ 1

−1
5 (G)dG ≈ F1 5 (G1) + F2 5 (G2) . (12.13)

We want this model to be exact for all polynomials up to order 3. If the
actual function were a constant (5 (G) = 0), then the integral equation
would result in the following:

20 = 0(F1 + F2). (12.14)

Repeating this process for polynomials of order 1, 2, and 3 yields four
equations and four unknowns:

2 = F1 + F2

0 = F1G1 + F2G2

2
3 = F1G2

1 + F2G2
2

0 = F1G3
1 + F2G3

2 .

(12.15)

Solving these equations yields F1 = F2 = 1, G1 = −G2 = 1/√3. Thus,
we have the weights and node positions that integrate a cubic (or

12 Optimization Under Uncertainty 454

!0 !1

!2

!3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

G

5 (G)

Fig. 12.10Thefirst fewLegendre poly-
nomials.

lower-order) polynomial exactly using just two function evaluations,
that is, ∫ 1

−1
5 (G)dG = 5

(
− 1√

3

)
+ 5

(
1√
3

)
. (12.16)

More generally, this means that if we can reasonably approximate a
general function with a cubic polynomial over the interval, we can
provide a good estimate for its integral efficiently.

We would like to extend this procedure to any number of points
without the cumbersome approach just applied. The derivation is
lengthy (particularly for the weights), so it is not repeated here, other
than to explain some of the requirements and the results. The derivation
of Gaussian quadrature requires orthogonal polynomials. Two vectors
are orthogonal if their dot product is zero. The definition is similar
for functions, but because functions have an infinite dimension, we
require an integral instead of a summation. Thus, two functions 5 and
6 are orthogonal over an interval 0 to 1 if their inner product is zero.
Different definitions can be used for the inner product. The simplest
definition is as follows: ∫ 1

0
5 (G)6(G)dG = 0 . (12.17)

For theGaussianquadraturederivation,weneeda set of polynomials
that are not only orthogonal to each other but also to any polynomial of
lower order. For the previous inner product, it turns out that Legendre
polynomials (!= is a Legendre polynomial of order =) possess the
desired properties:∫ 1

−1
G:!=(G)dG = 0, for any : < =. (12.18)

Legendre polynomials can be generated by the recurrence relationship,

!=+1(G) = (2= + 1)
(= + 1) G!=(G) −

=
(= + 1)!=−1(G) , (12.19)

where !0 = 1, and !1 = G. Figure 12.10 shows a plot of the first few
Legendre polynomials.

From the Gaussian quadrature derivation, we find that we can
integrate any polynomial of order 2= − 1 exactly by choosing the node
positions G8 as the roots of the Legendre polynomial != , with the
corresponding weights given by

F8 =
2

(1 − G2
8) [!′=(G8)]2

. (12.20)

12 Optimization Under Uncertainty 455

193. Golub and Welsch, Calculation of
Gauss quadrature rules, 1969.

Legendre polynomials are defined over the interval [−1, 1], but we
can reformulate them for an arbitrary interval [0, 1] through a change
of variables:

G =

(
1 − 0

2

)
I +

(
1 + 0

2

)
, (12.21)

where I ∈ [−1, 1].
Using the change of variables, we can write

∫ 1

0
5 (G)dG =

∫ 1

−1
5

((1 − 0)
2 I + 1 + 02

) (
1 − 0

2

)
dI . (12.22)

Now, applying a quadrature rule, we can approximate the integral as
∫ 1

0
5 (G)dG ≈

(
1 − 0

2

) <∑
8=1

F8 5

((1 − 0)
2 I8 + 1 + 02

)
, (12.23)

where the node locations and respective weights come from the Legen-
dre polynomials.

Recall that what we are after in this section is not just any generic
integral but, rather, metrics such as the expected value,

� 5 =
∫

5 (G)?(G)dG . (12.24)

As compared to our original integral (Eq. 12.12), we have an additional
function ?(G), referred to as a weight function. Thus, we extend the
definition of orthogonal polynomials (Eq. 12.17) to orthogonality with
respect to the weight ?(G), also known as a weighted inner product:

〈 5 , 6〉 =
∫ 1

0
5 (G)6(G)?(G)dG = 0 . (12.25)

For our purposes, the weight function is ?(G), or it is related to it
through a change of variables.

Orthogonal polynomials for various weight functions are listed in
Table 12.1. The weight function in the table does not always correspond
exactly to the typically used PDF (?(G)), so a change of variables (like
Eq. 12.22) might be needed. The formula described previously is known
as Gauss–Legendre quadrature, whereas the variants listed in Table 12.1
are called Gauss–Hermite, and so on. Formulas and tables with node
locations and corresponding weight values exist for most standard
probability distributions. For any given weight function, we can
generate orthogonal polynomials,193 and we can generate orthogonal
polynomials for general distributions (e.g., ones that were empirically
derived).

https://dx.doi.org/10.1090/S0025-5718-69-99647-1
https://dx.doi.org/10.1090/S0025-5718-69-99647-1

12 Optimization Under Uncertainty 456

Table 12.1 Orthogonal polynomials that correspond to some common probability distri-
butions.

Prob. dist. Weight function Polynomial Support range

Uniform 1 Legendre [−1, 1]
Normal 4−G2

Hermite (−∞,∞)
Exponential 4−G Laguerre [0,∞)
Beta (1 − G)
(1 + G)� Jacobi (−1, 1)
Gamma G
4−G Generalized Laguerre [0,∞)

�0

�1

�2

�3

−3 −2 −1 0 1 2 3

−2

0

2

G

5 (G)

Fig. 12.11 The first few Hermite poly-
nomials.

Wenowprovidemoredetails onGauss–Hermite quadrature because
normal distributions are common. The Hermite polynomials (�=)
follow the recurrence relationship,

�=+1(G) = G�=(G) − =�=−1(G) , (12.26)

where �0(G) = 1, and �1(G) = G. The first few polynomials are plotted
in Fig. 12.11. For Gauss–Hermite quadrature, the nodes are positioned
at the roots of �=(G), and their weights are

F8 =
√
�=!

=2
(
�=−1(

√
2G8)

)2 . (12.27)

A coordinate transformation is needed because the standard normal
distribution differs slightly from the weight function in Table 12.1.
For example, if we are seeking an expected value, with G normally
distributed, then the integral is given by

� 5 =
∫ ∞

−∞
5 (G) 1

�
√

2�
exp

(
−1

2

(G − �
�

)2
)

dG. (12.28)

We use the change of variables,

I =
G − �√

2�
. (12.29)

Then, the resulting integral becomes

� 5 =
1√
�

∫ ∞

−∞
5
(
� +
√

2�I
)

exp
(−I2) dI. (12.30)

This is now in the appropriate form, so the quadrature rule (using the
Hermite nodes and weights) is

� 5 =
1√
�

=∑
8=1

F8 5
(
� +
√

2�I8
)
. (12.31)

12 Optimization Under Uncertainty 457

Gauss–Hermite

Trapezoidal

0 10 20 30 40
10−8

10−5

10−2

101

=

|�|

Fig. 12.12 Error in the integral as a
function of the number of nodes.

194. Wilhelmsen, Optimal quadrature for
periodic analytic functions, 1978.

195. Trefethen and Weideman, The expo-
nentially convergent trapezoidal rule, 2014.

196. Johnson, Notes on the convergence of
trapezoidal-rule quadrature, 2010.

Example 12.6 Gauss–Hermite quadrature
Supposewewant to compute the expected value � 5 for the one-dimensional

function 5 (G) = cos(G2) at G = 2, assuming that G is normally distributed as
G ∼ N(2, 0.2).

Let us use Gauss–Hermite quadrature with an increasing number of
nodes. We plot the absolute value of the error, |�|, relative to the exact result
(� 5 = −0.466842330417276) versus the number of quadrature points in Fig. 12.12.
The Gauss–Hermite quadrature converges quickly; with only six points, we
reduce the error to around 10−6. Trapezoidal integration, by comparison,
requires over 35 function evaluations for a similar error.

In this problem, we could have taken advantage of symmetry, but we are
only interested in the trend (for a smooth function, trapezoidal integration gen-
erally converges at least quadratically, whereas Gaussian quadrature converges
exponentially).

The first-ordermethod of the previous section predicts � 5 = −0.6536, which
is not an acceptable approximation because of the nonlinearity of 5 .

Gaussian quadrature does not naturally lead to nesting, which, as
previously mentioned, can increase the accuracy by adding points to a
given quadrature. However, methods such as Gauss–Konrod quadra-
ture adapt Gaussian quadrature to utilize nesting. Although Gaussian
quadrature is often used to compute one-dimensional integrals effi-
ciently, it is not always the best method. For non-smooth functions,
trapezoidal integration is usually preferable because polynomials are
ill-suited for capturing discontinuities. Additionally, for periodic func-
tions such as the one shown in Fig. 12.4, the trapezoidal rule is better
than Gaussian quadrature, exhibiting exponential convergence.194,195
This is most easily seen by using a Fourier series expansion.196

Clenshaw–Curtis quadrature applies this idea to a general function
by employing a change of variables (G = cos�) to create a periodic
function that can then be efficiently integrated with the trapezoidal
rule. Clenshaw–Curtis quadrature also has the advantage that nesting
is straightforward and thus desirable for higher-dimensional functions,
as discussed next.

The direct quadrature methods discussed so far focused on inte-
gration in one dimension, but most problems have more than one
random variable. Extending numerical integration to multiple dimen-
sions (also known as cubature) is much more challenging. The most
obvious extension for multidimensional quadrature is a full grid tensor
product. This type of grid is created by discretizing each dimension
and then evaluating at every combination of nodes. Mathematically,

https://dx.doi.org/10.1137/0715020
https://dx.doi.org/10.1137/0715020
https://dx.doi.org/10.1137/130932132
https://dx.doi.org/10.1137/130932132
https://http://math.mit.edu/~stevenj/trapezoidal.pdf
https://http://math.mit.edu/~stevenj/trapezoidal.pdf

12 Optimization Under Uncertainty 458

‡This is the same issue as with the full
factorial sampling used to construct sur-
rogate models in Section 10.2.

197. Smolyak, Quadrature and interpola-
tion formulas for tensor products of certain
classes of functions, 1963.

the quadrature formula can be written as
∫

5 (G)dG1 dG2 . . . dG= ≈∑
8

∑
9

. . .
∑
=

5 (G8 , G 9 , . . . , G=)F8F 9 . . . F= . (12.32)

Although conceptually straightforward, this approach is subject to the
curse of dimensionality.‡ The number of points we need to evaluate grows
exponentially with the number of input dimensions.

One approach to dealing with exponential growth is to use a sparse
grid method.197 The basic idea is to neglect higher-order cross terms.
For example, assume that we have a two-dimensional problem and that
both variables used a fifth-degree polynomial in the quadrature strategy.
The cross terms would include terms up to the 10th order. Although we
can integrate these high-order polynomials exactly, their contributions
become negligible beyond a specific order. We specify a maximum
degree that we want to include and remove all higher-order terms
from the evaluation. This method significantly reduces the number of
evaluation nodes, with minimal loss in accuracy.

Example 12.7 Sparse grid methods for quadrature
Figure 12.13 compares a two-dimension full tensor grid using the Clenshaw–

Curtis exponential rule (left)with a level 5 sparse gridusing the samequadrature
strategy (right).

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

G1

G2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

G1

G2

Fig. 12.13Comparison between a two-
dimensional full tensor grid (left)
and a level 5 sparse grid using the
Clenshaw–Curtis exponential rule
(right).

For a problem with dimension 3 and = sample points in each
dimension, the entire tensor grid has a computational complexity
of O(=3). In contrast, the sparse grid method has a complexity of
O(=(log =)3−1) with comparable accuracy. This scaling alleviates the
curse of dimensionality to some extent. However, the number of

https://dx.doi.org/10.3103/S1066369X10030084
https://dx.doi.org/10.3103/S1066369X10030084
https://dx.doi.org/10.3103/S1066369X10030084

12 Optimization Under Uncertainty 459

evaluation points is still strongly dependent on problem dimensionality,
making it intractable in high dimensions.

12.3.3 Monte Carlo Simulation
Monte Carlo simulation is a sampling-based procedure that computes
statistics and output distributions. Sampling methods approximate the
integrals mentioned in the previous section by using the law of large
numbers. The concept is that output probability distributions can be
approximated by running the simulation many times with randomly
sampled inputs from the corresponding probability distributions. There
are three steps:

1. Random sampling. Sample = points G8 from the input probability
distributions using a random number generator.

2. Numerical experimentation. Evaluate the outputs at these points,
58 = 5 (G8).

3. Statistical analysis. Compute statistics on the discrete output
distribution 58 .

For example, the discrete form of the mean is

� 5 =
1
=

=∑
8=1

58 , , (12.33)

and the unbiased estimate of the variance is computed as

�2
5 =

1
= − 1

(
=∑
8=1

(
5 2
8

) − =�2
5

)
. (12.34)

We can also estimate Pr(6(G) ≤ 0) by counting how many times the
constraint was satisfied and dividing by =. If we evaluate enough
samples, our output statistics converge to the actual values by the law of
large numbers. Therein also lies this method’s disadvantage: it requires
a large number of samples.

Monte Carlo simulation has three main advantages. First, the
convergence rate is independent of the number of inputs. Whether we
have 3 or 300 random input variables, the convergence rate is similar
because we randomize all input variables for each sample. This is
an advantage over direct quadrature for high-dimensional problems
because, unlike quadrature, Monte Carlo does not suffer from the curse
of dimensionality. Second, the algorithm is easy to parallelize because
all of the function evaluations are independent. Third, in addition to

12 Optimization Under Uncertainty 460

statistics like the mean and variance, Monte Carlo generates the output
probability distributions. This is a unique advantage compared with
first-order perturbation and direct quadrature, which provide summary
statistics but not distributions.

Example 12.8 Monte Carlo applied to a one-dimensional function
Consider the one-dimensional function from Fig. 12.1:

5 (G) = exp
(G

2

)
+ 0.2G6 − 0.2G5 − 0.75G4 + G2 .

We compute the expected value function at each G location using Monte Carlo
simulation, for � = 0.2. Using different numbers of samples, we obtain the
expected value functions plotted in Fig. 12.14. For 100 samples, the noise in
the expected value is visible. The noise decreases as the number of samples
increases. For 100,000 samples, the noise is barely noticeable in the plot.

Exact

Monte Carlo

−1 0 1 2
0.8

1

1.2

1.4

1.6

1.8

2

�G

� 5

= = 102

−1 0 1 2
0.8

1

1.2

1.4

1.6

1.8

2

�G

� 5

= = 103

−1 0 1 2
0.8

1

1.2

1.4

1.6

1.8

2

�G

� 5

= = 105

Fig. 12.14 Monte Carlo requires a
large number of samples for an accu-
rate prediction of the expected value.The major disadvantage of the Monte Carlo method is that even

though the convergence rate does not depend on the number of inputs,
the convergence rate is slow—O(1/√=). This means that every addi-
tional digit of accuracy requires about 100 times more samples. It is
also hard to know which value of = to use a priori. Usually, we need
to determine an appropriate value for = through convergence testing
(trying larger = values until the statistics converge).

One approach to achieving converged statistics with fewer iterations
is to use Latin hypercube sampling (LHS) or low-discrepancy sequences,
as discussed in Section 10.2. Both methods allow us to approximate the
input distributions with fewer samples. Low-discrepancy sequences
are particularly well suited for this application because convergence
testing is iterative. When combined with low-discrepancy sequences,
the method is called quasi-Monte Carlo, and the scaling improves to

12 Optimization Under Uncertainty 461

O(1/=). Thus, each additional digit of accuracy requires 10 times as
many samples. Even with better sampling methods, many simulations
are usually required, which can be prohibitive if used as part of an
OUU problem.

Example 12.9 Forward propagation with Monte Carlo
Consider a problem with the following objective and constraint:

5 (G) = G2
1 + 2G2

2 + 3G2
3

6(G) = G1 + G2 + G3 − 3.5 ≤ 0 .

Suppose that the current optimization iteration is G = [1, 1, 1]. We assume
that the first variable is deterministic, whereas the latter two variables have
uncertainty under a normal distributionwith the following standard deviations:
�2 = 0.06 and �3 = 0.2. We would like to compute the output statistics for 5
(mean, variance, and a histogram) and compute the reliability of the constraint
at this current iteration.

We do not know how many samples we need to get reasonably converged
statistics, so we need to perform a convergence study. For a given number of
samples, we generate random numbers normally distributed with mean G8 and
standard deviation �8 . Then we evaluate the functions and compute the mean
(Eq. 12.33), variance (Eq. 12.34), and reliability of the outputs.

Figure 12.15 shows the convergence of the mean and standard deviation
using a random sampling curve, LHS (Section 10.2.1), and quasi-Monte Carlo
(using Halton sequence sampling from Section 10.2.2). The latter two methods
converge much more quickly than random sampling. LHS performs better for
few samples in this case, but generating the convergence data requires more
function evaluations than quasi-Monte Carlo because an all-new set of sample
points is generated for each = (instead of being incrementally generated as in
the Halton sequence for quasi-Monte Carlo). That cost is less problematic for
optimization applications because the convergence testing is only done at the
preprocessing stage. Once a number of samples = is chosen for convergence, =
is fixed throughout the optimization.

Random sampling

Halton

LHS

101 102 103 104 105 106

5.8

6

6.2

6.4

#

�

Random sampling

Halton

LHS

101 102 103 104 105 106
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

#

�

Fig. 12.15 Convergence of the mean
(left) and standard deviation (right)
versus the number of samples using
Monte Carlo.

12 Optimization Under Uncertainty 462

5 10
0

0.5

1

1.5

·104

5

Count

Fig. 12.16 Histogram of objective
function for 10,000 samples.

§Polynomial chaos is not chaotic and does
not actually need polynomials. The name
polynomial chaos came about because itwas
initially derived for use in a physical the-
ory of chaos.198

198. Wiener, The homogeneous chaos, 1938.

From the data, we conclude that we need about = = 104 samples to have
well-converged statistics. Using = = 104 yields � = 6.127, � = 1.235, and
A = 0.9914. The random sampling of these results varies between simulations
(except for the Halton sequence in quasi-Monte Carlo, which is deterministic).

The production of an output histogram is a key benefit of this method. The
histogram of the objective function is shown in Fig. 12.16. Notice that it is not
normally distributed in this case.

12.3.4 Polynomial Chaos
Polynomial chaos (also known as spectral expansions) is a class of forward-
propagation methods that take advantage of the inherent smoothness
of the outputs of interest using polynomial approximations.§

Themethod extends the ideas ofGaussian quadrature to estimate the
output function, fromwhich the output distribution and other summary
statistics can be efficiently generated. In addition to using orthogonal
polynomials to evaluate integrals, we use them to approximate the
output function. As in Gaussian quadrature, the polynomials are
orthogonal with respect to a specified probability distribution (see
Eq. 12.25 and Table 12.1). A general function that depends on uncertain
variables G can be represented as a sum of basis functions #8 (which
are usually polynomials) with weights
8 ,

5 (G) =
∞∑
8=0

8#8(G). (12.35)

In practice, we truncate the series after = + 1 terms and use

5 (G) ≈
=∑
8=0

8#8(G) . (12.36)

The required number of terms = for a given input dimension 3 and
polynomial order > is

= + 1 = (3 + >)!
3!>! . (12.37)

This approach amounts to a truncated generalized Fourier series.
By definition, we choose the first basis function to be #0 = 1. This

means that the first term in the series is a constant (polynomial of order
0). Because the basis functions are orthogonal, we know that

〈#8 ,# 9〉 = 0 if 8 ≠ 9. (12.38)

https://dx.doi.org/10.2307/2371268

12 Optimization Under Uncertainty 463

Polynomial chaos consists of three main steps:

1. Select an orthogonal polynomial basis.
2. Compute coefficients to fit the desired function.
3. Compute statistics on the function of interest.

These three steps are described in the following sections. We begin
with the last step because it provides insight for the first two.

Compute Statistics
Using the polynomial approximation (Eq. 12.36) in the definition of the
mean, we obtain

� 5 =
∫ ∞

−∞

∑
8

8#8(G)?(G)dG . (12.39)

The coefficients
8 are constants that can be taken out of the integral, so
we can write

� 5 =
∑
8

8

∫
#8(G)?(G)dG

=
0

∫
#0(G)?(G)dG +
1

∫
#1(G)?(G)dG +
2

∫
#2(G)?(G)dG +

We can multiply all terms by #0 without changing anything because
#0 = 1, so we can rewrite this expression in terms of the inner product
as

� 5 =
0

∫
?(G)dG +
1〈#0 ,#1〉 +
2〈#0 ,#2〉 + (12.40)

Because the polynomials are orthogonal, all the terms except the first
are zero (see Eq. 12.38). From the definition of a PDF (Eq. A.63), we
know that the first term is 1. Thus, the mean of the function is simply
the zeroth coefficient,

� 5 =
0 . (12.41)
We can derive a formula for the variance using a similar approach.

Substituting thepolynomial representation (Eq. 12.36) into thedefinition
of variance and using the same techniques used in deriving the mean,
we obtain

�2
5 =

∫ (∑
8

8#8(G)
)2

?(G)dG −
2
0

=
∑
8

2
8

∫
#8(G)2?(G)dG −
2

0

12 Optimization Under Uncertainty 464

�2
5 =
2

0

∫
#2

0?(G)dG +
=∑
8=1

2
8

∫
#8(G)2?(G)dG −
2

0

=
2
0 +

=∑
8=1

2
8

∫
#8(G)2?(G)dG −
2

0

=
=∑
8=1

2
8

∫
#8(G)2?(G)dG

=
=∑
8=1

2
8 〈#2

8 〉 .

(12.42)

That last step is just the definition of the weighted inner product
(Eq. 12.25), providing the variance in terms of the coefficients and
polynomials:

�2
5 =

=∑
8=1

2
8 〈#2

8 〉 . (12.43)

The inner product 〈#2
8 〉 = 〈#8 ,#8〉 can often be computed analytically.

For example, using Hermite polynomials with a normal distribution
yields

〈�2
=〉 = =! . (12.44)

For cases without analytic solutions, Gaussian quadrature of this inner
product is still straightforward and exact because it only includes
polynomials.

For multiple uncertain variables, the formulas are the same, but we
use multidimensional basis polynomials. Denoting these multidimen-
sional basis polynomials asΨ8 , we can write

� 5 =
0

�2
5 =

=∑
8=1

2
8 〈Ψ2

8 〉 .

(12.45)

(12.46)

Themultidimensional basis polynomials are defined by products of one-
dimensional polynomials, as detailed in the next section. Polynomial
chaos computes the mean and variance using these equations and
our definition of the inner product. Other statistics can be estimated
by sampling the polynomial expansion. Because we now have a
simple polynomial representation that no longer requires evaluating
the original (potentially expensive) function 5 , we can use sampling
procedures (e.g., Monte Carlo) to create output distributions without
incurring high costs. Of course, we have to evaluate the function 5 to
generate the coefficients, as we will discuss later.

12 Optimization Under Uncertainty 465

¶Other polynomials can be used, but
these polynomials are optimal because
they yield exponential convergence.

199. Eldred et al., Evaluation of non-
intrusive approaches for Wiener–Askey
generalized polynomial chaos, 2008.

Selecting an Orthogonal Polynomial Basis
As discussed in Section 12.3.2, we already know appropriate orthog-
onal polynomials for many continuous probability distributions (see
Table 12.1¶). We also have methods to generate other exponentially
convergent polynomial sets for any given empirical distribution.199

The multidimensional basis functions we need are defined by tensor
products. For example, if we had two variables from a uniform
probabilitydistribution (and thusLegendrebases), then thepolynomials
up through the second-order terms would be as follows:

Ψ0(G) = #0(G1)#0(G2) = 1
Ψ1(G) = #1(G1)#0(G2) = G1

Ψ2(G) = #0(G1)#1(G2) = G2

Ψ3(G) = #1(G1)#1(G2) = G1G2

Ψ4(G) = #2(G1)#0(G2) = 1
2

(
3G2

1 − 1
)

Ψ5(G) = #0(G1)#2(G2) = 1
2

(
3G2

2 − 1
)
.

The #1(G1)#2(G2) term, for example, does not appear in this list because
it is a third-order polynomial, and we truncated the series after the
second-order terms. We should expect this number of basis functions
because Eq. 12.37 with 3 = 2 and > = 2 yields = = 6.

Determine Coefficients
Now that we have selected an orthogonal polynomial basis, #8(G), we
need to determine the coefficients
8 in Eq. 12.36. We discuss two
approaches for determining the coefficients. The first approach is
quadrature, which is also known as spectral projection. The second is
with regression, which is also known as stochastic collocation.

Let us start with the quadrature approach. Beginning with the
polynomial approximation

5 (G) =
∑
8

8#8(G) , (12.47)

we take the inner product of both sides with respect to # 9 ,

〈 5 (G),# 9〉 =
∑
8

8 〈#8 ,# 9〉 . (12.48)

Using the orthogonality property of the basis functions (Eq. 12.38), all
the terms in the summation are zero except for

〈 5 (G),#8〉 =
8 〈#2
8 〉 . (12.49)

https://dx.doi.org/10.2514/6.2008-1892
https://dx.doi.org/10.2514/6.2008-1892
https://dx.doi.org/10.2514/6.2008-1892

12 Optimization Under Uncertainty 466

‖There are software packages that facil-
itate the use of polynomial chaos meth-
ods.200 ,201

200. Adams et al., Dakota, a multilevel
parallel object-oriented framework for de-
sign optimization, parameter estimation,
uncertainty quantification, and sensitivity
analysis: Version 6.14 user’s manual, 2021.

201. Feinberg and Langtangen, Chaospy:
An open source tool for designing methods of
uncertainty quantification, 2015.

Thus, we can find each coefficient by

8 =
1
〈#2

8 〉
∫

5 (G)#8(G)?(G)dG , (12.50)

where we replaced the inner product with the definition given by
Eq. 12.17.

As expected, the zeroth coefficient corresponds to the definition of
the mean,

0 =
∫

5 (G)?(G)dG . (12.51)

These coefficients can be obtained through multidimensional quadra-
ture (see Section 12.3.2) or Monte Carlo simulation (Section 12.3.3),
which means that this approach inherits the same limitations of the cho-
sen quadrature approach. However, the process can be more efficient if
the selected basis functions are good approximations of the distribu-
tions. These integrals are usually evaluated using Gaussian quadrature
(e.g., Gauss–Hermite quadrature if ?(G) is a normal distribution).

Suppose all we are interested in is the mean (Eqs. 12.41 and 12.51).
In that case, the polynomial chaos approach amounts to just Gaussian
quadrature. However, if we want to compute other statistical properties
or produce an output PDF, the additional effort of obtaining the higher-
order coefficients produces a polynomial approximation of 5 (G) that
we can then sample to predict other quantities of interest.

It may appear that to estimate 5 (G) (Eq. 12.36), we need to know
5 (G) (Eq. 12.50). The distinction is that we just need to be able to
evaluate 5 (G) at some predefined quadrature points, which in turn
gives a polynomial approximation for any G.

The second approach to determining the coefficients is regression.
Equation 12.36 is linear, so we can estimate the coefficients using least
squares (although an underdetermined system with regularization can
be used as well). If we evaluate the function < times, where G(8) is the
8th sample, the resulting linear system is as follows:


#0

(
G(1)

)
. . . #=

(
G(1)

)
...

...
#0

(
G(<)

)
. . . #=

(
G(<)

)



0
...

=


=


5
(
G(1)

)
...

5
(
G(<)

)

. (12.52)

As a rule of thumb, the number of sample points < should be at least
twice as large as the number of unknowns, = + 1. The sampling points,
also known as the collocation points, typically correspond to the nodes in
the corresponding quadrature strategy or utilize random sequences.‖

https://https://dakota.sandia.gov/content/manuals
https://https://dakota.sandia.gov/content/manuals
https://https://dakota.sandia.gov/content/manuals
https://https://dakota.sandia.gov/content/manuals
https://https://dakota.sandia.gov/content/manuals
https://dx.doi.org/10.1016/j.jocs.2015.08.008
https://dx.doi.org/10.1016/j.jocs.2015.08.008
https://dx.doi.org/10.1016/j.jocs.2015.08.008

12 Optimization Under Uncertainty 467

Example 12.10 Forward propagation with polynomial chaos
Consider the following objective function:

5 (G) = 3 + cos(3G1) + exp(−2G2) ,

where the current iteration is at G = [1, 1], and we assume that both design
variables are normally distributed with the following standard deviations:
� = [0.06, 0.2].

We approximate the function with fourth-order Hermite polynomials.
Using Eq. 12.37, we see that there are 15 basis functions from the various
combinations of �8�9 :

Ψ0 = �0(G1)�0(G2)
Ψ1 = �0(G1)�1(G2) = G2

Ψ2 = �0(G1)�2(G2) = G2
2 − 1

Ψ3 = �0(G1)�3(G2) = G3
2 − 3G2

Ψ4 = �0(G1)�4(G2) = G4
2 − 6G2

2 + 3
Ψ5 = �1(G1)�0(G2) = G1

Ψ6 = �1(G1)�1(G2) = G1G2

Ψ7 = �1(G1)�2(G2) = G1G
2
2 − G1

Ψ8 = �1(G1)�3(G2) = G1G
3
2 − 3G1G2

Ψ9 = �2(G1)�0(G2) = G2
1 − 1

Ψ10 = �2(G1)�1(G2) = G2
1G2 − G2

Ψ11 = �2(G1)�2(G2) = G2
1G

2
2 − G2

1 − G2
2 + 1

Ψ12 = �3(G1)�0(G2) = G3
1 − 3G1

Ψ13 = �3(G1)�1(G2) = G3
1G2 − 3G1G2

Ψ14 = �4(G1)�0(G2) = G4
1 − 6G2

1 + 3 .

The integrals for the basis functions (Hermite polynomials) have analytic
solutions:

〈Ψ2
:〉 = 〈(�<�=)2〉 = <!=! .

We now compute the following double integrals to obtain the coefficients using
Gaussian quadrature:

: =
1
〈Ψ2

:〉

∫ ∞
−∞

∫ ∞
−∞

5 (G)Ψ:(G)?(G)dG1 dG2

Wemust be careful with variable definitions because the inputs are not standard
normal distributions. The function 5 is defined over the unnormalized variable
G, whereas our basis functions are defined over a standard normal distribu-
tion: H = (G − �)/�. The probability distribution in this case is a bivariate,

12 Optimization Under Uncertainty 468

−2 −1 0 1 2

−2

−1

0

1

2

I1

I2

Fig. 12.17 Evaluation nodeswith area
proportional to weight.

uncorrelated, normal distribution:

: =
1
〈Ψ2

:〉

∫ ∞
−∞

∫ ∞
−∞

5 (G)Ψ:

(G − �
�

)
×

1
2��1�2

exp

(
−

(
G1 − �1√

2�1

)2
)

exp

(
−

(
G2 − �2√

2�2

)2
)

dG1 dG2 .

To put this in the proper form for Gauss–Hermite quadrature, we use the
change of variable I = (G − �)/(√2�), as follows:

: =
1
〈Ψ2

:〉
1
�

∫ ∞
−∞

∫ ∞
−∞

5
(√

2�I + �
)
Ψ:

(√
2I

)
4−I2

1 4−I2
2 dI1 dI2 .

Applying Gauss–Hermite quadrature, the integral is approximated by

: ≈ 1
�〈Ψ2

:〉
=8∑
8=1

= 9∑
9=1

F8F 9 5 (-8 9)Ψ:

(√
2/8 9

)
,

where =8 and = 9 determine the number of quadrature nodes we choose to
include, and -8 9 is the tensor product

- =
(√

2�1I1 + �1
)
⊗

(√
2�2I2 + �2

)
,

and / = I1 ⊗ I2.
In this case, we choose a full tensor product mesh of the fifth order in both

dimensions. The nodes and weights are given by

I1 = I2 = [−2.02018,−0.95857, 0.0, 0.95857, 2.02018]
F1 = F2 = [0.01995, 0.39362, 0.94531, 0.39362, 0.01995]

and visualized as a tensor product of evaluation points in Fig. 12.17. The
nonzero coefficients (within a tolerance of approximately 10−4) are as follows:

0 = 2.1725

1 = −0.0586

2 = 0.0117

3 = −0.00156

5 = −0.0250

9 = 0.01578 .

We can now easily compute the mean and standard deviation as

� 5 =
0 = 2.1725

� 5 =

√√√ =∑
8=1

2
8 〈Ψ2

8 〉 = 0.06966 .

12 Optimization Under Uncertainty 469

2 2.2 2.4 2.6 2.8
0

1

2

3

·104

5 (G)

Fig. 12.19 Output histogram pro-
duced by sampling the polynomial
expansion.

In this case, we are able to accurately estimate the mean and standard
deviation with only 25 function evaluations. In contrast, applying Monte Carlo
to this same problem, with LHS, requires about 10,000 function calls to estimate
the mean and over 100,000 function calls to estimate the standard deviation
(with less accuracy).

Although direct quadrature would work equally well if all we wanted was
the mean and standard deviation, polynomial chaos gives us a polynomial
approximation of our function near �G :

5̃ (G) =
∑
8

8Ψ8(G).

This fourth-order polynomial is compared to the original function in Fig. 12.18,
where the dot represents the mean of G.

�G

0 0.5 1 1.5 2
0

0.5

1

1.5

2

G1

G2

Original

�G

0 0.5 1 1.5 2
0

0.5

1

1.5

2

G1

G2

Polynomial Expansion

Fig. 12.18 Original function on left,
polynomial expansion about �G on
right.

The primary benefit of this new function is that it is very inexpensive to
evaluate (and the original function is often expensive), so we can use sampling
procedures to compute other statistics, such as percentiles or reliability levels,
or simply to visualize the output PDF, as shown in Fig. 12.19.

12.4 Summary
Engineering problems are subject to variation under uncertainty. OUU
deals with optimization problems where the design variables or other
parameters have uncertain variability. Robust design optimization seeks
designs that are less sensitive to inherent variability in the objective
function. Common OUU objectives include minimizing the mean or
standard deviation or performing multiobjective trade-offs between the
mean performance and standard deviation. Reliable design optimiza-
tion seeks designs with a reduced probability of failure, considering
the variability in the constraint values. To quantify robustness and
reliability, we need a forward-propagation procedure that propagates

12 Optimization Under Uncertainty 470

∗This list is not exhaustive. For exam-
ple, the methods discussed in this chap-
ter are nonintrusive. Intrusive polyno-
mial chaos uses expansions inside govern-
ing equations. Like intrusive methods for
derivative computation (Chapter 6), intru-
sive methods for forward propagation re-
quire more implementation effort but are
more accurate and efficient.

the probability distributions of the inputs (either design variables or
parameters that are fixed during optimization) to the statistics or prob-
ability distributions of the outputs (objective and constraint functions).
Four classes of forward propagation methods were discussed in this
chapter.∗

Perturbation methods use a Taylor series expansion of the output
functions to estimate the mean and variance. These methods can be
efficient for a rangeof problemsizes, especially if accuratederivatives are
available. Their main weaknesses are that they require derivatives (and
hence second derivatives when using a gradient-based optimization),
only work well with symmetric input probability distributions, and
only provide the mean and variance (for first-order methods).

Direct quadrature uses numerical quadrature to evaluate the sum-
mary statistics. This process is straightforward and effective. Its primary
weakness is that it is limited to low-dimensional problems (number of
random inputs). Sparse grids enable these methods to handle a higher
number of dimensions, but the scaling is still lacking.

Monte Carlo methods approximate the summary statistics and out-
put distributions using random sampling and the law of large numbers.
These methods are straightforward to use and are independent of the
problem dimension. Their major weakness is that they are inefficient.
However, because the alternatives are intractable for a large number
of random inputs, Monte Carlo is an appropriate choice for many
high-dimensional problems.

Polynomial chaos represents uncertain variables as a sum of orthog-
onal basis functions. This method is often a more efficient way to char-
acterize both statistical moments and output distributions. However,
the methodology is usually limited to a small number of dimensions
because the number of required basis functions grows exponentially.

12 Optimization Under Uncertainty 471

Problems
12.1 Answer true or false and justify your answer.

a. The greater the reliability, the less likely the design is to have
a worse objective function value.

b. Reliability can be handled in a deterministic way using safety
factors, which ensure that the optimum has some margin
before the original constraint is violated.

c. Forward propagation computes the PDFs of the outputs and
inputs for a given numerical model.

d. The computational cost of direct quadrature scales exponen-
tially with the number of random variables, whereas the cost
of Monte Carlo is independent of the number of random
variables.

e. Monte Carlo methods approximate PDFs using random
sampling and converges slowly.

f. The first-order perturbation method computes the PDFs
using local Taylor series expansions.

g. Because the first-order perturbation method requires first-
order derivatives to compute the uncertainty metrics, OUU
using the first-order perturbation method requires second-
order derivatives.

h. Polynomial chaos is a forward-propagation technique that
uses polynomial approximations with random coefficients
to model the input uncertainties.

i. The number of basis functions required by polynomial chaos
grows exponentially with the number of uncertain input
variables.

12.2 Consider the following problem:

minimize 5 = G2
1 + G4

2 + G2 exp(G3)
subject to G2

1 + G2
2 + G3

3 ≥ 10
G1G2 + G2G3 ≥ 5.

Assume that all design variables are random variables with
the following standard deviations: �G1 = 0.1, �G2 = 0.2, �G3 =
0.05. Use the iterative reliability-based optimization procedure
to find a reliable optimum with an overall reliability of 99.9
percent. How much did the objective decrease relative to the

12 Optimization Under Uncertainty 472

deterministic optimum? Check your reliability level with Monte
Carlo simulation.

12.3 Using Gaussian quadrature, find the mean and variance of the
function exp(cos(G)) at G = 1, assuming G is normally distributed
with a standard deviation of 0.1. Determine howmany evaluation
points are needed to converge to 5 decimal places. Compare your
results to trapezoidal integration.

12.4 Repeat the previous problem, but assume a uniform distribution
with a half-width of 0.1.

12.5 Consider the function in Ex. 12.10. Solve the same problem,
but use Monte Carlo sampling instead. Compare the output
histogram and how many function calls are required to achieve
well-converged results for the mean and variance.

12.6 Repeat Ex. 12.10 using polynomial chaos, except with a uniform
distribution in both dimensions, where the standard deviations
from the example correspond to the half-width of a uniform
distribution.

12.7 Robust optimization of a wind farm. We want to find the optimal
turbine layout for a wind farm to minimize the cost of energy
(COE). We will consider a very simplified wind farm with only
threewind turbines. The first turbinewill be fixed at (0, 0), and the
G-positions of the back two turbines will be fixed with 4-diameter
spacing between them. The only thing we can change is the
H-position of the two back turbines, as shown in Fig. 12.20 (all
dimensions in this problem are in terms of rotor diameters). In
other words, we just have two design variables: H2 and H3.

)1

)2

)3

4 4

H2

H3

Wind

Fig. 12.20 Wind farm layout.

We further simplify by assuming the wind always comes from
the west, as shown in the figure, and is always at a constant speed.
The wake model has a few parameters that define things like its

12 Optimization Under Uncertainty 473

spread angle and decay rate. We will refer to these parameters as

, �, and � (knowing exactly what each parameter corresponds to
is not important for our purposes). The supplementary resources
repository contains code for this problem.

a. Run the optimization deterministically, assuming that the
three wake parameters are
 = 0.1, � = 9, and � = 5.
Because there are several possible similar solutions, we add
the following constraints: H8 ≥ 0 (bound) and H3 ≥ H2 (linear).
Do not use [0, 0] as the starting point for the optimization
because that occurs right at a flat spot in the wake (a fixed
point), so you might not make any progress. Report the
optimal spacing that you find.

b. Now assume that the wake parameters are uncertain vari-
ables under some probability distribution. Specifically, we
have the following information for the three parameters:
•
 is governed by a Weibull distribution with a scale

parameter of 0.1 and a shape parameter of 1.
• � is given by a normal distribution with a mean and

standard deviation of �=9, �=1.
• � is given by a normal distribution with a mean and

standard deviation of �=5, �=0.4.
Note that the mean for all of these distributions corresponds
to the deterministic value we used previously.
Using a Monte Carlo method, run an OUU minimizing the
95th percentile for COE.

c. Once you have completed both optimizations, perform a
cross analysis by filling out the four numbers in the table
that follows.

Deterministic
COE

95th percentile
COE

Deterministic layout [] []
OUU layout [] []

Take the two optimal designs that you found, and then
compare each on the two objectives (deterministic and 95th
percentile). The first row corresponds to the performance of
the optimal deterministic layout. Evaluate the performance
of this layout using the deterministic value for COE and the
95th percentile that accounts for uncertainty. Repeat for the
optimal solution for the OUU case. Discuss your findings.

13Multidisciplinary Design Optimization
As mentioned in Chapter 1, most engineering systems are multidiscipli-
nary, motivating the development of multidisciplinary design optimiza-
tion (MDO). The analysis of multidisciplinary systems requires coupled
models and coupled solvers. We prefer the term component instead of
discipline or model because it is more general. However, we use these
terms interchangeably depending on the context. When components in
a system represent different physics, the term multiphysics is commonly
used.

All the optimization methods covered so far apply to multidisci-
plinary problems if we view the coupled multidisciplinary analysis
as a single analysis that computes the objective and constraint func-
tions by solving the coupled model for a given set of design variables.
However, there are additional considerations in the solution, derivative
computation, and optimization of coupled systems.

In this chapter, we build on Chapter 3 by introducing models and
solvers for coupled systems. We also expand the derivative computation
methods of Chapter 6 to handle such systems. Finally, we introduce
various MDO architectures, which are different options for formulating
and solving MDO problems.

By the end of this chapter you should be able to:

1. Describe when and why you might want to use MDO.

2. Read and create XDSM diagrams.

3. Compute derivatives of coupled models.

4. Understand the differences between monolithic and dis-
tributed architectures.

13.1 The Need for MDO
In Chapter 1, we mentioned that MDO increases the system perfor-
mance, decreases the design time, reduces the total cost, and reduces

475

13 Multidisciplinary Design Optimization 476

G0

G∗

G1

G2

Fig. 13.1 Sequential optimization is
analogous to coordinate descent.

G�0G∗�

G�0

G∗�

G1

G2

Fig. 13.2 Sequential optimization can
fail to find the constrained optimum
because the optimization with re-
spect to a set of variables might not
see a feasible descent direction that
otherwise exists when considering all
variables simultaneously.

the uncertainty at a given point in time (recall Fig. 1.3). Although these
benefits still apply when modeling and optimizing a single discipline
or component, broadening the modeling and optimization to the whole
system brings on additional benefits.

Even without performing any optimization, constructing a multi-
disciplinary (coupled) model that considers the whole engineering
system is beneficial. Such a model should ideally consider all the
interactions between the system components. In addition to modeling
physical phenomena, the model should also include other relevant
considerations, such as economics and human factors. The benefit of
such a model is that it better reflects the actual state and performance of
the system when deployed in the real world, as opposed to an isolated
component with assumed boundary conditions. Using such a model,
designers can quantify the actual impact of proposed changes on the
whole system.

When considering optimization, the main benefit of MDO is that op-
timizing the design variables for the various components simultaneously
leads to a better system than when optimizing the design variables
for each component separately. Currently, many engineering systems
are designed and optimized sequentially, which leads to suboptimal
designs. This approach is often used in industry, where engineers are
grouped by discipline, physical subsystem, or both. This might be per-
ceived as the only choice when the engineering system is too complex
and the number of engineers too large to coordinate a simultaneous
design involving all groups.

Sequential optimization is analogous to coordinate descent, which
consists of optimizing each variable sequentially, as shown in Fig. 13.1.
Instead of optimizing one variable at a time, sequential optimization
optimizes distinct sets of variables at a time, but the principle remains
the same. This approach tends to work for unconstrained problems,
although the convergence rate is limited to being linear.

One issue with sequential optimization is that it might converge to
a suboptimal point for a constrained problem. An example of such a
case is shown in Fig. 13.2, where sequential optimization gets stuck at
the constraint because it cannot decrease the objective while remaining
feasible by only moving in one of the directions. In this case, the
optimization must consider both variables simultaneously to find a
feasible descent direction.

Another issue is that when there are variables that affect multiple
disciplines (called shared design variables), we must make a choice about
which discipline handles those variables. If we let each discipline
optimize the same shared variable, the optimizations likely yield

13 Multidisciplinary Design Optimization 477

different values for those variables each time, in which case they
will not converge. On the other hand, if we let one discipline handle a
shared variable, it will likely converge to a value that violates one or
more constraints from the other disciplines.

By considering the various components and optimizing a multidisci-
plinary performance metric with respect to as many design variables
as possible simultaneously, MDO automatically finds the best trade-off
between the components—this is the key principle ofMDO. Suboptimal
designs also result from decisions at the system level that involve power
struggles between designers. In contrast, MDO provides the right
trade-offs because mathematics does not care about politics.

Example 13.1 MDO applied to wing design
Consider a multidisciplinary model of an aircraft wing, where the aero-

dynamics and structures disciplines are coupled to solve an aerostructural
analysis and design optimization problem. For a given flow condition, the
aerodynamic solver computes the forces on the wing for a given wing shape,
whereas the structural solver computes the wing displacement for a given set
of applied forces. Thus, these two models are coupled as shown in Fig. 13.3.
For a steady flow condition, there is only one wing shape and a corresponding
set of forces that satisfies both disciplinary models simultaneously.

Aerodynamic
solver

Structural
solver

Weight

Surface
pressure

integration

Stress
computation

Fuel
computation

Shape

Structural
sizing

Fuel
consumption

Structural
stresses

Drag, lift

Surface
pressures

Displacements

Displacements

Weight

Fig. 13.3 Multidisciplinary numerical
model for an aircraft wing.

13 Multidisciplinary Design Optimization 478

In the absence of a coupled model, aerodynamicists may have to
assume a fixed wing shape at the flight conditions of interest. Similarly,
structural designers may assume fixed loads in their structural analysis.
However, solving the coupledmodel is necessary to get the actual flying
shape of the wing and the corresponding performance metrics.

One possible design optimization problem based on these models
would be to minimize the drag by changing the wing shape and the
structural sizing while satisfying a lift constraint and structural stress
constraints. Optimizing the wing shape and structural sizing simulta-
neously yields the best possible result because it finds feasible descent
directions that would not be available with sequential optimization.
Wing shape variables, such as wingspan, are shared design variables be-
cause they affect both the aerodynamics and the structure. They cannot
be optimized by considering aerodynamics or structures separately.

13.2 Coupled Models
As mentioned in Chapter 3, a model is a set of equations that we solve
to predict the state of the engineering system and compute the objective
and constraint function values. More generally, we can have a coupled
model, which consists of multiple models (or components) that depend
on each other’s state variables.

The same steps for formulating a design optimization problem
(Section 1.2) apply in the formulation of MDO problems. The main
difference in MDO problems is that the objective and constraints are
computed by the coupled model. Once such a model is in place,
the design optimization problem statement (Eq. 1.4) applies, with no
changes needed.

A generic example of a coupled model with three components is
illustrated in Fig. 13.4. Here, the states of each component affect all other
components. However, it is common for a component to depend only
on a subset of the other system components. Furthermore, we might
distinguish variables between internal state variables and coupling
variables (more in this in Section 13.2.2).

G D =


D1
D2
D3



A1(G, D) = 0

A2(G, D) = 0

A3(G, D) = 0

D1

D2D2

D3

Fig. 13.4 Coupled model composed
of three numerical models. This cou-
pled model would replace the single
model in Fig. 3.21.

13 Multidisciplinary Design Optimization 479

Mathematically, a coupled model is no more than a larger set of
equations to be solved, where all the governing equation residuals (A),
the corresponding state variables (D), and all the design variables (G)
are concatenated into single vectors. Then, we can still just write the
whole multidisciplinary model as A(G, D) = 0.

However, it is often necessary or advantageous to partition the sys-
tem into smaller components for three main reasons. First, specialized
solvers are often already in place for a given set of governing equations,
which may be more efficient at solving their set of equations than a
general-purpose solver. In addition, some of these solvers might be
black boxes that do not provide an interface for using alternative solvers.
Second, there is an incentive for building the multidisciplinary system
in amodular way. For example, a componentmight be useful on its own
and should therefore be usable outside the multidisciplinary system.

A modular approach also facilitates the extension of the multi-
disciplinary system and makes it easy to replace the model of a given
discipline with an alternative one. Finally, the overall system of equa-
tions may be more efficiently solved if it is partitioned in a way that
exploits the system structure. These reasons motivate an implementa-
tion of coupled models that is flexible enough to handle a mixture of
different types of models and solvers for each component.

Tip 13.1 Beware of loss of precision when coupling components
Precision can be lost when coupling components, leading to a loss of

precision in theoverall coupled systemsolution. Ideally, thevarious components
would be coupled through memory, that is, a component can provide a pointer
to or a copy of the variable or array to the other components. If the type (e.g.,
double-precision float) is maintained, then there would be no loss in precision.

However, the number type might not be maintained in some conversions,
so it is crucial to be aware of this possibility and mitigate it. One common issue
is that components need to be coupled through file input and output. Codes do
not usually write all the available digits to the file, causing a loss in precision.
Casting a read variable to another type might also introduce errors. Find the
level of numerical error (Tip 3.2) and mitigate these issues as much as possible.

We start the remainder of this section by defining components in
more detail (Section 13.2.1). We explain how the coupling variables
relate to the state variables (Section 13.2.2) and coupled system formu-
lation (Section 13.2.3). Then, we discuss the coupled system structure
(Section 13.2.4). Finally, we explain methods for solving coupled sys-
tems (Section 13.2.5), including a hierarchical approach that can handle
a mixture of models and solvers (Section 13.2.6).

13 Multidisciplinary Design Optimization 480

13.2.1 Components
In Section 3.3, we explained how all models can ultimately be written as
a system of residuals, A(G, D) = 0. When the system is large or includes
submodels, it might be natural to partition the system into components.
We prefer to use the more general term components instead of disciplines
to refer to the submodels resulting from the partitioning because the
partitioning of the overall model is not necessarily by discipline (e.g.,
aerodynamics, structures). A system model might also be partitioned
by physical system components (e.g., wing, fuselage, or an aircraft
in a fleet) or by different conditions applied to the same model (e.g.,
aerodynamic simulations at different flight conditions).

The partitioning can also be performed within a given discipline
for the same reasons cited previously. In theory, the system model
equations in A(G, D) = 0 can be partitioned in any way, but only some
partitions are advantageous or make sense. We denote a partitioning
into = components as

A(D) = 0 ≡




A1(D1; D2 , . . . , D8 , . . . , D=) = 0
...

A8(D8 ; D1 , . . . , D8−1 , D8+1 , . . . , D=) = 0
...

A=(D= ; D1 , . . . , D8 , . . . , D=−1) = 0

. (13.1)

Each A8 and D8 are vectors corresponding to the residuals and states of
component 8. The semicolon denotes that we solve each component 8
by driving its residuals (A8) to zero by varying only its states (D8) while
keeping the states from all other components constant. We assume this
is possible, but this is not guaranteed in general. We have omitted the
dependency on G in Eq. 13.1 because, for now, we just want to find the
state variables that solve the governing equations for a fixed design.

Components can be either implicit or explicit, a conceptwe introduced
in Section 3.3. To solve an implicit component 8, we need an algorithm
for driving the equation residuals, A8(D1 , . . . , D8 , . . . , D=), to zero by
varying the states D8 while the other states (D9 for all 9 ≠ 8) remain fixed.
This algorithm could involve a matrix factorization for a linear system
or a Newton solver for a nonlinear system.

An explicit component is much easier to solve because that com-
ponents’ states are explicit functions of other components’ states. The
states of an explicit component can be computed without factorization
or iteration. Suppose that the states of a component 8 are given by the
explicit function D8 = 5 (D9) for all 9 ≠ 8. As previously explained in
Section 3.3, we can convert an explicit equation to the residual form by

13 Multidisciplinary Design Optimization 481

∗This description omits many details for
brevity. Jasa et al.202 describe the aero-
structural model in more detail and cite
other references on the background the-
ory.

202. Jasa et al., Open-source coupled aero-
structural optimization using Python, 2018.

moving the function on the right-hand side to the left-hand side. Then,
we obtain set of residuals,

A8(D1 , . . . , D=) = D8 − 5 (D9) for all 9 ≠ 8 . (13.2)

Therefore, there is no loss of generalitywhen using the residual notation
in Eq. 13.1.

Most disciplines involve a mix of implicit and explicit components
because, as mentioned in Section 3.3 and shown in Fig. 3.21, the state
variables are implicitly defined, whereas the objective function and
constraints are usually explicit functions of the state variables. In
addition, a discipline usually includes functions that convert inputs
and outputs, as discussed in Section 13.2.3.

As we will see in Section 13.2.6, the partitioning of a model can be
hierarchical, where components are gathered in multiple groups. These
groups can be nested to form a hierarchy with multiple levels. Again,
this might be motivated by efficiency, modularity, or both.

Example 13.2 Residuals of the coupled aerostructural problem
Let us formulate models for the aerostructural problem described in

Ex. 13.1.∗ A possible model for the aerodynamics is a vortex-lattice model given
by the linear system

�Γ = E ,

where � is the matrix of aerodynamic influence coefficients, and E is a vector of
boundary conditions, both of which depend on the wing shape. The state Γ is a
vector that represents the circulation (vortex strength) at each spanwise position
on the wing, as shown on the left-hand side of Fig. 13.5. The lift and drag
scalars can be computed explicitly for a given Γ, so we write these dependencies
as ! = !(Γ) and � = �(Γ), omitting the detailed explicit expressions for
conciseness.

y3�

↑3I

�
Γ y

↑

�

y

↑

�

y

↑

�

y

↑

�

Fig. 13.5 Aerostructural wing model
showing the aerodynamic state vari-
ables (circulations Γ) on the left and
structural state variables (displace-
ments 3I and rotations 3�) on the
right.

A possible model for the structures is a cantilevered beam modeled with
Euler–Bernoulli elements,

 3 = @ , (13.3)

where is the stiffness matrix, which depends on the beam shape and sizing.
The right-hand-side vector @ represents the applied forces at the spanwise

https://dx.doi.org/10.1007/s00158-018-1912-8
https://dx.doi.org/10.1007/s00158-018-1912-8

13 Multidisciplinary Design Optimization 482

Aerodynamics
�(3)Γ − E(3) = 0

Structures
 3 − @(Γ) = 0

Γ

3

Fig. 13.6 The aerostructural model
couples aerodynamics and structures
through a displacement and force
transfer.

position on the beam. The states 3 are the displacements and rotations at each
node, as shown on the right-hand side of Fig. 13.5. The weight does not depend
on the states, and it is an explicit function of the beam sizing and shape, so it
does not involve the structural model (Eq. 13.3). The stresses are an explicit
function of the displacements, so we can write � = �(3), where � is a vector
whose size is the number of elements.

When we couple these two models, � and E depend on the wing dis-
placements 3, and @ depends on Γ. We can write all the implicit and explicit
equations as residuals:

A1 = �(3)Γ − E(3)
A2 = 3 − @(Γ) .

The states of this system are as follows:

D =

[
D1
D2

]
≡

[
Γ
3

]
.

This coupled system is illustrated in Fig. 13.6.

13.2.2 Models and Coupling Variables
In MDO, the coupling variables are variables that need to be passed from
the model of one discipline to the others because of interdependencies
in the system. Thus, the coupling variables are the inputs and outputs
of each model. Sometimes, the coupling variables are just the state
variables of one model (or a subset of these) that get passed to another
model, but often we need to convert between the coupling variables
and other variables within the model.

We represent the coupling variables by a vector D̂8 , where the
subscript 8 denotes the model that computes these variables. In other
words, D̂8 contains the outputs of model 8. A model 8 can take any
coupling variable vector D̂9≠8 as one of its inputs, where the subscript
indicates that 9 can be the output from any model except its own.
Figure 13.7 shows the inputs and outputs for a model. The model solves
for the set of its state variables, D8 . The residuals in the solver depend
on the input variables coming from other models. In general, this is
not a direct dependency, so the model may require an explicit function
(%8) that converts the inputs (D̂9≠8) to the required parameters ?8 . These
parameters remain fixed when the model solves its implicit equations
for D8 .

After the model solves for its state variables (D8), there may be
another explicit function (&8) that converts these states to output
variables (D̂8) for the other models. The function (&8) typically reduces

13 Multidisciplinary Design Optimization 483

%8(D̂9≠8)

Solver

A8(D8 ; ?8)

&8(?8 , D8)

?8

D8

D8

A8

D̂9≠8

D̂8 = *8(D̂9≠8)

Fig. 13.7 In the general case, a model
may require conversions of inputs
and outputs distinct from the states
that the solver computes.

the number of output variables relative to the number of internal states,
sometimes by orders of magnitude.

The model shown in Fig. 13.7 can be viewed as an implicit function
that computes its outputs as a function of all the inputs, so we can
write D̂8 = *8(D̂9≠8). The model contains three components: two explicit
and one implicit. We can convert the explicit components to residual
equations using Eq. 13.2 and express themodel as three sets of residuals
as shown in Fig. 13.8. The result is a group of three components that
we can represent as A(D) = 0. This conversion and grouping hint at
a powerful concept that we will use later, which is hierarchy, where
components can be grouped using multiple levels.

A8−1(D9)

A8(D8 ; D8−1) = 0

A8+1(D8−1 , D8)

D8−1

D8

D9≠{8−1,8 ,8+1}

D8+1

Fig. 13.8 The conversion of inputs
and outputs can be represented as ex-
plicit components with correspond-
ing state variables. Using this form,
any model can be entirely expressed
as A(D) = 0. The inputs could be any
subset of D except for those handled
in the component (D8−1, D8 , and D8+1).

Example 13.3 Conversion of inputs and outputs in aerostructural problems
Consider the structural model from Ex. 13.2. We wrote @(Γ) to represent

the dependency of the external forces on the aerodynamic model circulations
to keep the notation simple, but in reality, there should be a separate explicit
component that converts Γ into @. The circulation translates to a lift force at each
spanwise position, which in turn needs to be distributed consistently to the
nodes of each beam element. Also, the displacements given by the structural
model (translations and rotations of each node) must be converted into a twist
distribution on the wing, which affects the right-hand side of the aerodynamic
model, �(3). Both of these conversions are explicit functions.

13 Multidisciplinary Design Optimization 484

13.2.3 Residual and Functional Forms
The system-level representation of a coupled system is determined by
the variables that are “seen” and controlled at this level.

Representing all models and variable conversions as A(D) = 0 leads
to the residual form of the coupled system, already written in Eq. 13.1,
where = is the number of components. In this case, the system level
has direct access and control over all the variables. This residual form
is desirable because, as we will see later in this chapter, it enables us to
formulate efficient ways to solve coupled systems and compute their
derivatives.

The functional form is an alternate system-level representation of
the coupled system that considers only the coupling variables and
expresses them as implicit functions of the others. We can write this
form as

D̂ = *(D̂) ⇔




D̂1 = *1(D̂2 , . . . , D̂<)
...

D̂8 = *8(D̂1 , . . . , D̂8−1 , D̂8+1 , . . . , D̂<)
...

D̂< = *<(D̂1 , . . . , D̂<−1)

, (13.4)

where < is the number of models and < ≤ =. If a model*8 is a black
box andwe have no access to the residuals and the conversion functions,
this is the only form we can use. In this case, the system-level solver
only iterates the coupling variables D̂ and relies on each model 8 to solve
or compute its outputs D̂8 .

These two forms are shown in Fig. 13.9 for a generic example with
three models (or disciplines). The left of this figure shows the residual
form, where each model is represented as residuals and states, as
in Fig. 13.8. This leads to a system with nine sets of residuals and
corresponding state variables. The number of state variables in each of
these sets is not specified but could be any number.

The functional form of these three models is shown on the right of
Fig. 13.9. In the case where the model is a black box, the residuals and
conversion functions shown in Fig. 13.7 are hidden, and the system
level can only access the coupling variables. In this case, each black-box
is considered to be a component, as shown in the right of Fig. 13.9.

In an even more general case, these two views can be mixed in a
coupled system. The models in residual form expose residuals and
states, in which case, the model potentially has multiple components
at the system level. The models in functional form only expose inputs
and outputs; in that case, the model is just a single component.

13 Multidisciplinary Design Optimization 485

A1

A2

A3

D1

D2

A4

A5

A6

D4

D5

A7

A8

A9

D7

D8

D3 D3

D6

D9D9

D6

Residual form

'1

'2

'3

*1(D̂2 , D̂3)

'4

'5

'6

*2(D̂1 , D̂3)

'7

'8

'9

*3(D̂1 , D̂2)

D̂1 D̂1

D̂2

D̂2

D̂3 D̂3

Functional form

Fig. 13.9 Two system-level views of
coupled system with three solvers.
In the residual form, all components
and their states are exposed (left); in
the functional (black-box) form, only
inputs and outputs for each solver
are visible (right), where D̂1 ≡ D3,
D̂2 ≡ D6, and D̂3 ≡ D9.

†In some of the DSM literature, this defi-
nition is reversed, where “row” and “col-
umn” are interchanged, resulting in a
transposed matrix.

13.2.4 Coupled System Structure
To show how multidisciplinary systems are coupled, we use a design
structure matrix (DSM), which is sometimes referred to as a dependency
structure matrix or an #2 matrix. An example of the DSM for a hypothet-
ical system is shown on the left in Fig. 13.10. In this matrix, the diagonal
elements represent the components, and the off-diagonal entries denote
coupling variables. A given coupling variable is computed by the
component in its row and is passed to the component in its column.†
As shown in the DSM on the left side of Fig. 13.10, there are generally
off-diagonal entries both above and below the diagonal, where the
entries above feed forward, whereas entries below feed backward.

A

B

C

D

Design structure
matrix

B

A

C D

Directed graph

Fig. 13.10 Different ways to represent
the dependencies of a hypothetical
coupled system.

The mathematical representation of these dependencies is given by

13 Multidisciplinary Design Optimization 486

203. Cuthill and McKee, Reducing the
bandwidth of sparse symmetric matrices,
1969.
204. Amestoy et al., An approximate mini-
mum degree ordering algorithm, 1996.
‡Although these methods were designed
for symmetric matrices, they are still use-
ful for non-symmetric ones. Several nu-
merical libraries include these methods.
205. Lambe and Martins, Extensions to the
design structure matrix for the description
of multidisciplinary design, analysis, and
optimization processes, 2012.

A ûA ûA

B ûB

ûC C ûD

D

Fig. 13.11 XDSM showing data de-
pendencies for the four-component
coupled system of Fig. 13.10.

a graph (Fig. 13.10, right), where the graph nodes are the components,
and the edges represent the information dependency. This graph is
a directed graph because, in general, there are three possibilities for
coupling two components: single coupling one way, single coupling
the other way, and two-way coupling. A directed graph is cyclic when
there are edges that form a closed loop (i.e., a cycle). The graph on
the right of Fig. 13.10 has a single cycle between components B and C.
When there are no closed loops, the graph is acyclic. In this case, the
whole system can be solved by solving each component in turn without
iterating.

The DSM can be viewed as a matrix where the blank entries are
zeros. For real-world systems, this is often a sparse matrix. This means
that in the corresponding DSM, each component depends only on a
subset of all the other components. We can take advantage of the
structure of this sparsity in the solution of coupled systems.

The components in the DSM can be reordered without changing
the solution of the system. This is analogous to reordering sparse
matrices to make linear systems easier to solve. In one extreme case,
reordering could achieve a DSM with no entries below the diagonal. In
that case, we would have only feedforward connections, which means
all dependencies could be resolved in one forward pass (as we will
see in Ex. 13.4). This is analogous to having a linear system where
the matrix is lower triangular, in which case the linear solution can be
obtained with forward substitution.

The sparsity of the DSM can be exploited using ideas from sparse
linear algebra. For example, reducing the bandwidth of the matrix (i.e.,
moving nonzero elements closer to the diagonal) can also be helpful.
This can be achieved using algorithms such as Cuthill–McKee,203
reverse Cuthill–McKee (RCM), and approximate minimum degree
(AMD) ordering.204‡

Wenow introduce an extended version of the DSM, calledXDSM,205
which we use later in this chapter to show the process in addition to
the data dependencies. Figure 13.11 shows the XDSM for the same
four-component system. When showing only the data dependencies,
the only difference relative to DSM is that the coupling variables are
labeled explicitly, and the data paths are drawn. In the next section, we
add the process to the XDSM.

13.2.5 Solving Coupled Numerical Models
The solution of coupled systems, also known asmultidisciplinary analysis
(MDA), requires concepts beyond the solvers reviewed in Section 3.6

https://dx.doi.org/10.1145/800195.805928
https://dx.doi.org/10.1145/800195.805928
https://dx.doi.org/10.1137/S0895479894278952
https://dx.doi.org/10.1137/S0895479894278952
https://dx.doi.org/10.1007/s00158-012-0763-y
https://dx.doi.org/10.1007/s00158-012-0763-y
https://dx.doi.org/10.1007/s00158-012-0763-y
https://dx.doi.org/10.1007/s00158-012-0763-y

13 Multidisciplinary Design Optimization 487

because it usually involves multiple levels of solvers.
When using the residual form described in Section 13.2.3, any solver

(such as a Newton solver) can be used to solve for the state of all
components (the entire vector D) simultaneously to satisfy A(D) = 0 for
the coupled system (Eq. 13.1). This is a monolithic solution approach.

When using the functional form, we do not have access to the
internal states of each model and must rely on the model’s solvers to
compute the coupling variables. The model solver is responsible for
computing its output variables for a given set of coupling variables
from other models, that is,

D̂8 = *8(D̂9≠8) . (13.5)

In some cases, we have access to the model’s internal states, but we may
want to use a dedicated solver for that model anyway.

Because each model, in general, depends on the outputs of all other
models, we have a coupled dependency that requires a solver to resolve.
This means that the functional form requires two levels: one for the
model solvers and another for the system-level solver. At the system
level, we only deal with the coupling variables (D̂), and the internal
states (D) are hidden.

The rest of this section presents several system-level solvers. We
will refer to each model as a component even though it is a group of
components in general.

Tip 13.2 Avoid coupling components with file input and output
The coupling variables are often passed between components through files.

This is undesirable because of a potential loss in precision (see Tip 13.1) and
because it can substantially slow down the coupled solution.

Instead of using files, pass the coupling variable data through memory
whenever possible. You can do this between codeswritten in different languages
by wrapping each code using a common language. When using files is
unavoidable, be aware of these issues and mitigate them as much as possible.

Nonlinear Block Jacobi
The most straightforward way to solve coupled numerical models
(systems of components) is through a fixed-point iteration, which is
analogous to the fixed-point iteration methods mentioned in Section 3.6
and detailed in Appendix B.4.1. The difference here is that instead of
updating one state at a time, we update a vector of coupling variables
at each iteration corresponding to a subset of the coupling variables in

13 Multidisciplinary Design Optimization 488

§In this chapter, we use a superscript for
the iteration number instead of subscript
to avoid a clashwith the component index.

the overall coupled system. Obtaining this vector of coupling variables
generally involves the solution of a nonlinear system. Therefore, these
are called nonlinear block variants of the linear fixed-point iteration
methods.

The nonlinear block Jacobi method requires an initial guess for
all coupling variables to start with and calls for the solution of all
components given those guesses. Once all components have been
solved, the coupling variables are updated based on the new values
computed by the components, and all components are solved again.
This iterative process continues until the coupling variables do not
change in subsequent iterations. Because each component takes the
coupling variable values from the previous iteration, which have already
been computed, all components can be solved in parallel without
communication. This algorithm is formalized in Alg. 13.1. When
applied to a system of components, we call it the block Jacobi method,
where block refers to each component.

The nonlinear block Jacobi method is also illustrated using an XDSM
in Fig. 13.12 for three components. The only input is the initial guess
for the coupling variables, D̂(0).§ The MDA block (step 0) is responsible
for iterating the system-level analysis loop and for checking if the
system has converged. The process line is shown as a thin black line
to distinguish it from the data dependency connections (thick gray
lines) and follows the sequence of numbered steps. The analyses for
each component are all numbered the same (step 1) because they can
be done in parallel. Each component returns the coupling variables
it computes to the MDA iterator, closing the loop between step 2 and
step 1 (denoted as “2→ 1”).

û(0)

0, 2 → 1 :

Jacobi
1 : û2, û3 1 : û1, û3 1 : û1, û2

û1 2 : û1

1 :

Solver 1

û2 2 : û2

1 :

Solver 2

û3 2 : û3

1 :

Solver 3

Fig. 13.12 Nonlinear block Jacobi
solver for a three-component coupled
system.

13 Multidisciplinary Design Optimization 489

Algorithm 13.1 Nonlinear block Jacobi algorithm
Inputs:
D̂(0) =

[
D̂(0)1 , . . . , D̂(0)<

]
: Initial guess for coupling variables

Outputs:
D̂ = [D̂1 , . . . , D̂<]: System-level states

: = 0
while

D̂(:) − D̂(:−1)

2
> � or : = 0 do Do not check convergence for first iteration

for all 8 ∈ {1, . . . , <} do Can be done in parallel
D̂(:+1)
8 ← solve A8

(
D̂(:+1)
8 ; D̂(:)9

)
= 0, 9 ≠ 8 Solve for component 8 ’s states

using the states from the previous iteration of other components
end for
: = : + 1

end while

The block Jacobi solver (Alg. 13.1) can also be used when one or
more components are linear solvers. This is useful for computing the
derivatives of the coupled system using implicit analytics methods
because that involves solving a coupled linear system with the same
structure as the coupled model (see Section 13.3.3).

Nonlinear Block Gauss–Seidel
The nonlinear block Gauss–Seidel algorithm is similar to its Jacobi
counterpart. The only difference is that when solving each component,
we use the latest coupling variables available instead of just using the
coupling variables from the previous iteration. We cycle through each
component 8 = 1, . . . , < in order. When computing D̂8 by solving com-
ponent 8, we use the latest available states from the other components.
Figure 13.13 illustrates this process.

Both Gauss–Seidel and Jacobi converge linearly, but Gauss–Seidel
tends to converge more quickly because each equation uses the latest
information available. However, unlike Jacobi, the components can no
longer be solved in parallel.

The convergence of nonlinear block Gauss–Seidel can be improved
by using a relaxation. Suppose that D̂temp is the state of component
8 resulting from the solving of that component given the states of all
other components, as we would normally do for each block in the
Gauss–Seidel or Jacobi method. If we used this, the step would be

ΔD̂(:)8 = D̂temp − D̂(:)8 . (13.6)

13 Multidisciplinary Design Optimization 490

û(0)

0, 4 → 1 :

Gauss–Seidel
1 : û2, û3 2 : û3

û1 4 : û1

1 :

Solver 1
2 : û1 2 : û1

û2 4 : û2

2 :

Solver 2
3 : û2

û3 4 : û3

3 :

Solver 3

Fig. 13.13 Nonlinear block Gauss–
Seidel solver for the three-discipline
coupled system of Fig. 13.9.

206. Irons and Tuck, A version of the
Aitken accelerator for computer iteration,
1969.

207. Kenway et al., Scalable parallel ap-
proach for high-fidelity steady-state aeroe-
lastic analysis and derivative computations,
2014.
208. Chauhan et al., An automated selec-
tion algorithm for nonlinear solvers in MDO,
2018.

Instead of using that step, relaxation updates the variables as

D̂(:)8 = D̂temp + �(:)ΔD̂(:)8 , (13.7)

where �(:) is the relaxation factor, and ΔD̂(:)8 is the previous update
for component 8. The relaxation factor, �, could be a fixed value,
which would normally be less than 1 to dampen oscillations and avoid
divergence.

Aitken’s method206 improves on the fixed relaxation approach by
adapting the �. The relaxation factor at each iteration changes based
on the last two updates according to

�(:) = �(:−1)
(
1 −

(
ΔD̂(:) − ΔD̂(:−1))ᵀ ΔD̂(:)

ΔD̂(:) − ΔD̂(:−1)

2

)
. (13.8)

Aitken’s method usually accelerates convergence and has been shown
to work well for nonlinear block Gauss–Seidel with multidisciplinary
systems.207 It is advisable to override the value of the relaxation factor
given by Eq. 13.8 to keep it between 0.25 and 2.208

The steps for the full Gauss–Seidel algorithm with Aitken accelera-
tion are listed in Alg. 13.2. Similar to the block Jacobi solver, the block
Gauss–Seidel solver can also be used when one or more components
are linear solvers. Aitken acceleration can be used in the linear case
without modification and it is still useful.

The order in which the components are solved makes a significant
difference in the efficiency of the Gauss–Seidel method. In the best
possible scenario, the components can be reordered such that there are
no entries in the lower diagonal of the DSM, which means that each

https://dx.doi.org/10.1002/nme.1620010306
https://dx.doi.org/10.1002/nme.1620010306
https://dx.doi.org/10.2514/1.J052255
https://dx.doi.org/10.2514/1.J052255
https://dx.doi.org/10.2514/1.J052255
https://dx.doi.org/10.1007/s00158-018-2004-5
https://dx.doi.org/10.1007/s00158-018-2004-5

13 Multidisciplinary Design Optimization 491

component depends only on previously solved components, and there
are therefore no feedback dependencies (see Ex. 13.4). In this case,
the block Gauss–Seidel method would converge to the solution in one
forward sweep.

In the more general case, even though we might not eliminate
the lower diagonal entries completely, minimizing these entries by
reordering results in better convergence. This reordering can also mean
the difference between convergence and nonconvergence.

Algorithm 13.2 Nonlinear block Gauss–Seidel algorithm with Aitken accelera-tion
Inputs:
D̂(0) =

[
D̂(0)1 , . . . , D̂(0)<

]
: Initial guess for coupling variables

�(0): Initial relaxation factor for Aitken acceleration
Outputs:
D̂ = [D̂1 , . . . , D̂<]: System-level states

: = 0
while

D̂(:) − D̂(:−1)

2
> � or : = 0 do Do not check convergence for first iteration

for 8 = 1, < do
D̂temp ← solve A8

(
D̂(:+1)
8 ; D̂(:+1)

1 , . . . , D̂(:+1)
8−1 , D̂(:)8+1 , . . . , D̂

(:)
<

)
= 0

Solve for component 8 ’s states using the latest states from other components
ΔD̂(:)8 = D̂temp − D̂(:)8 Compute step
if : > 0 then

�(:) = �(:−1)
(
1 −

(
ΔD̂(:)−ΔD̂(:−1)

)ᵀ
ΔD̂(:)

‖ΔD̂(:)−ΔD̂(:−1)‖2
)

Update the relaxation factor
end if
D̂(:+1)
8 = D̂(:)8 + �(:)ΔD̂

(:)
8 Update component 8 ’s states

end for
: = : + 1

end while

Example 13.4 Making Gauss–Seidel converge in one pass by reordering com-ponents
Consider the coupled system of six components with the dependencies

shown on the left in Fig. 13.14. This system includes both feedforward and
feedback dependencies and would normally require an iterative solver. In
this case, however, we can reorder the components as shown on the right in
Fig. 13.14 to eliminate the feedback loops. Then, we only need to solve the
sequence of components E→ C→ A→ D→ F→ B once to get a converged
coupled solution.

13 Multidisciplinary Design Optimization 492

A

B

C

D

E

F

Original order

E

C

A

D

F

B

Components reordered

Fig. 13.14 The solution of the compo-
nents of the system shown on the left
can be reordered to get the equivalent
system shown on the right. This new
system has no feedback loops and
can therefore be solved in one pass of
a Gauss–Seidel solver.

Newton’s Method
As mentioned previously, Newton’s method can be applied to the
residual form illustrated in Fig. 13.9 and expressed in Eq. 13.1. Recall
that in this form, we have = components and the coupling variables are
part of the state variables. In this case, Newton’s method is as described
in Section 3.8.

Concatenating the residuals and state variables for all components
and applying Newton’s method yields the coupled block Newton
system, 

%A1
%D1

%A1
%D2

· · · %A1
%D=

%A2
%D1

%A2
%D2

· · · %A2
%D=

...
...

. . .
...

%A=
%D1

%A=
%D2

· · · %A=
%D=

︸ ︷︷ ︸
%A
%D



ΔD1

ΔD2

...

ΔD=

︸ ︷︷ ︸
ΔD

= −



A1

A2
...

A=

︸︷︷︸
A

. (13.9)

We can solve this linear system to compute the Newton step for all
components’ state variables D simultaneously, and then iterate to satisfy
A(D) = 0 for the complete system. This is themonolithic Newton approach
illustrated on the left panel of Fig. 13.15. As with any Newton method,
a globalization strategy (such as a line search) is required to increase
the likelihood of successful convergence when starting far from the
solution (see Section 4.2). Even with such a strategy, Newton’s method
does not necessarily converge robustly.

A variation on this monolithic Newton approach uses two-level
solver hierarchy, as illustrated on the middle panel of Fig. 13.15. The
system-level solver is the same as in the monolithic approach, but each

13 Multidisciplinary Design Optimization 493

Newton solver
%A
%D
ΔD = −A

Compute
A1

Compute
A=

· · ·

D A1 D A=

Monolithic

Newton solver
%A
%D
ΔD = −A

Solve
A1 = 0

Solve
A= = 0

· · ·

D D1 D D=

Hierarchical (full space)

Newton solver

−%*
%D̂

ΔD̂ = −(D̂ −*)

Solve
component 1

Solve
component <

· · ·

D̂ *1 D̂ *<

Hierarchical (reduced space)

Fig. 13.15 There are three options
for solving a coupled system with
Newton’s method. The monolithic
approach (left) solves for all state
variables simultaneously. The block
approach (middle) solves the same
system as the monolithic approach,
but solves each component for its
states at each iteration. The black box
approach (right) applies Newton’s
method to the coupling variables.

component is solved first using the latest states. The Newton step for
each component 8 is given by

%A8
%D8

ΔD8 = −A8
(
D8 ; D9≠8

)
, (13.10)

where D9 represents the states from other components (i.e., 9 ≠ 8),
which are fixed at this level. Each component is solved before taking
a step in the entire state vector (Eq. 13.9). The procedure is given
in Alg. 13.3 and illustrated in Fig. 13.16. We call this the full-space
hierarchical Newton approach because the system-level solver iterates the
entire state vector. Solving each component before taking each step in
the full space Newton iteration acts as a preconditioner. In general, the
monolithic approach is more efficient, and the hierarchical approach is
more robust, but these characteristics are case-dependent.

u(0)

0, 2 → 1 :

Newton
1 : u2, u3 1 : u1, u3 1 : u1, u2

u1 2 : u1,
∂r1
∂u

1 :

Solver 1

u2 2 : u2,
∂r2
∂u

1 :

Solver 2

u3 2 : u3,
∂r3
∂u

1 :

Solver 3

Fig. 13.16 Full-space hierarchical
Newton solver for a three-component
coupled system.

Newton’s method can also be applied to the functional form illus-
trated in Fig. 13.9 to solve only for the coupling variables. We call this
the reduced-space hierarchical Newton approach because the system-level
solver iterates only in the space of the coupling variables, which is

13 Multidisciplinary Design Optimization 494

132. Gray et al., OpenMDAO: An open-
source framework for multidisciplinary
design, analysis, and optimization, 2019.

smaller than the full space of the state variables. Using this approach,
each component’s solver can be a black box, as in the nonlinear block
Jacobi and Gauss–Seidel solvers. This approach is illustrated on the
right panel of Fig. 13.15. The reduced-space approach is mathemati-
cally equivalent and follows the same iteration path as the full-space
approach if each component solver in the reduced-space approach is
converged well enough.132

Algorithm 13.3 Full-space hierarchical Newton
Inputs:
D(0) =

[
D(0)1 , . . . , D(0)=

]
: Initial guess for coupling variables

Outputs:
D = [D1 , . . . , D=]: System-level states

: = 1 Iteration counter for full-space iteration
while ‖A‖2 > � do Check residual norm for all components

for all 8 ∈ {1, . . . , =} do Can be done in parallel; : is constant in this loop
while ‖A8 ‖2 > � do Check residual norm for component 8

Compute A8
(
D(:)8 ; D(:−1)

9≠8

)
States for other components are fixed

Compute %A8
%D8

Jacobian block for component 8 for current state
Solve %A8

%D8
ΔD8 = −A8 Solve for Newton step for 8th component

D(:)8 = D(:)8 + ΔD8 Update state variables for component 8
end while

end for
Compute A

(
D(:)

)
Full residual vector for current states

Compute %A
%D

Full Jacobian for current states
Solve %A

%D
ΔD = −A Coupled Newton system (Eq. 13.9)

D(:+1) = D(:) + ΔD Update full state variable vector
: = : + 1

end while

To apply the reduced-space Newton’s method, we express the
functional form (Eq. 13.4) as residuals by using the same technique we
used to convert an explicit function to the residual form (Eq. 13.2). This
yields

Â8(D̂) = D̂8 −*8(D̂9≠8) , (13.11)

where D̂8 represents the guesses for the coupling variables, and *8

represents the actual computed values. For a system of nonlinear

https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z

13 Multidisciplinary Design Optimization 495

residual equations, the Newton step in the coupling variables, ΔD̂ =
D̂(:+1) − D̂(:), can be found by solving the linear system

%Â
%D̂

���
D̂=D̂(:)

ΔD̂ = −Â
(
D̂(:)

)
, (13.12)

where we need the partial derivatives of all the residuals with respect to
the coupling variables to form the Jacobian matrix %Â/%D̂. The Jacobian
can be found by differentiating Eq. 13.11 with respect to the coupling
variables. Then, expanding the concatenated residuals and coupling
variable vectors yields



� −%*1
%D̂2

· · · − %*1
%D̂<

−%*2
%D̂1

� · · · − %*2
%D̂<

...
...

. . .
...

−%*<

%D̂1
−%*<

%D̂2
· · · �





ΔD̂1

ΔD̂2

...

ΔD̂<



= −



D̂1 −*1(D̂2 , . . . , D̂<)

D̂2 −*2(D̂1 , D̂3 , . . . , D̂<)
...

D̂< −*<(D̂1 , . . . , D̂<−1)



.

(13.13)
The residuals in the right-hand side of this equation are evaluated at
the current iteration.

The derivatives in the block Jacobian matrix are also computed
at the current iteration. Each row 8 represents the derivatives of the
(potentially implicit) function that computes the outputs of component
8 with respect to all the inputs of that component. The Jacobian matrix
in Eq. 13.13 has the same structure as the DSM (but transposed) and is
often sparse. These derivatives can be computed using the methods
from Chapter 6. These are partial derivatives in the sense that they do
not take into account the coupled system. However, they must take
into account the respective model and can be computed using implicit
analytic methods when the model is implicit.

This Newton solver is shown in Fig. 13.17 and detailed in Alg. 13.4.
Each component corresponds to a set of rows in the block Newton
system (Eq. 13.13). To compute each set of rows, the corresponding
component must be solved, and the derivatives of its outputs with
respect to its inputsmust be computed aswell. Each set can be computed
in parallel, but once the system is assembled, a step in the coupling
variables is computed by solving the full system (Eq. 13.13).

These coupled Newton methods have similar advantages and dis-
advantages to the plain Newton method. The main advantage is that it
converges quadratically once it is close enough to the solution (if the
problem is well-conditioned). The main disadvantage is that it might

13 Multidisciplinary Design Optimization 496

û(0)

0, 2 → 1 :

Newton
1 : û2, û3 1 : û1, û3 1 : û1, û2

û1 2 : û1,
∂U1

∂û

1 :

Solver 1

û2 2 : û2,
∂U2

∂û

1 :

Solver 2

û3 2 : û3,
∂U3

∂û

1 :

Solver 3

Fig. 13.17Reduced-spacehierarchical
Newton solver for a three-component
coupled system.

not converge at all, depending on the initial guess. One disadvantage
specific to the coupled Newton methods is that it requires formulating
and solving the coupled linear system (Eq. 13.13) at each iteration.

Algorithm 13.4 Reduced-space hierarchical Newton
Inputs:
D̂(0) =

[
D̂(0)1 , . . . , D̂(0)<

]
: Initial guess for coupling variables

Outputs:
D̂ = [D̂1 , . . . , D̂<]: System-level states

: = 0
while ‖ Â‖2 > � do Check residual norm for all components

for all 8 ∈ {1, . . . , <} do Can be done in parallel
*8 ← compute*8

(
D̂(:)9≠8

)
Solve component 8 and compute its outputs

end for
Â = D̂(:) −* Compute all coupling variable residuals
Compute %*

%D̂
Jacobian of coupling variables for current state

Solve %Â
%D̂
ΔD̂ = −Â Coupled Newton system (Eq. 13.13)

D̂(:+1) = D̂(:) + ΔD̂ Update all coupling variables
: = : + 1

end while

If the Jacobian %A/%D is not readily available, Broyden’s method can
approximate the Jacobian inverse (�̃−1) by starting with a guess (say,

13 Multidisciplinary Design Optimization 497

Vertical displacement

0 5 10 15
0

0.1

0.2

0.3

Spanwise location [m]

3H

Rotation

0
0.02
0.04
0.06
0.08

3�

Lift

0

2,000

4,000

6,000
;

Fig. 13.18 Spanwise distribution of
the lift, wing rotation (3�), and verti-
cal displacement (3I) for the coupled
aerostructural solution.

�̃−1
0 = �) and then using the update

˜�−1(:+1)
= ˜�−1(:) +

(
ΔD(:) − ˜�−1(:)ΔA(:)

)
ΔD(:)ᵀ

ΔA(:)ᵀΔA(:)
, (13.14)

where ΔD(:) is the last step in the states and ΔA(:) is the difference
between the two latest residual vectors. Because the inverse is provided
explicitly, we can find the update by performing the multiplication,

ΔD(:) = −�̃−1A(:) . (13.15)

Broyden’s method is analogous to the quasi-Newton methods of Sec-
tion 4.4.4 and is derived in Appendix C.1.

Example 13.5 Aerostructural solver comparison
We now apply the coupled solution methods presented in this section to

the implicit parts of the aerostructural model, which are the two first residuals
from Ex. 13.2,

A =

[
A1
A2

]
=

[
�(3)Γ − E(3)
 3 − @(Γ)

]
,

and the variables are the circulations and displacements,

D =

[
D1
D2

]
=

[
Γ
3

]
.

In this case, the linear systems defined by A1 and A2 are small enough to
be solved using a direct method, such as LU factorization. Thus, we can solve
A1 for Γ, for a given 3, and solve A2 for 3, for a given Γ. Also, no conversions
are involved, so the set of coupling variables is equivalent to the set of state
variables (D̂ = D).

Using the nonlinear block Jacobi method (Alg. 13.1), we start with an initial
guess (e.g., Γ = 0, 3 = 0) and solve A1 = 0 and A2 = 0 separately for the new
values of Γ and 3, respectively. Then we use these new values of Γ and 3 to
solve A1 = 0 and A2 = 0 again, and so on until convergence.

Nonlinear block Gauss–Seidel (Alg. 13.2) is similar, but we need to solve
the two components in sequence. We can start by solving A1 = 0 for Γ with
3 = 0. Then we use the Γ obtained from this solution in A2 and solve for a new
3. We now have a new 3 to use in A1 to solve for a new Γ, and so on.

The Jacobian for the Newton system (Eq. 13.9) is

%A
%D

=


%A1
%D1

%A1
%D2

%A2
%D1

%A2
%D2


=


�

%�
%3
Γ − %E

%3

−%@
%Γ


.

We already have the block diagonal matrices in this Jacobian from the governing
equations, but we need to compute the off-diagonal partial derivative blocks,
which can be done analytically or with algorithmic differentiation (AD).

13 Multidisciplinary Design Optimization 498

¶These results and subsequent results
based on the same examplewere obtained
using OpenAeroStruct,202 which was de-
veloped using OpenMDAO. The descrip-
tion in these examples is simplified for di-
dactic purposes; check the paper and code
for more details.
202. Jasa et al., Open-source coupled aero-
structural optimization using Python, 2018.

‖MAUD was developed by Hwang and
Martins44 when they realized that the
unified derivatives equation (UDE) pro-
vides the mathematical foundation for a
framework of parallel hierarchical solvers
through a small set of user-defined func-
tions. MAUDcan also compute thederiva-
tives of coupled systems, as we will see in
Section 13.3.3.
44. Hwang and Martins, A computational
architecture for coupling heterogeneous
numerical models and computing coupled
derivatives, 2018.

The solution is shown in Fig. 13.18, where we plot the variation of lift,
vertical displacement, and rotation along the span. The vertical displacements
are a subset of 3, and the rotations are a conversion of a subset of 3 representing
the rotations of the wing section at each spanwise location. The lift is the
vertical force at each spanwise location, which is proportional to Γ times the
wing chord at that location.

The monolithic Newton approach does not converge in this case. We
apply the full-space hierarchical approach (Alg. 13.3), which converges more
reliably. In this case, the reduced-space approach is not used because there is
no distinction between coupling variables and state variables.

In Fig. 13.19, we compare the convergence of the methods introduced in this
section.¶ The Jacobi method has the poorest convergence rate and oscillates.
The Gauss–Seidel method is much better, and it is even better with Aitken
acceleration. Newton has the highest convergence rate, as expected. Broyden
performs about as well as Gauss–Seidel in this case.

Block Jacobi

Block
Gauss-Seidel

Block GS
with Aitken

N
ew

to
n

Broyden

3 6 9 12 15 18

10−8

10−6

10−4

10−2

100

102

104

Iterations

‖A‖

Fig. 13.19 Convergence of each solver
for aerostructural system.

13.2.6 Hierarchical Solvers for Coupled Systems
The coupled solverswediscussed so far alreadyuse a two-level hierarchy
because they require a solver for each component and a second level
that solves the group of components. This hierarchy can be extended
to three and more levels by making groups of groups.

Modular analysis and unified derivatives (MAUD) is amathematical
framework developed for this purpose. Using MAUD, we can mix
residual and functional forms and seamlessly handle implicit and
explicit components.‖

The hierarchy of solvers can be represented as a tree data structure,
where the nodes are the solvers and the leaves are the components, as

https://dx.doi.org/10.1007/s00158-018-1912-8
https://dx.doi.org/10.1007/s00158-018-1912-8
https://dx.doi.org/10.1145/3182393
https://dx.doi.org/10.1145/3182393
https://dx.doi.org/10.1145/3182393
https://dx.doi.org/10.1145/3182393

13 Multidisciplinary Design Optimization 499

shown in Fig. 13.20 for a system of six components and five solvers.
The root node ultimately solves the complete system, and each solver is
responsible for a subsystem and thus handles a subset of the variables.

Recursive
solver

Recursive
solver

Monolithic
solver

Component Component

2

Recursive
solver

Component

4

Component

5

3

1

Recursive
solver

Component

7

Component

8

6

Fig. 13.20 A system of components
can be organized in a solver hierarchy.

There are two possible types of solvers: monolithic and recursive.
Monolithic solvers can only have components as children and handle all
their variables simultaneously using the residual form. Of the methods
we introduced in the previous section, only monolithic and full-space
Newton (and Broyden) can do this for nonlinear systems. Linear
systems can be solved in a monolithic fashion using a direct solver or
an iterative linear solver, such as a Krylov subspace method. Recursive
solvers, as the name implies, visit all the child nodes in turn. If a child
node turns out to be another recursive solver, it does the same until a
component is reached. The block Jacobi and Gauss–Seidel methods
can be used as recursive solvers for nonlinear and linear systems. The
reduced-space Newton and Broyden methods can also be recursive
solvers. For the hypothetical system shown in Fig. 13.20, the numbers
show the order in which each solver and component would be called.

The hierarchy of solvers should be chosen to exploit the system
structure. MAUDalso facilitates parallel computationwhen subsystems
are uncoupled, which provides further opportunities to exploit the
structure of the problem. Figs. 13.21 and 13.22 show several possibilities.

The three systems in Fig. 13.21 show three different coupling modes.
In the first mode, the two components are independent of each other
and can be solved in parallel using any solvers appropriate for each
of the components. In the serial case, component 2 depends on 1, but
not the other way around. Therefore, we can converge to the coupled
solution using one block Gauss–Seidel iteration. If the dependency
were reversed (feedback but no feedforward), the order of the two
components would be switched. Finally, the fully coupled case requires
an iterative solution using any of the methods from Section 13.2.5.
MAUD is designed to handle these three coupling modes.

13 Multidisciplinary Design Optimization 500

D1

D2

Parallel

D1

D2

Serial

D1

D2

Coupled

Fig. 13.21 There are three main pos-
sibilities involving two components.

Figure 13.22 shows three possibilities for a four-component system
where two levels of solvers can be used. In the first one (on the left),
we require a coupled solver for components 1 and 2 and another for
components 3 and 4, but no further solving is needed. In the second
(Fig. 13.22, middle), components 1 and 2 as well as components 3 and 4
can be solved serially, but these two groups require a coupled solution.
For the two levels to converge, the serial and coupled solutions are
called repeatedly until the two solvers agree with each other. The third
possibility (Fig. 13.22, right) has two systems that have two independent
components, which can each be solved in parallel, but the overall system
is coupled. WithMAUD,we can set up any of these sequences of solvers
through the solver hierarchy tree, as illustrated in Fig. 13.20.

D1

D2

D3

D4

D1

D2

D3

D4

D1

D2

D3

D4

Parallel

Serial

Coupled

Fig. 13.22 Three examples of a system
of four components with a two-level
solver hierarchy.

To solve the system from Ex. 13.3 using hierarchical solvers, we can
use the hierarchy shown in Fig. 13.23. We form three groups with three
components each. Each group includes the input and output conversion
components (which are explicit) and one implicit component (which
requires its own solver). Serial solvers can be used to handle the input
and output conversion components. A coupled solver is required to
solve the entire coupled system, but the coupling between the groups
is restricted to the corresponding outputs (components 3, 6, and 9).

Alternatively, we could apply a coupled solver to the functional
representation (Fig. 13.9, right). This would also use two levels of
solvers: a solver within each group and a system-level solver for the
coupling of the three groups. However, the system-level solver would
handle coupling variables rather than the residuals of each component.

13 Multidisciplinary Design Optimization 501

A1

A2

A3

A4

A5

A6

A7

A8

A9

Serial

Coupled

Fig. 13.23 For the case of Fig. 13.9,
we can use a serial evaluation within
each of the three groups and require a
coupled solver to handle the coupling
between the three groups.

132. Gray et al., OpenMDAO: An open-
source framework for multidisciplinary
design, analysis, and optimization, 2019.

Tip 13.3 Framework for implementing coupled system solvers
The development of coupled solvers is often done for a specific set of models

from scratch, which requires substantial effort. OpenMDAO is an open-source
framework that facilitates such efforts by implementing MAUD.132 All the
solvers introduced in this chapter are available in OpenMDAO. This framework
also makes it easier to compute the derivatives of the coupled system, as we
will see in the next section. Users can assemble systems of mixed explicit and
implicit components.

For implicit components, they must give OpenMDAO access to the residual
computations and the corresponding state variables. For explicit components,
OpenMDAO only needs access to the inputs and the outputs, so it supports
black-box models.

OpenMDAO is usually more efficient when the user provides access to
the residuals and state variables instead of treating models as black boxes. A
hierarchy of multiple solvers can be set up in OpenMDAO, as illustrated in
Fig. 13.20. OpenMDAO also provides the necessary interfaces for user-defined
solvers. Finally, OpenMDAO encourages coupling through memory, which is
beneficial for numerical precision (see Tip 13.1) and computational efficiency
(see Tip 13.2).

13.3 Coupled Derivatives Computation
The gradient-based optimization algorithms from Chapters 4 and 5
require the derivatives of the objective and constraints with respect to
the design variables. Any of the methods for computing derivatives
from Chapter 6 can be used to compute the derivatives of coupled
models, but some modifications are required. The main difference is

https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z

13 Multidisciplinary Design Optimization 502

¤G

¤5

¤D1

¤D2

Fig. 13.24 Forward mode of AD for a
system of two components.

Ḡ

5̄

D̄1

D̄2

Fig. 13.25 Reverse mode of AD for a
system of two components.

that in MDO, the computation of the functions of interest (objective
and constraints) requires the solution of the multidisciplinary model.

13.3.1 Finite Differences
The finite-difference method can be used with no modification, as long
as an MDA is converged well enough for each perturbation in the
design variables. As explained in Section 6.4, the cost of computing
derivatives with the finite-difference method is proportional to the
number of variables. The constant of proportionality can increase
significantly compared with that of a single discipline because the
MDA convergence might be slow (especially if using a block Jacobi or
Gauss–Seidel iteration).

The accuracy of finite-difference derivatives depends directly on the
accuracy of the functions of interest. When the functions are computed
from the solution of a coupled system, their accuracy depends both
on the accuracy of each component and the accuracy of the MDA. To
address the latter, the MDA should be converged well enough.

13.3.2 Complex Step and AD
The complex-step method and forward-mode AD can also be used for a
coupled system, but somemodifications are required. The complex-step
method requires all components to be able to take complex inputs and
compute the corresponding complex outputs. Similarly, AD requires
inputs and outputs that include derivative information. For a given
MDA, if one of these methods is applied to each component and the
coupling includes the derivative information, we can compute the
derivatives of the coupled system. The propagation of the forward-
mode seed (or the complex step) is illustrated in Fig. 13.24 for a system
of two components.

When using AD,manual coupling is required if the components and
the coupling are programmed in different languages. The complex-step
method can be more straightforward to implement than AD for cases
where the models are implemented in different languages, and all
the languages support complex arithmetic. Although both of these
methods produce accurate derivatives for each component, the accuracy
of the derivatives for the coupled system could be compromised by a
low level of convergence of the MDA.

The reverse mode of AD for coupled systems would be more
involved: after an initial MDA, we would run a reverse MDA to
compute the derivatives, as illustrated in Fig. 13.25.

13 Multidisciplinary Design Optimization 503

13.3.3 Implicit Analytic Methods
The implicit analytic methods from Section 6.7 (both direct and adjoint)
can also be extended to compute the derivatives of coupled systems.
All the equations derived for a single component in Section 6.7 are
valid for coupled systems if we concatenate the residuals and the state
variables. Furthermore, we can mix explicit and implicit components
using concepts introduced in the UDE. Finally, when using the MAUD
approach, the coupled derivative computation can be done using the
same hierarchy of solvers.

Coupled Derivatives of Residual Representation
In Eq. 13.1, we denoted the coupled system as a series of concatenated
residuals, A8(D) = 0, and variables D8 corresponding to each component
8 = 1, . . . , = as

A(D) ≡

A1(D)
...

A=(D)


, D ≡


D1
...
D=


, (13.16)

where the residual for each component, A8 , could depend on all states D.
To derive the coupled version of the direct and adjoint methods, we
apply them to the concatenated vectors. Thus, the coupled version of
the linear system for the direct method (Eq. 6.43) is



%A1
%D1

· · · %A1
%D=

...
. . .

...

%A=
%D1

· · · %A=
%D=





)1

...

)=


=



%A1
%G
...

%A=
%G


, (13.17)

where)8 represents the derivatives of the states from component 8 with
respect to the design variables. Once we have solved for), we can
use the coupled equivalent of the total derivative equation (Eq. 6.44) to
compute the derivatives:

d 5
dG =

% 5
%G
−

[
% 5
%D1

. . .
% 5
%D=

] 
)1
...
)=


. (13.18)

Similarly, the adjoint equations (Eq. 6.46) can bewritten for a coupled
system using the same concatenated state and residual vectors. The
coupled adjoint equations involve a corresponding concatenated adjoint

13 Multidisciplinary Design Optimization 504

∗The coupled-adjoint approach has been
implemented for aerostructural problems
governed by coupledPDEs207 anddemon-
strated in wing design optimization.209

207. Kenway et al., Scalable parallel ap-
proach for high-fidelity steady-state aeroe-
lastic analysis and derivative computations,
2014.
209. Kenway and Martins, Multipoint
high-fidelity aerostructural optimization of a
transport aircraft configuration, 2014.

vector and can be written as


%A1
%D1

ᵀ

· · · %A=
%D1

ᵀ

...
. . .

...

%A1
%D=

ᵀ

· · · %A=
%D=

ᵀ





#1

...

#=


=



% 5
%D1

ᵀ

...

% 5
%D=

ᵀ


. (13.19)

After solving this equations for the coupled-adjoint vector, we can
use the coupled version of the total derivative equation (Eq. 6.47) to
compute the desired derivatives as

d 5
dG =

% 5
%G
− [

#ᵀ
1 . . .#

ᵀ
=
]


%A1
%G
...

%A=
%G


. (13.20)

Like the adjoint method from Section 6.7, the coupled adjoint is a
powerful approach for computing gradients with respect to many
design variables.∗

The required partial derivatives are the derivatives of the residuals
or outputs of each component with respect to the state variables or
inputs of all other components. In practice, the block structure of
these partial derivative matrices is sparse, and the matrices themselves
are sparse. This sparsity can be exploited using graph coloring to
drastically reduce the computation effort of computing Jacobians at the
system or component level, as explained in Section 6.8.

Figure 13.26 shows the structure of the Jacobians in Eq. 13.17 and
Eq. 13.19 for the three-group case from Fig. 13.23. The sparsity structure
of the Jacobian is the transpose of the DSM structure. Because the
Jacobian in Eq. 13.19 is transposed, the Jacobian in the adjoint equation
has the same structure as the DSM.

The structure of the linear system can be exploited in the same
way as for the nonlinear system solution using hierarchical solvers:
serial solvers within each group and a coupled solver for the three
groups. The block Jacobi andGauss–Seidel methods from Section 13.2.5
are applicable to coupled linear components, so these methods can
be re-used to solve this coupled linear system for the total coupled
derivatives.

The partial derivatives in the coupled Jacobian, the right-hand side
of the linear systems (Eqs. 13.17 and 13.19), and the total derivatives
equations (Eqs. 13.18 and 13.20) can be computed with any of the
methods from Chapter 6. The nature of these derivatives is the same

https://dx.doi.org/10.2514/1.J052255
https://dx.doi.org/10.2514/1.J052255
https://dx.doi.org/10.2514/1.J052255
https://dx.doi.org/10.2514/1.C032150
https://dx.doi.org/10.2514/1.C032150
https://dx.doi.org/10.2514/1.C032150

13 Multidisciplinary Design Optimization 505

%A1
%D1

%A2
%D2

%A3
%D3

%A4
%D4

%A5
%D5

%A6
%D6

%A7
%D7

%A8
%D8

%A9
%D9

%A2
%D1

%A3
%D2

%A4
%D3

%A5
%D4

%A6
%D5

%A7
%D6

%A8
%D7

%A9
%D8

%A7
%D3

%A1
%D6

%A4
%D9

%A1
%D9

Direct Jacobian

%A1
%D1

ᵀ

%A2
%D2

ᵀ

%A3
%D3

ᵀ

%A4
%D4

ᵀ

%A5
%D5

ᵀ

%A6
%D6

ᵀ

%A7
%D7

ᵀ

%A8
%D8

ᵀ

%A9
%D9

ᵀ

%A2
%D1

ᵀ

%A3
%D2

ᵀ

%A4
%D3

ᵀ

%A5
%D4

ᵀ

%A6
%D5

ᵀ

%A7
%D6

ᵀ

%A8
%D7

ᵀ

%A9
%D8

ᵀ

%A7
%D3

ᵀ

%A1
%D6

ᵀ

%A4
%D9

ᵀ%A1
%D9

ᵀ

Adjoint Jacobian

Fig. 13.26 Jacobian structure for resid-
ual form of the coupled direct (left)
and adjoint (right) equations for the
three-group system of Fig. 13.23. The
structure of the transpose of the Jaco-
bian is the same as that of the DSM.

as we have seen previously for implicit analytic methods (Section 6.7).
They do not require the solution of the equation and are typically
cheap to compute. Ideally, the components would already have analytic
derivatives of their outputs with respect to their inputs, which are all
the derivatives needed at the system level.

The partial derivatives can also be computed using the finite-
difference or complex-stepmethods. Even though these are not efficient
for cases with many inputs, it might still be more efficient to compute
the partial derivatives with these methods and then solve the coupled
derivative equations instead of performing a finite difference of the
coupled system, as described in Section 13.3.1. The reason is that com-
puting the partial derivatives avoids having to reconverge the coupled
system for every input perturbation. In addition, the coupled system
derivatives should be more accurate when finite differences are used
only to compute the partial derivatives.

Coupled Derivatives of Functional Representation
Variants of the coupled direct and adjoint methods can also be derived
for the functional form of the system-level representation (Eq. 13.4),
by using the residuals defined for the system-level Newton solver
(Eq. 13.11),

Â8(D̂) = D̂8 −*8(D̂9≠8) = 0 , 8 = 1, . . . , < . (13.21)

Recall that driving these residuals to zero relies on a solver for each
component to solve for each component’s states and another solver to
solve for the coupling variables D̂.

13 Multidisciplinary Design Optimization 506

Using this new residual definition and the coupling variables, we
can derive the functional form of the coupled direct method as



� −%*1
%D̂2

· · · − %*1
%D̂<

−%*2
%D̂1

� · · · − %*2
%D̂<

...
...

. . .
...

−%*<

%D̂1
−%*<

%D̂2
· · · �





)̂1

)̂2

...

)̂<



=



%*̂1
%G
%*̂2
%G
...

%*̂<

%G



, (13.22)

where the Jacobian is identical to the one we derived for the coupled
Newton step (Eq. 13.13). Here,)̂8 represents the derivatives of the cou-
pling variables from component 8 with respect to the design variables.
The solution can then be used in the following equation to compute the
total derivatives:

d 5
dG =

% 5
%G
−

[
% 5
%D̂1

. . .
% 5
%D̂<

] 
)̂1
...
)̂<


. (13.23)

Similarly, the functional version of the coupled adjoint equations
can be derived as



� −%*2
%D̂1

ᵀ

· · · −%*<

%D̂1

ᵀ

−%*1
%D̂2

ᵀ

� · · · −%*<

%D̂2

ᵀ

...
...

. . .
...

− %*1
%D̂<

ᵀ

− %*2
%D̂<

ᵀ

· · · �





#̂1

#̂2

...

#̂<



=



% 5
%D̂1

ᵀ

% 5
%D̂2

ᵀ

...

% 5
%D̂<

ᵀ



. (13.24)

After solving for the coupled-adjoint vector using the previous equa-
tion, we can use the total derivative equation to compute the desired
derivatives:

d 5
dG =

% 5
%G
− [

#̂ᵀ
1 . . . #̂

ᵀ
<
]


%Â1
%G
...

%Â<
%G


. (13.25)

Because the coupling variables (D̂) are usually a reduction of the
internal state variables (D), the linear systems in Eqs. 13.22 and 13.24 are
usually much smaller than that of the residual counterparts (Eqs. 13.17

13 Multidisciplinary Design Optimization 507

�

�

�

−%*1
%D̂2

−%*2
%D̂1

−%*1
%D̂3

−%*3
%D̂1

−%*2
%D̂3

−%*3
%D̂2

Fig. 13.27 Jacobian of coupled deriva-
tives for the functional form of
Fig. 13.23.

and 13.19). However, unlike the partial derivatives in the residual form,
the partial derivatives in the functional form Jacobian need to account
for the solution of the corresponding component. When viewed at
the component level, these derivatives are actually total derivatives of
the component. When the component is an implicit set of equations,
computing these derivatives with finite-differencing would require
solving the component’s equations for each variable perturbation.
Alternatively, an implicit analytic method (from Section 6.7) could be
applied to the component to compute these derivatives.

Figure 13.27 shows the Jacobian structure in the functional form of
the coupled direct method (Eq. 13.22) for the case of Fig. 13.23. The
dimension of this Jacobian is smaller than that of the residual form.
Recall from Fig. 13.9 that*1 corresponds to A3,*2 corresponds to A6, and
*3 corresponds to A9. Thus, the total size of this Jacobian corresponds
to the sum of the sizes of components 3, 6, and 9, as opposed to the
sum of the sizes of all nine components for the residual form. However,
as mentioned previously, partial derivatives for the functional form
are more expensive to compute because they need to account for an
implicit solver in each of the three groups.

UDE for Coupled Systems
As in the single-component case in Section 6.9, the coupled direct and
adjoint equations derived in this section can be obtained from the
UDE with the appropriate definitions of residuals and variables. The
components corresponding to each block in these equations can also be
implicit or explicit, which provides the flexibility to represent systems
of heterogeneous components.

MAUD implements the linear systems from these coupled direct
and adjoint equations using the UDE. The overall linear system inherits
the hierarchical structure defined for the nonlinear solvers. Instead
of nonlinear solvers, we use linear solvers, such as a direct solver and
Krylov (both monolithic). As mentioned in Section 13.2.5, the nonlinear
block Jacobi and Gauss–Seidel (both recursive) can be reused to solve
coupled linear systems. Components can be expressed using residual or
functional forms, making it possible to include black-box components.

The example originally used in Chapter 6 to demonstrate how
to compute derivatives with the UDE (Ex. 6.15) can be viewed as a
coupled derivative computation where each equation is a component.
Example 13.6 demonstrates the UDE approach to computing derivatives
by building on the wing design problem presented in Ex. 13.2.

13 Multidisciplinary Design Optimization 508

132. Gray et al., OpenMDAO: An open-
source framework for multidisciplinary
design, analysis, and optimization, 2019.

†As in Ex. 13.5, these results were ob-
tained using OpenAeroStruct, and the de-
scription and equations are simplified for
brevity.

Tip 13.4 Implementing coupled derivative computation
Obtaining derivatives for each component of a multidisciplinary model

and assembling them to compute the coupled derivatives usually requires a
high implementation effort. In addition to implementing hierarchical coupled
solvers (as mentioned in Tip 13.3), the OpenMDAO framework also implements
the MAUD approach to computing coupled derivatives. The linear system
mirrors the hierarchy set up for nonlinear coupled solvers.132 Ideally, users
provide the partial derivatives for each component using accurate and efficient
methods. However, if derivatives are not available, OpenMDAO can auto-
matically compute them using finite differences or the complex-step method.
OpenMDAOalso facilitates efficient derivative computation for sparse Jacobians
using the graph coloring techniques introduced in Section 6.8.

Example 13.6 Aerostructural derivatives
Let us now consider a wing design optimization problem based on the

aerostructural model considered in Ex. 13.1.† The design variables are as
follows:

: Angle of attack. This controls the amount of lift produced by the airplane.
1: Wingspan. This is a shared variable because it directly affects both the

aerodynamic and structural models.
�: Twist distribution along thewingspan, represented by a vector. This controls

the relative lift loading in the spanwise direction, which affects the drag
and the load distribution on the structure. It affects the aerodynamic
model but not the structural model (because it is idealized as a beam).

C: Thickness distribution of beam along the wingspan, represented by a vector.
This directly affects the weight and the stiffness. It does not affect the
aerodynamic model.

The objective is to minimize the fuel required for a given range ', which
can be written as a function of drag, lift, and weight, as follows:

5 =,

[
exp

(
'2�
+!

)
− 1

]
. (13.26)

The empty weight, only depends on C and 1, and the dependence is explicit
(it does not require solving the aerodynamic or structural models). The drag �
and lift ! depend on all variables once we account for the coupled system of
equations. The remaining variables are fixed: ' is the required range, + is the
airplane’s cruise speed, and 2 is the specific fuel consumption of the airplane’s
engines. We also need to constrain the stresses in the structure, �, which are an
explicit function of the displacements (see Ex. 6.12).

To solve this optimization problem using gradient-based optimization, we
need the coupled derivatives of 5 and �with respect to
, 1, �, and C. Computing
the derivatives of the aerodynamic and structural models separately is not

https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z

13 Multidisciplinary Design Optimization 509

sufficient. For example, a perturbation on the twist changes the loads, which
then changes the wing displacements, which requires solving the aerodynamic
model again. Coupled derivatives take this effect into account.

A

1

A1

�

A�

C

AC

Γ

AΓ

3

A3

,

A,

�

A�

!

A!

�

A�

5

A 5

D
es

ig
n

va
ria

bl
es

In
te

rm
ed

ia
te

va
ria

bl
es

Fu
nc

tio
ns Fig. 13.28 The DSM of the aerostruc-

tural problem shows the structure of
the reverse UDE.

We show the DSM for the system in Fig. 13.28. Because the DSM has the
same sparsity structure as the transpose of the Jacobian, this diagram reflects
the structure of the reverse UDE. The blocks that pertain to the design variables
have unit diagonals because they are independent variables, but they directly
affect the solver blocks. The blocks responsible for solving for Γ and 3 are the
only ones with feedback coupling. The part of the UDE pertaining to Γ and 3
is the Jacobian of residuals for the aerodynamic and structural components,
which we already derived in Ex. 13.5 to apply Newton’s method on the coupled
system. The functions of interest are all explicit components and only depend
directly on the design variables or the state variables. For example, the weight
, depends only on C; drag and lift depend only on the converged Γ; � depends
on the displacements; and finally, the fuel burn 5 just depends on drag, lift,
and weight. This whole coupled chain of derivatives is computed by solving
the linear system shown in Fig. 13.28.

For brevity, we only discuss the derivatives required to compute the
derivative of fuel burn with respect to span, but the other partial derivatives
would follow the same rationale.

• %A/%D is identical to what we derived when solving the coupled aero-

13 Multidisciplinary Design Optimization 510

0 5 10 15

−60

−40

−20

0

Spanwise location [m]

d 5
d�

Decoupled

Coupled

0

250

500

750

1,000

1,250

d 5
dC

Fig. 13.29Derivatives of the fuel burn
with respect to the spanwise distribu-
tion of twist and thickness variables.
The coupled derivatives differ from
the uncoupled derivatives, especially
for the derivatives with respect to
structural thicknesses near the wing
root.

structural system in Ex. 13.5.
• %A/%G has two components, which we can obtain by differentiating the

residuals:

%

%1
(�Γ − E) = %�

%1
Γ − %E

%1
,

%

%1
(3 − @) = %

%1
3.

• % 5 /%G = % 5 /%1 = 0 because the fuel burn does not depend directly on
the span if we just consider Eq. 13.26. However, it does depend on the
span through, , �, and !. This is where the UDE description is more
general and clearer than the standard direct and adjoint formulation.
By defining the explicit components of the function in the bottom-right
corner, the solution of the linear system yields the chain rule

d 5
d1 =

% 5
%�

d�
d1 +

% 5
%!

d!
d1 +

% 5
%,

d,
d1 ,

where the partial derivatives can be obtained by differentiating Eq. 13.26
symbolically, and the total derivatives are part of the coupled linear
system solution.

After computing all the partial derivative terms, we solve either the forward
or reverse UDE system. For the derivative with respect to span, neither method
has an advantage. However, for the derivatives of fuel burn with respect to
the twist and thickness variables, the reverse mode is much more efficient. In
this example, d 5 /d1 = −11.0 kg/m, so each additional meter of span reduced
the fuel burn by 11 kg. If we compute this same derivative without coupling
(by converging the aerostructural model but not considering the off-diagonal
terms in the aerostructural Jacobian), we obtain d 5 /d1 = −17.7 kg/m, which is
significantly different. The derivatives of the fuel burn with respect to the twist
distribution and the thickness distribution along the wingspan are plotted in
Fig. 13.29, where we can see the difference between coupled and uncoupled
derivatives.

13.4 Monolithic MDO Architectures
So far in this chapter, we have extended the models and solvers from
Chapter 3 and derivative computation methods from Chapter 6 to
coupled systems. We now discuss the options to optimize coupled
systems, which are given by various MDO architectures.

Monolithic MDO architectures cast the design problem as a single
optimization. The only difference between the different monolithic
architectures is the set of design variables that the optimizer is responsi-
ble for, which affects the constraint formulation and how the governing
equations are solved.

13 Multidisciplinary Design Optimization 511

∗The quantities after the semicolon in the
variable dependence correspond to vari-
ables that remain fixed in the current con-
text. For simplicity, we omit the design
equality constraints (ℎ = 0) without loss
of generality.

†These are identical to the residuals of the
system-level Newton solver (Eq. 13.11).

13.4.1 Multidisciplinary Feasible
The multidisciplinary design feasible (MDF) architecture is the archi-
tecture that is most similar to a single-discipline problem and usually
the most intuitive for engineers. The design variables, objective, and
constraints are the same as we would expect for a single-discipline
problem. The only difference is that the computation of the objective
and constraints requires solving a coupled system instead of a sin-
gle system of governing equations. Therefore, all the optimization
algorithms covered in the previous chapters can be applied without
modification when using the MDF architecture. This approach is also
called a reduced-space approach because the optimizer does not handle
the space of the state and coupling variables. Instead, it relies on a
solver to find the state variables that satisfy the governing equations
for the current design (see Eq. 3.32).

The resulting optimization problem is as follows:∗

minimize 5 (G; D̂∗)
by varying G

subject to 6 (G, D̂∗) ≤ 0
while solving Â (D̂; G) = 0

for D̂ .

(13.27)

At each optimization iteration, the optimizer has a multidisciplinary
feasible point D̂∗ found through the MDA. For a design given by the
optimizer (G), the MDA finds the internal component states (D) and
the coupling variables (D̂). To denote the MDA solution, we use the
residuals of the functional form, where the residuals for component 8
are†

Â8(D̂ , D8) = D̂8 −*8(D8 , D̂9≠8) = 0 . (13.28)

Each component is assumed to solve for its state variables D8 internally.
The MDA finds the coupling variables by solving the coupled system of
components 8 = 1, . . . , < using one of the methods from Section 13.2.5.

Then, the objective and constraints can be computed based on the
current design variables and coupling variables. Figure 13.30 shows
an XDSM for MDF with three components. Here we use a nonlinear
block Gauss–Seidel method (see Alg. 13.2) to converge the MDA, but
any other method from Section 13.2.5 could be used.

One advantage of MDF is that the system-level states are physically
compatible if an optimization stops prematurely. This is advantageous
in an engineering design context when time is limited, and we are not
as concerned with finding an optimal design in the strict mathematical

13 Multidisciplinary Design Optimization 512

x(0) û(0)

x∗ 0, 7 → 1 :

Optimization
2 : x 3 : x 4 : x 6 : x

0, 4 → 1 :

MDA
2 : û2, û3 3 : û3

û∗
1 5 : û1

2 :

Solver 1
3 : û1 4 : û1 6 : û1

û∗
2 5 : û2

3 :

Solver 2
4 : û2 6 : û2

û∗
3 5 : û3

4 :

Solver 3
6 : û3

7 : f, g
6 :

Functions

Fig. 13.30 The MDF architecture re-
lies on an MDA to solve for the cou-
pling and state variables at each op-
timization iteration. In this case, the
MDA uses the block Gauss–Seidel
method.

‡The first application of MAUD was the
design optimization of a satellite and its
orbit dynamics. The problem consisted
of over 25,000 design variables and over 2
million state variables210

210. Hwang et al., Large-scale multidiscipli-
nary optimization of a small satellite’s design
and operation, 2014.

sense as we are with finding an improved design. However, it is not
guaranteed that the design constraints are satisfied if the optimization is
terminated early; that depends on whether the optimization algorithm
maintains a feasible design point or not.

The main disadvantage of MDF is that it solves an MDA for each
optimization iteration, which requires its own algorithm outside of the
optimization. Implementing anMDAalgorithm can be time-consuming
if one is not already in place.

As mentioned in Tip 13.3, a MAUD-based framework such as Open-
MDAO can facilitate this. MAUD naturally implements the MDF archi-
tecture because it focuses on solving the MDA (Section 13.2.5) and on
computing the derivatives corresponding to the MDA (Section 13.3.3).‡

When using a gradient-based optimizer, gradient computations are
also challenging for MDF because coupled derivatives are required.
Finite-difference derivative approximations are easy to implement, but
their poor scalability and accuracy are compounded by the MDA, as
explained in Section 13.3. Ideally, we would use one of the analytic
coupled derivative computation methods of Section 13.3, which require
a substantial implementation effort. Again, OpenMDAOwas developed
to facilitate coupled derivative computation (see Tip 13.4).

https://dx.doi.org/10.2514/1.A32751
https://dx.doi.org/10.2514/1.A32751
https://dx.doi.org/10.2514/1.A32751

13 Multidisciplinary Design Optimization 513

Optimized

0 5 10 15 20

Span [m]

Initial

Fig. 13.31 The optimization reduces
the fuel burn by increasing the span.

Initial

Optimized

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Normalized spanwise location

C

Initial

Optimized

−2

0

2
�

Fig. 13.32 Twist and thickness dis-
tributions for the baseline and opti-
mized wings.

1g
2.5g

Optimized

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Normalized spanwise location

Loading

1g
2.5g

Initial

0

0.5

1

Loading

Fig. 13.33Lift loading for the baseline
and optimized wings.

Example 13.7 Aerostructural optimization using MDF
Continuing the wing aerostructural problem from Ex. 13.6, we are finally

ready to optimize the wing. The MDF formulation is as follows:

minimize 5

by varying
, 1, �, C

subject to ! −, = 0
2.5|� | − �yield ≤ 0

while solving �(3)Γ − E(3,
) = 0
 3 − @(Γ) = 0

for Γ, 3.

The structural stresses are constrained to be less than the yield stress of the
material by a safety factor (2.5 in this case). In Ex. 13.5, we set up the MDA for
the aerostructural problem, and in Ex. 13.6, we set up the coupled derivative
computations needed to solve this problem using gradient-based optimization.

Solving this optimization resulted in the larger spanwing shown inFig. 13.31.
This larger span increases the structural weight, but decreases drag. Although
the increase in weight would typically increase the fuel burn, the drag decrease
more than compensates for this adverse effect, and the fuel burn ultimately
decreases up to this value of span. Beyond this optimal span value, the weight
penalty would start to dominate, resulting in a fuel burn increase.

The twist and thickness distributions are shown in Fig. 13.32. The wing
twist directly controls the spanwise lift loading. The baseline wing had no
twist, which resulted in the loading shown in Fig. 13.33. In this figure, the
gray line represents a hypothetical elliptical lift distribution, which results in
the theoretical minimum for induced drag. The loading distributions for the
level flight (1 g) and maneuver conditions (2.5 g) are indistinguishable. The
optimization increases the twist in the midspan and drastically decreases it
toward the tip. This twist distribution differentiates the loading at the two
conditions: it makes the loading at level flight closer to the elliptical ideal while
shifting the loading at the maneuver condition toward the wing root.

The thickness distribution also changes significantly, as shown in Fig. 13.32.
The optimization tailors the thickness by adding more thickness in the spar
near the root, where the moments are larger, and thins out the wing much
more toward the tip, where the loads decrease. This more radical thickness
distribution is enabled by the tailoring of the spanwise lift loading discussed
previously.

These trades make sense because, at the level flight condition, the optimizer
is concerned with minimizing drag, whereas, at the maneuver condition, the
optimizer just wants to satisfy the stress constraint for a given total lift.

13 Multidisciplinary Design Optimization 514

Example 13.8 Aerostructural sequential optimization
In Section 13.1, we argued that sequential optimization does not, in general,

converge to the true optimum for constrained problems. We now demonstrate
this for a modified version of the wing aerostructural design optimization
problem from Ex. 13.7. One major modification was to reduce the problem
to two design variables to visualize the optimization path: one structural
variable corresponding to a constant spar thickness and one twist variable
corresponding to the wing tip twist, which controls the slope of a linear twist
distribution. The simultaneous optimization of these two variables using the
MDF architecture from Ex. 13.7 yields the path labeled “MDO” in Fig. 13.34.

Sequential

G∗seq

MDO

G0

G∗

Stress constraint

−3 −2 −1 0 1 2 3
2

2.5

3

3.5

4

4.5

5

5.5

Wing tip jig twist [deg]

Th
ic

kn
es

s[
cm

]

Fig. 13.34 Sequential optimization
gets stuck at the stress constraint,
whereas simultaneous optimization
of the aerodynamic and structural
variable finds the true multidiscipli-
nary optimum.

To perform sequential optimization for the wing design problem of Ex. 13.1,
we could start by optimizing the aerodynamics by solving the following
problem:

minimize 5

by varying
, �

subject to ! −, = 0 .
Here,, is constant because the structural thicknesses C are fixed, but ! is a
function of the aerodynamic design variables and states. We cannot include the
span 1 because it is a shared variable, as explained in Section 13.1. Otherwise,
this optimizationwould tend to increase 1 indefinitely to reduce the lift-induced
drag. Because 5 is a function of � and !, and ! is constant because ! =, , we
could replace the objective with �.

Once the aerodynamic optimization has converged, the twist distribution
and the forces are fixed, and we then optimize the structure by minimizing
weight subject to stress constraints by solving the following problem:

minimize 5

by varying C

subject to 2.5|� | − �yield ≤ 0 .

13 Multidisciplinary Design Optimization 515

Because the drag and lift are constant, the objective could be replaced by, .
Again, we cannot include the span in this problem because it would decrease
indefinitely to reduce the weight and internal loads due to bending.

These two optimizations are repeated until convergence. As shown in
Fig. 13.34, sequential optimization only changes one variable at a time, and it
converges to a point on the constraint with about 3.5 ◦ more twist than the true
optimum of the MDO. When including more variables, these differences are
likely to be even larger.

13.4.2 Individual Discipline Feasible
The individual discipline feasible (IDF) architecture adds independent
copies of the coupling variables to allow component solvers to run
independently and possibly in parallel. These copies are known as
target variables and are controlled by the optimizer, whereas the actual
coupling variables are computed by the corresponding component.
Target variables are denoted by a superscript C, so the coupling variables
produced by discipline 8 are denoted as D̂C8 . These variables represent
the current guesses for the coupling variables that are independent
of the corresponding actual coupling variables computed by each
component. To ensure the eventual consistency between the target
coupling variables and the actual coupling variables at the optimum,
we define a set of consistency constraints, ℎ28 = D̂

C
8 − D̂8 , which we add to

the optimization problem formulation.
The optimization problem for the IDF architecture is

minimize 5 (G; D̂)
by varying G, D̂C

subject to 6 (G; D̂) ≤ 0
ℎ28 = D̂

C
8 − D̂8 = 0 8 = 1, . . . , <

while solving A8
(
D̂8 ; G, D̂C9≠8

)
= 0 8 = 1, . . . , <

for D̂ .

(13.29)

Each component 8 is solved independently to compute the correspond-
ing output coupling variables D̂8 , where the inputs D̂C9≠8 are given by
the optimizer. Thus, each component drives its residuals to zero to
compute

D̂8 = *8

(
G, D̂C9≠8

)
. (13.30)

The consistency constraint quantifies the difference between the target
coupling variables guessed by the optimizer and the actual coupling

13 Multidisciplinary Design Optimization 516

variables computed by the components. The optimizer iterates the
target coupling variables simultaneously with the design variables to
find a multidisciplinary feasible point that is also an optimum. At each
iteration, the objective and constraints are computed using the latest
available coupling variables. Figure 13.35 shows the XDSM for IDF.

x(0), ût,(0)

x∗ 0, 3 → 1 :

Optimization
2 : x, ût 1 : x, ût

2, û
t
3 1 : x, ût

1, û
t
3 1 : x, ût

1, û
t
2

û∗
1 3 : f, g, gc

2 :

Functions

û∗
2 2 : û1

1 :

Solver 1

û∗
3 2 : û2

1 :

Solver 2

2 : û3

1 :

Solver 3

Fig. 13.35The IDFarchitecture breaks
up the MDA by letting the optimizer
solve for the coupling variables that
satisfy interdisciplinary feasibility.

One advantage of IDF is that each component can be solved in
parallel because they do not depend on each other directly. Another
advantage is that if gradient-based optimization is used to solve the
problem, the optimizer is typically more robust and has a better conver-
gence rate than the fixed-point iteration algorithms of Section 13.2.5.

The main disadvantage of IDF is that the optimizer must handle
more variables and constraints compared with the MDF architecture. If
the number of coupling variables is large, the size of the resulting opti-
mization problemmay be too large to solve efficiently. This problem can
be mitigated by careful selection of the components or by aggregating
the coupling variables to reduce their dimensionality.

Unlike MDF, IDF does not guarantee a multidisciplinary feasible
state at every design optimization iteration. Multidisciplinary feasibility
is only guaranteed at the endof the optimization through the satisfaction
of the consistency constraints. This is a disadvantage because if the
optimization stops prematurely or we run out of time, we do not have
a valid state for the coupled system.

13 Multidisciplinary Design Optimization 517

§When the residual equations arise from
discretized PDEs, we have what is called
PDE-constrained optimization.211

211. Biegler et al., Large-Scale PDE-
Constrained Optimization, 2003.

Example 13.9 Aerostructural optimization using IDF
For the IDF architecture, we need to make copies of the coupling variables

(ΓC and 3C) and add the corresponding consistency constraints, as highlighted
in the following problem statement:

minimize 5

by varying
, 1, �, C , ΓC , 3C

subject to ! =,

2.5|� | − �yield ≤ 0

ΓC − Γ = 0
3C − 3 = 0

while solving �
(
3C

)
Γ − �

(
3C ,

)
= 0

 3 − @
(
ΓC

)
= 0

for Γ, 3 .

The aerodynamic and structural models are solved independently. The aerody-
namic solver finds Γ for the 3C given by the optimizer, and the structural solver
finds 3 for the given ΓC .

When using gradient-based optimization, we do not require coupled
derivatives, but we do need the derivatives of each model with respect to both
state variables. The derivatives of the consistency constraints are just a unit
matrix when taken with respect to the variable copies and are zero otherwise.

13.4.3 Simultaneous Analysis and Design
Simultaneous analysis and design (SAND) extends the idea of IDF by
moving not only the coupling variables to the optimization problem but
also all component states. The SAND architecture requires exposing
all the components in the form of the system-level view previously
introduced in Fig. 13.9. The residuals of the analysis become constraints
for which the optimizer is responsible.§

This means that component solvers are no longer needed, and
the optimizer becomes responsible for simultaneously solving the
components for their states, the interdisciplinary compatibility for the
coupling variables, and the design optimization problem for the design
variables. All that is required from the model is the computation
of residuals. Because the optimizer is controlling all these variables,
SAND is also known as a full-space approach. SAND can be stated as

https://https://www.google.ca/books/edition/Large_Scale_PDE_Constrained_Optimization/O4YKBwAAQBAJ
https://https://www.google.ca/books/edition/Large_Scale_PDE_Constrained_Optimization/O4YKBwAAQBAJ

13 Multidisciplinary Design Optimization 518

follows:
minimize 5 (G, D̂, D)

by varying G, D̂, D

subject to 6 (G, D̂) ≤ 0
A (G, D̂, D) = 0 .

(13.31)

Here, we use the representation shown in Fig. 13.7, so there are two
sets of explicit functions that convert the input coupling variables of
the component. The SAND architecture is also applicable to single
components, in which case there are no coupling variables. The XDSM
for SAND is shown in Fig. 13.36.

x(0), û(0), u(0)

x∗, û∗ 0, 2 → 1 :

Optimization
1 : x, û 1 : x, û, u1 1 : x, û, u2 1 : x, û, u3

2 : f, g
1 :

Functions

2 : r1
1 :

Residual 1

2 : r2
1 :

Residual 2

2 : r3
1 :

Residual 3

Fig. 13.36 The SAND architecture
lets the optimizer solve for all vari-
ables (design, coupling, and state
variables), and component solvers are
no longer needed.

Because it solves for all variables simultaneously, the SAND archi-
tecture can be the most efficient way to get to the optimal solution. In
practice, however, it is unlikely that this is advantageous when efficient
component solvers are available.

The resulting optimization problem is the largest of all MDO archi-
tectures and requires an optimizer that scales well with the number
of variables. Therefore, a gradient-based optimization algorithm is
likely required, in which case the derivative computation must also
be considered. Fortunately, SAND does not require derivatives of the
coupled system or even total derivatives that account for the component
solution; only partial derivatives of residuals are needed.

SAND is an intrusive approach because it requires access to residuals.

13 Multidisciplinary Design Optimization 519

These might not be available if components are provided as black boxes.
Rather than computing coupling variables D̂8 and state variables D8 by
converging the residuals to zero, each component 8 just computes the
current residuals A8 for the current values of the coupling variables D̂
and the component states D8 .

Example 13.10 Aerostructural optimization using SAND
For the SAND approach, we do away completely with the solvers and let

the optimizer find the states. The resulting problem is as follows:

minimize 5

by varying
, 1, �, C , Γ, 3

subject to ! =,

2.5|� | − �yield ≤ 0

�Γ − � = 0
 3 − @ = 0.

Instead of being solved separately, the models are now solved by the optimizer.
When using gradient-based optimization, the required derivatives are just

partial derivatives of the residuals (the same partial derivatives we would use
for an implicit analytic method).

13.5 Distributed MDO Architectures
The monolithic MDO architectures we have covered so far form and
solve a single optimization problem. Distributed architectures decom-
pose this single optimization problem into a set of smaller optimization
problems, or disciplinary subproblems, which are then coordinated by a
system-level subproblem. One key requirement for these architectures is
that they must be mathematically equivalent to the original monolithic
problem to converge to the same solution.

There are two primary motivations for distributed architectures.
The first one is the possibility of decomposing the problem to reduce the
computational time. The second motivation is to mimic the structure
of large engineering design teams, where disciplinary groups have the
autonomy to design their subsystems so that MDO is more readily
adopted in industry. Overall, distributedMDO architectures have fallen
short on both of these expectations. Unless a problem has a special
structure, there is no distributed architecture that converges as rapidly
as a monolithic one. In practice, distributed architectures have not been
used much recently.

13 Multidisciplinary Design Optimization 520

∗Martins and Lambe41 present a more
comprehensive description of all MDO
architectures, including references to
known applications of each architecture.

41. Martins and Lambe,Multidisciplinary
design optimization: A survey of architec-
tures, 2013.

There are two main types of distributed architectures: those that
enforce multidisciplinary feasibility via an MDA somewhere in the
process and those that enforce multidisciplinary feasibility in some
other way (using constraints or penalties at the system level). This
is analogous to MDF and IDF, respectively, so we name these types
distributed MDF and distributed IDF.∗

In MDO problems, it can be helpful to distinguish between design
variables that affect only one component directly (called local design
variables) and design variables that affect two or more components
directly (called shared design variables). We denote the vector of design
variables local to component 8 by G8 and the shared variables by G0. The
full vector of design variables is given by concatenating the shared and
local design variables into a single vector G =

[
Gᵀ0 , G

ᵀ
1 , . . . , G

ᵀ
<
]
, where

< is the number of components.
If a constraint can be computed using a single component and

satisfied by varying only the local design variables for that component,
it is a local constraint; otherwise, it is nonlocal. Similarly, for the design
variables, we concatenate the constraints as 6 =

[
6ᵀ0 , 6

ᵀ
1 , . . . , 6

ᵀ
<
]
. The

same distinction could be applied to the objective function, but we do
not usually do this.

TheMDO problem representation we use here is shown in Fig. 13.37
for a general three-component system. We use the functional form
introduced in Section 13.2.3, where the states in each component are
hidden. In this form, the system level only has access to the outputs of
each solver, which are the coupling coupling variables and functions of
interest.

x0, x1 x0, x2 x0, x3 x x

g1 Solver 1 û1 û1 û1 û1

g2 û2 Solver 2 û2 û2 û2

g3 û3 û3 Solver 3 û3 û3

g0
Global

constraints

f Objective Fig. 13.37 MDO problem nomencla-
ture and dependencies.

https://dx.doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/1.J051895

13 Multidisciplinary Design Optimization 521

212. Braun and Kroo, Development and
application of the collaborative optimization
architecture in a multidisciplinary design
environment, 1997.

The set of constraints is also split into shared constraints and local
ones. Local constraints are computed by the corresponding component
and depend only on the variables available in that component. Shared
constraints depend on more than one set of coupling variables. These
dependencies are also shown in Fig. 13.37.

13.5.1 Collaborative Optimization
The collaborative optimization (CO) architecture is inspired by how
disciplinary teams work to design complex engineered systems.212 This
is a distributed IDF architecture, where the disciplinary optimization
problems are formulated to be independent of each other by using
target values of the coupling and shared design variables. These target
values are then shared with all disciplines during every iteration of
the solution procedure. The complete independence of disciplinary
subproblems combined with the simplicity of the data-sharing protocol
makes this architecture attractive for problems with a small amount of
shared data.

The system-level subproblem modifies the original problem as
follows: (1) local constraints are removed, (2) target coupling variables,
D̂C , are added as design variables, and (3) a consistency constraint is
added. This optimization problem can be written as follows:

minimize 5
(
G0 , GC1 , . . . , G

C
< , D̂

C)
by varying G0 , GC1 , . . . , G

C
< , D̂

C

subject to 60
(
G0 , GC1 , . . . , G

C
< , D̂

C) ≤ 0

�∗8 =

GC08 − G0

2
2 +

GC8 − G8

2

+

D̂C8 − D̂8 (GC08 , G8 , D̂C9≠8)

2
= 0 for 8 = 1, . . . , < ,

(13.32)
where GC08 are copies of the shared design variables that are passed to
discipline 8, and GC8 are copies of the local design variables passed to
the system subproblem.

The constraint function �∗8 is a measure of the inconsistency between
the values requested by the system-level subproblem and the results
from the discipline 8 subproblem. The disciplinary subproblems do not
include the original objective function. Instead, the objective of each
subproblem is to minimize the inconsistency function.

https://dx.doi.org/10.5555/888020
https://dx.doi.org/10.5555/888020
https://dx.doi.org/10.5555/888020
https://dx.doi.org/10.5555/888020

13 Multidisciplinary Design Optimization 522

212. Braun and Kroo, Development and
application of the collaborative optimization
architecture in a multidisciplinary design
environment, 1997.

For each discipline 8, the subproblem is as follows:

minimize �8
(
GC08 , G8 ; D̂8

)
by varying GC08 , G8

subject to 68
(
GC08 , G8 ; D̂8

) ≤ 0

while solving A8
(
D̂8 ; GC08 , G8 , D̂

C
9≠8

)
= 0

for D̂8 .

(13.33)

These subproblems are independent of each other and can be solved
in parallel. Thus, the system-level subproblem is responsible for
minimizing the design objective, whereas the discipline subproblems
minimize system inconsistency while satisfying local constraints.

The CO problem statement has been shown to be mathematically
equivalent to the original MDO problem.212 There are two versions of
the CO architecture: CO1 and CO2. Here, we only present the CO2
version. The XDSM for CO is shown in Fig. 13.38 and the procedure is
detailed in Alg. 13.5.

x
(0)
0 , x

t,(0)
1...m, ût,(0) x

t,(0)
0i , x

(0)
i

x∗0

0, 2 → 1 :

System

optimization

1 : x0, x
t
1...m, ût 1.1 : ût

j 6=i 1.2 : x0, x
t
i, û

t

2 : f0, g0

1 :

System

functions

x∗i
1.0, 1.3 → 1.1 :

Optimization i
1.1 : xt

0i, xi 1.2 : xt
0i, xi

û∗i
1.1 :

Solver i
1.2 : ûi

2 : J∗i 1.3 : fi, gi, Ji

1.2 :

Discipline i

functions

Fig. 13.38 Diagram for the CO archi-
tecture.

CO has the organizational advantage of having entirely separate
disciplinary subproblems. This is desirable when designers in each
discipline want to maintain some autonomy. However, the CO for-

https://dx.doi.org/10.5555/888020
https://dx.doi.org/10.5555/888020
https://dx.doi.org/10.5555/888020
https://dx.doi.org/10.5555/888020

13 Multidisciplinary Design Optimization 523

mulation suffers from numerical ill-conditioning. This is because the
constraint gradients of the system problem at an optimal solution are
all zero vectors, which violates the constraint qualification requirement
for the Karush–Kuhn–Tucker (KKT) conditions (see Section 5.3.1). This
ill-conditioning slows down convergence when using a gradient-based
optimization algorithm or prevents convergence altogether.

Algorithm 13.5 Collaborative optimization
Inputs:
G: Initial design variables

Outputs:
G∗: Optimal variables
5 ∗: Optimal objective value
6∗: Optimal constraint values

0: Initiate system optimization iteration
repeat

1: Compute system subproblem objectives and constraints
for Each discipline 8 (in parallel) do

1.0: Initiate disciplinary subproblem optimization
repeat

1.1: Evaluate disciplinary analysis
1.2: Compute disciplinary subproblem objective and constraints
1.3: Compute new disciplinary subproblem design point and �8

until 1.3→ 1.1: Optimization 8 has converged
end for
2: Compute a new system subproblem design point

until 2→ 1: System optimization has converged

Example 13.11 Aerostructural optimization using CO
To apply CO to the wing aerostructural design optimization problem

(Ex. 13.1), we need to set up a system-level optimization problem and two
discipline-level optimization subproblems.

The system-level optimization problem is formulated as follows:

minimize 5

by varying 1C , ΓC , 3C ,, C

subject to �∗1 ≤ �

�∗2 ≤ �,

where � is a specified convergence tolerance. The set of variables that are copied
as targets includes the shared design variable (1) and the coupling variables (Γ
and 3).

13 Multidisciplinary Design Optimization 524

†ATC was originally developed as a
method to handle design requirements in
a system’s hierarchical decomposition.213
ATC became an MDO architecture after
further developments.214 A MATLAB im-
plementation of ATC is available.215

213. Kim et al., Analytical target cascading
in automotive vehicle design, 2003.

214. Tosserams et al., An augmented
Lagrangian relaxation for analytical target
cascading using the alternating direction
method of multipliers, 2006.

215. Talgorn and Kokkolaras, Compact
implementation of non-hierarchical analytical
target cascading for coordinating distributed
multidisciplinary design optimization prob-
lems, 2017.

The aerodynamics subproblem is as follows:

minimize �1 ≡
(
1 − 1

1C

)2
+

=Γ∑
8=1

(
1 − Γ8

ΓC8

)2

by varying 1,
, �

subject to ! −, C = 0
while solving �Γ − � = 0

for Γ .

In this problem, the aerodynamic optimization minimizes the discrepancy
between the span requested by the system-level optimization (1C) and the span
that aerodynamics is optimizing (1). The same applies to the coupling variables
Γ. The aerodynamics subproblem is fully responsible for optimizing
 and �.

The structures subproblem is as follows:

minimize �2 ≡
(
1 − 1

1C

)2
+

=3∑
8=1

(
1 − 38

3C8

)2

+
(
1 − ,

, C

)2

by varying 1, C

subject to 2.5|� | − �yield ≤ 0

while solving 3 − @ = 0
for 3 .

Here, the structural optimization minimizes the discrepancy between the span
wanted by the structures (a decrease) versus what the system level requests
(which takes into account the opposite trend fromaerodynamics). The structural
subproblem is fully responsible for satisfying the stress constraints by changing
the structural sizing C, which are local variables.

13.5.2 Analytical Target Cascading
Analytical target cascading (ATC) is a distributed IDF architecture
that uses penalties in the objective function to minimize the difference
between the target variables requested by the system-level optimization
and the actual variables computed by each discipline.†

The idea of ATC is similar to the CO architecture in the previous
section, except that ATC uses penalties instead of a constraint. The ATC
system-level problem is as follows:

minimize 50
(
G, D̂C

) + <∑
8=1

Φ8
(
GC08 − G0 , D̂C8 − D̂8

(
G0 , G8 , D̂C

))
+Φ0

(
60

(
G, D̂C

))
by varying G0 , D̂C ,

(13.34)

https://dx.doi.org/10.1115/1.1586308
https://dx.doi.org/10.1115/1.1586308
https://dx.doi.org/10.1007/s00158-005-0579-0
https://dx.doi.org/10.1007/s00158-005-0579-0
https://dx.doi.org/10.1007/s00158-005-0579-0
https://dx.doi.org/10.1007/s00158-005-0579-0
https://dx.doi.org/10.1007/s00158-017-1726-0
https://dx.doi.org/10.1007/s00158-017-1726-0
https://dx.doi.org/10.1007/s00158-017-1726-0
https://dx.doi.org/10.1007/s00158-017-1726-0
https://dx.doi.org/10.1007/s00158-017-1726-0

13 Multidisciplinary Design Optimization 525

where Φ0 is a penalty relaxation of the shared design constraints, and
Φ8 is a penalty relaxation of the discipline 8 consistency constraints.

Although the most common penalty functions in ATC are quadratic
penalty functions, other penalty functions are possible. As mentioned
in Section 5.4, penalty methods require a good selection of the penalty
weight values to converge quickly and accurately enough. The ATC
architecture converges to the sameoptimumas otherMDOarchitectures,
provided that problem is unimodal and all the penalty terms in the
optimization problems approach zero.

Figure 13.39 shows the ATC architecture XDSM, where F denotes
the penalty function weights used in the determination of Φ0 and Φ8 .
The details of ATC are described in Alg. 13.6.

w(0) x
(0)
0 , ût,(0) x

t,(0)
0i , x

(0)
i

0, 8 → 1 :

Update w
6 : w 3 : wi

x∗0

5, 7 → 6 :

System

optimization

6 : x0, û
t 3 : x0, û

t 2 : ût
j 6=i

7 : f0,Φ0...m

6 :

System and

penalty

functions

x∗i 6 : xt
0i, xi

1, 4 → 2 :

Optimization i
3 : xt

0i, xi 2 : xt
0i, xi

4 : fi, gi,Φ0,Φi

3 :

Discipline i

and penalty

functions

û∗i 6 : ûi 3 : ûi

2 :

Solver i

Fig. 13.39 Diagram for the ATC archi-
tecture

13 Multidisciplinary Design Optimization 526

The 8th discipline subproblem is as follows:

minimize 50
(
GC08 , G8 ; D̂8 , D̂

C
9≠8

)
+ 58

(
GC08 , G8 ; D̂8

)
+Φ8

(
D̂C8 − D̂8 , GC08 − G0

)
+Φ0

(
60

(
GC08 , G8 ; D̂8 , D̂

C
9≠8

))
by varying GC08 , G8

subject to 68
(
GC08 , G8 ; D̂8

) ≤ 0

while solving A8
(
D̂8 ; GC08 , G8 , D̂

C
9≠8

)
= 0

for D̂8 .

(13.35)

The most common penalty functions used in ATC are quadratic
penalty functions (see Section 5.4.1). Appropriate penalty weights are
important for multidisciplinary consistency and convergence.

Algorithm 13.6 Analytical target cascading
Inputs:
G: Initial design variables

Outputs:
G∗: Optimal variables
5 ∗: Optimal objective value
2∗: Optimal constraint values

0: Initiate main ATC iteration
repeat

for Each discipline 8 do
1: Initiate discipline optimizer
repeat

2: Evaluate disciplinary analysis
3: Compute discipline objective and constraint functions and

penalty function values
4: Update discipline design variables

until 4→ 2: Discipline optimization has converged
end for
5: Initiate system optimizer
repeat

6: Compute system objective, constraints, and all penalty functions
7: Update system design variables and coupling targets.

until 7→ 6: System optimization has converged
8: Update penalty weights

until 8→ 1: Penalty weights are large enough

13 Multidisciplinary Design Optimization 527

216. Sobieszczanski–Sobieski et al.,
Bilevel integrated system synthesis for con-
current and distributed processing, 2003.

13.5.3 Bilevel Integrated System Synthesis
Bilevel integrated system synthesis (BLISS) uses a series of linear ap-
proximations to the original design problem, with bounds on the design
variable steps to prevent the design point from moving so far away
that the approximations are too inaccurate.216 This is an idea similar
to that of the trust-region methods in Section 4.5. These approxima-
tions are constructed at each iteration using coupled derivatives (see
Section 13.3).

BLISS optimizes the local design variables within the discipline
subproblems and the shared variables at the system level. The approach
consists of using a series of linear approximations to the original
optimization problem with limits on the design variable steps to stay
within the region where the linear prediction yields the correct trend.
This idea is similar to that of trust-region methods (see Section 4.5).

The system-level subproblem is formulated as follows:

minimize (5 ∗0)0 +
(d 5 ∗0
dG0

)
ΔG0

by varying ΔG0

subject to (6∗0)0 +
(d6∗0
dG0

)
ΔG0 ≤ 0

(6∗8)0 +
(d6∗8
dG0

)
ΔG0 ≤ 0 for 8 = 1, . . . , <

ΔG0 ≤ ΔG0 ≤ ΔG0 .

(13.36)

The linearization is performed at each iteration using coupled derivative
computation (see Section 13.3). The discipline 8 subproblem is given by
the following:

minimize (50)0 +
(
d 50
dG8

)
ΔG8

by varying ΔG8

subject to (60)0 +
(
d60

dG8

)
ΔG8 ≤ 0

(68)0 +
(
d68
dG8

)
ΔG8 ≤ 0

ΔG 8 ≤ ΔG8 ≤ ΔG 8 .

(13.37)

The extra set of constraints in both system-level and discipline subprob-
lems denotes the design variable bounds.

To prevent violation of the disciplinary constraints by changes in
the shared design variables, post-optimality derivatives are required

https://dx.doi.org/10.2514/2.1889
https://dx.doi.org/10.2514/2.1889

13 Multidisciplinary Design Optimization 528

to solve the system-level subproblem. In this case, the post-optimality
derivatives quantify the change in the optimizeddisciplinary constraints
with respect to a change in the system design variables, which can be
estimated with the Lagrange multipliers of the active constraints (see
Sections 5.3.3 and 5.3.4).

Figure 13.40 shows the XDSM for BLISS, and the corresponding
steps are listed in Alg. 13.7. Because BLISS uses an MDA, it is a
distributed MDF architecture. As a result of the linear nature of the
optimization problems, repeated interrogation of the objective and
constraint functions is not necessary once we have the gradients. If the
underlying problem is highly nonlinear, the algorithm may converge
slowly. The variable bounds may help the convergence if these bounds
are properly chosen, such as through a trust-region framework.

Algorithm 13.7 Bilevel integrated system synthesis
Inputs:
G: Initial design variables

Outputs:
G∗: Optimal variables
5 ∗: Optimal objective value
2∗: Optimal constraint values

0: Initiate system optimization
repeat

1: Initiate MDA
repeat

2: Evaluate discipline analyses
3: Update coupling variables

until 3→ 2: MDA has converged
4: Initiate parallel discipline optimizations
for Each discipline 8 do

5: Evaluate discipline analysis
6: Compute objective and constraint function values and derivatives

with respect to local design variables
7: Compute the optimal solutions for the disciplinary subproblem

end for
8: Initiate system optimization
9: Compute objective and constraint function values and derivatives with

respect to shared design variables using post-optimality analysis
10: Compute optimal solution to system subproblem

until 11→ 1: System optimization has converged

13 Multidisciplinary Design Optimization 529

x(0) ût,(0) x
(0)
0 x

(0)
i

0, 11 → 1 :

Convergence

check

1, 3 → 2 :

MDA
6 : ût

j 6=i 6, 9 : ût
j 6=i 6 : ût

j 6=i 2, 5 : ût
j 6=i

x∗0 11 : x0

8, 10 :

System

optimization

6, 9 : x0 6, 9 : x0 9 : x0 6 : x0 2, 5 : x0

x∗i 11 : x0
4, 7 :

Optimization i
6, 9 : xi 6, 9 : xi 9 : xi 6 : xi 2, 5 : xi

10 : f0, g0 7 : f0, g0

6, 9 :

System

functions

10 : fi, gi 7 : fi, gi

6, 9 :

Discipline i

functions

10 : df/dx0,dg/dx0

9 :

Shared

variable

derivatives

7 : df0,i/dx0,dg0,i/dx0

3 :

Discipline i

variable

derivatives

û∗i 3 : ûi 6, 9 : ûi 6, 9 : ûi 9 : ûi 6 : ûi

2 :

Solver i

Fig. 13.40 Diagram for the BLISS ar-
chitecture.

13.5.4 Asymmetric Subspace Optimization
Asymmetric subspace optimization (ASO) is a distributed MDF archi-
tecture motivated by cases where there is a large discrepancy between
the cost of the disciplinary solvers. The cheaper disciplinary analyses
are replaced by disciplinary design optimizations inside the overall
MDA to reduce the number of more expensive disciplinary analyses.

The system-level optimization subproblem is as follows:

minimize 5 (G; D̂)
by varying G0 , G:
subject to 60 (G; D̂) ≤ 0

6: (G; D̂:) ≤ 0 for all :,

while solving A:
(
D̂: ; G: , D̂C9≠8

)
= 0

for D̂: .

(13.38)

13 Multidisciplinary Design Optimization 530

The subscript : denotes disciplinary information that remains outside
of the MDA. The disciplinary optimization subproblem for discipline 8,
which is resolved inside the MDA, is as follows:

minimize 5 (G; D̂)
by varying G8

subject to 68 (G0 , G8 ; D̂8) ≤ 0

while solving A8
(
D̂8 ; G8 , D̂C9≠8

)
= 0

for D̂8 .

(13.39)

Figure 13.41 shows a three-discipline case where the third discipline
replacedwith an optimization subproblem. ASO is detailed in Alg. 13.8.
To solve the system-level problem with a gradient-based optimizer, we
require post-optimality derivatives of the objective and constraints with
respect to the subproblem inputs (see Section 5.3.4).

Algorithm 13.8 ASO
Inputs:
G: Initial design variables

Outputs:
G∗: Optimal variables
5 ∗: Optimal objective value
2∗: Optimal constraint values

0: Initiate system optimization
repeat

1: Initiate MDA
repeat

2: Evaluate analysis 1
3: Evaluate analysis 2
4: Initiate optimization of discipline 3
repeat

5: Evaluate analysis 3
6: Compute discipline 3 objectives and constraints
7: Update local design variables

until 7→ 5: Discipline 3 optimization has converged
8: Update coupling variables

until 8→ 2 MDA has converged
9: Compute objective and constraint function values for all disciplines 1

and 2
10: Update design variables

until 10→ 1: System optimization has converged

13 Multidisciplinary Design Optimization 531

x
(0)
0,1,2 ût,(0) x

(0)
3

x∗
0,1,2

0, 10 → 1 :

System

optimization

9 : x0,1,2 2 : x0, x1 3 : x0, x2 6 : x0,1,2 5 : x0

10 : f0,1,2, g0,1,2

9 :

Discipline 0, 1,

and 2

functions

0, 8 → 2 :

MDA
2 : ût

2, û
t
3 3 : ût

3

û∗
1 9 : û1 8 : û1

2 :

Solver 1
3 : û1 6 : û1 5 : û1

û∗
2 9 : û2 8 : û2

3 :

Solver 2
6 : û2 5 : û2

x∗
3 9 : x3

4, 7 → 5 :

Optimization 3
6 : x3 5 : x3

7 : f0, g0, f3, g3

6 :

Discipline 0

and 3

functions

û∗
3 9 : û3 8 : û3 6 : û3

5 :

Solver 3

Fig. 13.41 Diagram for the ASO archi-
tecture.

For a gradient-based system-level optimizer, the gradients of the
objective and constraints must take into account the suboptimization.
This requires coupled post-optimality derivative computation, which
increases computational and implementation time costs compared
with a normal coupled derivative computation. The total optimization
cost is only competitive with MDF if the discrepancy between each
disciplinary solver is high enough.

Example 13.12 Aerostructural optimization using ASO
Aerostructural optimization is an example of asymmetry in the cost of

the models. When the aerodynamic model consists of computational fluid
dynamics, it is usually much more expensive than a finite-element structural
model. If that is the case, we might be able to solve a structural sizing
optimization in parallel within the time required for an aerodynamic analysis.

In this example, we formulate the system-level optimization problem as

13 Multidisciplinary Design Optimization 532

41. Martins and Lambe,Multidisciplinary
design optimization: A survey of architec-
tures, 2013.

follows:
minimize 5

by varying 1, �

subject to ! −, ∗ = 0
while solving �(3∗)Γ − �(3∗) = 0

for Γ ,

where, ∗ and 3∗ correspond to values obtained from the structural subopti-
mization. The suboptimization is formulated as follows:

minimize 5

by varying C

subject to 2.5|� | − �yield ≤ 0

while solving 3 − @ = 0
for 3 .

Similar to the sequential optimization, we could replace 5 with , in the
suboptimization because the other parameters in 5 are fixed. To solve the
system-level problem with a gradient-based optimizer, we would need post-
optimality derivatives of, ∗ with respect to span and Γ.

13.5.5 Other Distributed Architectures
There are other distributed MDF architectures in addition to BLISS
and ASO: concurrent subspace optimization (CSSO) and MDO of
independent subspaces (MDOIS).41

CSSO requires surrogate models for the analyses for all disciplines.
The system-level optimization subproblem is solved based on the
surrogatemodels and is therefore fast. The discipline-level optimization
subproblem uses the actual analysis from the corresponding discipline
and surrogate models for all other disciplines. The solutions for each
discipline subproblem are used to update the surrogate models.

MDOIS only applies when no shared variables exist. In this case, dis-
cipline subproblems are solved independently, assuming fixed coupling
variables, and then an MDA is performed to update the coupling.

There are also other distributed IDF architectures. Some of these are
similar to CO in that they use a multilevel approach to enforce multi-
disciplinary feasibility: BLISS-2000 and quasi-separable decomposition
(QSD). Other architectures enforce multidisciplinary feasibility with
penalties, like ATC: inexact penalty decomposition (IPD), exact penalty
decomposition (EPD), and enhanced collaborative optimization (ECO).

BLISS-2000 is a variation of BLISS that uses surrogate models to
represent the coupling variables for all disciplines. Each discipline

https://dx.doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/1.J051895

13 Multidisciplinary Design Optimization 533

217. Tedford and Martins, Benchmark-
ing multidisciplinary design optimization
algorithms, 2010.

132. Gray et al., OpenMDAO: An open-
source framework for multidisciplinary
design, analysis, and optimization, 2019.

subproblem minimizes the linearized objective with respect to local
variables subject to local constraints. The system-level subproblemmin-
imizes the objective with respect to the shared variables and coupling
variables while enforcing consistency constraints.

WhenusingQSD, the objective and constraint functions are assumed
to depend only on the shared design variables and coupling variables.
Each discipline is assigned a “budget” for a local objective, and the
discipline problems maximize the margin in their local constraints and
the budgeted objective. The system-level subproblem minimizes the
objective and budgets of each discipline while enforcing the shared
constraints and a positive margin for each discipline.

IPD and EPD apply to MDO problems with no shared objectives
or constraints. They are similar to ATC in that copies of the shared
variables are used for every discipline subproblem, and the consistency
constraints are relaxed with a penalty function. Unlike ATC, however,
the more straightforward structure of the discipline subproblems is
exploited to compute post-optimality derivatives to guide the system-
level optimization subproblem.

Like CO, ECO uses copies of the shared variables. The discipline
subproblems minimize quadratic approximations of the objective while
enforcing local constraints and linear models of the nonlocal constraints.
The system-level subproblem minimizes the total violation of all con-
sistency constraints with respect to the shared variables.

13.6 Summary
MDOarchitectures provide different options for solvingMDOproblems.
An acceptable MDO architecture must be mathematically equivalent
to the original problem and converge to the same optima. Sequential
optimization, although intuitive, is not mathematically equivalent to
the original problem and yields a design inferior to the MDO optimum.

MDO architectures are divided into two broad categories: mono-
lithic architectures and distributed architectures. Monolithic archi-
tectures solve a single optimization problem, whereas distributed
architectures solve optimization subproblems for each discipline and a
system-level optimization problem. Overall, monolithic architectures
exhibit a much better convergence rate than distributed architectures.217
In the last few years, the vast majority of MDO applications have used
monolithic MDO architectures. The MAUD architecture, which can im-
plementMDF, IDF, or a hybrid of the two, successfully solves large-scale
MDO problems.132

https://dx.doi.org/10.1007/s11081-009-9082-6
https://dx.doi.org/10.1007/s11081-009-9082-6
https://dx.doi.org/10.1007/s11081-009-9082-6
https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z

13 Multidisciplinary Design Optimization 534

MDO
architecture
classification

Monolithic

MDF/MAUD

IDF

SAND

Distributed

Distributed MDF

BLISS

CSSO

MDOIS

ASO

Distributed IDF

Multilevel
CO

QSD
Penalty

ATC

IPD/EPD

ECO

Fig. 13.42 Classification of MDO ar-
chitectures.

∗Martins and Lambe41 describe all of
these MDO architectures in detail.
41. Martins and Lambe,Multidisciplinary
design optimization: A survey of architec-
tures, 2013.

218. Golovidov et al., Flexible implementa-
tion of approximation concepts in an MDO
framework, 1998.

219. Balabanov et al., VisualDOC: A soft-
ware system for general purpose integration
and design optimization, 2002.

The distributed architectures can be divided according to whether
or not they enforce multidisciplinary feasibility (through anMDA of the
whole system), as shown in Fig. 13.42. Distributed MDF architectures
enforce multidisciplinary feasibility through an MDA. The distributed
IDF architectures are like IDF in that no MDA is required. However,
they must ensure multidisciplinary feasibility in some other way. Some
do this by formulating an appropriate multilevel optimization (such as
CO), and others use penalties to ensure this (such as ATC).∗

Several commercial MDO frameworks are available, including
Isight/SEE 218 by Dassault Systèmes, ModelCenter/CenterLink by
Phoenix Integration, modeFRONTIER by Esteco, AML Suite by Tech-
noSoft, Optimus by Noesis Solutions, and VisualDOC by Vanderplaats
Research and Development.219 These frameworks focus on making it
easy for users to couple multiple disciplines and use the optimization
algorithms through graphical user interfaces. They also provide con-
venient wrappers to popular commercial engineering tools. Typically,
these frameworks use fixed-point iteration to converge the MDA. When
derivatives are needed for a gradient-based optimizer, finite-difference
approximations are used rather than more accurate analytic derivatives.

https://dx.doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/6.1998-4959
https://dx.doi.org/10.2514/6.1998-4959
https://dx.doi.org/10.2514/6.1998-4959
https://dx.doi.org/10.2514/6.2002-5513
https://dx.doi.org/10.2514/6.2002-5513
https://dx.doi.org/10.2514/6.2002-5513

13 Multidisciplinary Design Optimization 535

Problems
13.1 Answer true or false and justify your answer.

a. We prefer to use the term component instead of discipline
because it is more general.

b. Local design variables affect only one discipline in the MDO
problem, whereas global variables affect all disciplines.

c. All multidisciplinary models can be written in the functional
form, but not all can be written in the residual form.

d. The coupling variables are a subset of component state
variables.

e. Multidisciplinary models can be represented by directed
cyclic graphs, where the nodes represent components and
the edges represent coupling variables.

f. The nonlinear block Jacobi and Gauss–Seidel methods can
be used with any combination of component solvers.

g. All the derivative computation methods from Chapter 6 can
be implemented for coupled multidisciplinary systems.

h. Implicit analytic methods for derivative computation are
incompatible with the functional form of multidisciplinary
models.

i. The MAUD approach is based on the UDE.

j. The MDF architecture has fewer design variables and more
constraints than IDF.

k. The main difference between monolithic and distributed
MDO architectures is that the distributed architectures per-
form optimization at multiple levels.

l. Sequential optimization is a valid MDO approach, but the
main disadvantage is that it converges slowly.

13.2 Pick a multidisciplinary engineering system from the literature
or formulate one based on your experience.

a. Identify the different analyses and coupling variables.

b. List the design variables and classify them as local or global.

c. Identify the objective and constraint functions.

d. Draw a diagram similar to the one in Fig. 13.37 for your
system.

13 Multidisciplinary Design Optimization 536

e. Exploration: Think about the objective that each discipline
would have if considered separately, and discuss the trades
needed to optimize the multidisciplinary objective.

13.3 Consider the DSMs that follow. For each case, what is the lowest
number of feedback loops you can achieve through reordering?
What hierarchy of solvers would you recommend to solve the
coupled problem for each case?

a. A

B

C

D

E

b. A

B

C

D

E

c. A

B

C

D

E

13.4 Consider the “spaghetti” diagram shown in Fig. 13.43. Draw the
equivalent DSM for these dependencies. How can you exploit
the structure in these dependencies? What hierarchy of solvers
would you recommend to solve a coupled system with these
dependencies?

C

A B

D E

F

Fig. 13.43 Graph of dependencies.

13 Multidisciplinary Design Optimization 537

Aerodynamics
! = 1

2�E
2(�!(�)

Structures
� = !12

48��

!

�

Fig. 13.44 The aerostructural model
couples aerodynamics and structures
through lift and wing deflection.

13.5 Let us solve a simplified wing aerostructural problem based on
simple equations for the aerodynamics and structures. We reuse
the wing design problem described in Appendix D.1.6, but with
a few modifications.

Suppose the lift coefficient now depends on the wing deflection:

�! = �!0 − �!,�� ,

where � is the angle of deflection at the wing tip. Use �!0 = 0.4
and �!,� = 0.1 rad−1. The deflection also depends on the lift. We
compute � assuming the uniform lift distribution and using the
simple beam bending theory as

� =
(!/1)(1/2)3

6�� =
!12

48�� .

The Young’s modulus is � = 70 GPa. Use the H-shaped cross-
section described in Prob. 5.17 to compute the second moment of
inertia, �.

We add the flight speed E to the set of design variables and
handle ! =, as a constraint. The objective of the aerostructural
optimization problem is to minimize the power with respect to
G = [1, 2, E], subject to ! =, .

Solve this problem using MDF, IDF, and a distributed MDO
architecture. Compare the aerostructural optimal solution with
the original solution from Appendix D.1.6 and discuss your
results.

AMathematics Background
This appendix briefly reviews various mathematical concepts used
throughout the book.

A.1 Taylor Series Expansion
Series expansions are representations of a given function in terms
of a series of other (usually simpler) functions. One common series
expansion is the Taylor series, which is expressed as a polynomial whose
coefficients are based on the derivatives of the original function at a
fixed point.

The Taylor series is a general tool that can be applied whenever
the function has derivatives. We can use this series to estimate the
value of the function near the given point, which is useful when the
function is difficult to evaluate directly. The Taylor series is used to
derive algorithms for finding the zeros of functions and algorithms for
minimizing functions in Chapters 4 and 5.

To derive the Taylor series, we start with an infinite polynomial
series about an arbitrary point, G, to approximate the value of a function
at G + ΔG using

5 (G + ΔG) = 00 + 01ΔG + 02ΔG2 + . . . + 0:ΔG: + (A.1)

We can make this approximation exact at ΔG = 0 by setting the first
coefficient to 5 (G). To find the appropriate value for 01, we take the first
derivative to get

5 ′(G + ΔG) = 01 + 202ΔG + . . . + 80:ΔG:−1 + . . . , (A.2)

which means that we need 01 = 5 ′(G) to obtain an exact derivative at G.
To derive the other coefficients, we systematically take the derivative of
both sides and the appropriate value of the first nonzero term (which
is always constant). Identifying the pattern yields the general formula
for the =th-order coefficient:

0: =
5 (:)(G)
:! . (A.3)

539

A Mathematics Background 540

= = 1

=
=

2

= = 4

=
=

6

0
G

5

Fig. A.1 Taylor series expansions for
one-dimensional example. The more
terms we consider from the Taylor
series, the better the approximation.

Substituting this into the polynomial in Eq. A.1 yields the Taylor series

5 (G + ΔG) =
∞∑
:=0

ΔG:

:! 5 (:)(G) . (A.4)

The series is typically truncated to use terms up to order <,

5 (G + ΔG) =
<∑
:=0

ΔG:

:! 5 (:)(G) + O (
ΔG<+1) , (A.5)

whichyields anapproximationwith a truncation error of orderO(ΔG<+1).
In optimization, it is common to use the first three terms (up to < = 2)
to get a quadratic approximation.

Example A.1 Taylor series expansion for single variable
Consider the scalar function of a single variable, 5 (G) = G − 4 cos(G). If we

use Taylor series expansions of this function about G = 0, we get

5 (ΔG) = −4 + ΔG + 2ΔG2 − 1
6ΔG

4 + 1
180ΔG

6 −

Four different truncations of this series are plotted and compared to the exact
function in Fig. A.1.

The Taylor series in multiple dimensions is similar to the single-
variable case but more complicated. The first derivative of the function
becomes a gradient vector, and the second derivatives become aHessian
matrix. Also, we need to define a direction along which we want to
approximate the function because that information is not inherent like
it is in a one-dimensional function. The Taylor series expansion in =
dimensions along a direction ? can be written as

5 (G +
?) = 5 (G) +

=∑
:=1

?:
% 5
%G:
+ 1

2

2

=∑
:=1

=∑
;=1

?:?;
%2 5

%G:%G;
+ O (

3) ,
(A.6)

where
 is a scalar that determines how far to go in the direction ?. In
matrix form, we can write

5 (G +
?) = 5 (G) +
∇ 5 (G)ᵀ? + 1
2

2?ᵀ�(G)? + O (

3) , (A.7)

where � is the Hessian matrix.

A Mathematics Background 541

Example A.2 Taylor series expansion for two variables
Consider the following function of two variables:

5 (G1 , G2) = (1 − G1)2 + (1 − G2)2 + 1
2

(
2G2 − G2

1

)2
.

Performing a Taylor series expansion about G = [0,−2], we get

5 (G +
?) = 18 +
 [−2 − 14
]
? + 1

2

2?ᵀ

[
10 0
0 6

]
? .

The original function, the linear approximation, and the quadratic approxima-
tion are compared in Fig. A.2.

Original function Linear approximation (= = 1) Quadratic approximation (= = 2)

Fig. A.2 Taylor series approximations
for two-dimensional example.

A.2 Chain Rule, Total Derivatives, and Differentials
The single-variable chain rule is needed for differentiating composite
functions. Given a composite function, 5 (6(G)), the derivative with
respect to the variable G is

d
dG

(
5 (6(G))) = d 5

d6
d6
dG . (A.8)

Example A.3 Single-variable chain rule
Let 5 (6(G)) = sin

(
G2) . In this case, 5 (6) = sin(6), and 6(G) = G2. The

derivative with respect to G is

d
dG

(
5 (6(G))) = d

d6
(
sin(6)) d

dG

(
G2

)
= cos

(
G2

)
(2G) .

A Mathematics Background 542

If a function depends on more than one variable, then we need
to distinguish between partial and total derivatives. For example, if
5 (6(G), ℎ(G)), then 5 is a function of two variables: 6 and ℎ. The
application of the chain rule for this function is

d
dG

(
5 (6(G), ℎ(G))) = % 5

%6
d6
dG +

% 5
%ℎ

dℎ
dG , (A.9)

where %/%G indicates a partial derivative, and d/dG is a total derivative.
When taking a partial derivative, we take the derivative with respect
to only that variable, treating all other variables as constants. More
generally,

d
dG (5 (61(G), . . . , 6=(G))) =

=∑
8=1

(
% 5
%68

d68
dG

)
. (A.10)

Example A.4 Partial versus total derivatives
Consider 5 (G, H(G)) = G2 + H2, where H(G) = sin(G). The partial derivative

of 5 with respect to G is
% 5
%G

= 2G ,

whereas the total derivative of 5 with respect to G is

d 5
dG =

% 5
%G
+ % 5
%H

dH
dG

= 2G + 2H cos(G)
= 2G + 2 sin(G) cos(G) .

Notice that the partial derivative and total derivative are quite different. For this
simple case, we could also find the total derivative by direct substitution and
then using an ordinary one-dimensional derivative. Substituting H(G) = sin(G)
directly into the original expression for 5 gives

5 (G) = G2 + sin2(G)
d 5
dG = 2G + 2 sin(G) cos(G) .

Example A.5 Multivariable chain rule
Expanding on our single-variable example, let 6(G) = cos(G), ℎ(G) = sin(G),

and 5 (6, ℎ) = 62ℎ3. Then, 5 (6(G), ℎ(G)) = cos2(G) sin3(G). Applying Eq. A.9,

A Mathematics Background 543

we have the following:

d
dG

(
5
(
6(G), ℎ(G))) = % 5

%6
d6
dG +

% 5
%ℎ

dℎ
dG

= 26ℎ3 d6
dG + 6

23ℎ2 3ℎ
dG

= −26ℎ3 sin(G) + 623ℎ2 cos(G)
= −2 cos(G) sin4(G) + 3 cos3(G) sin2(G) .

The differential of a function represents the linear change in that
function with respect to changes in the independent variable. We
introduce themherebecause they arehelpful forfinding total derivatives
of multivariable equations that are implicit.

If function H = 5 (G) is differentiable, the differential dH is

dH = 5 ′(G)dG , (A.11)

where dG is a nonzero real number (considered small) and dH is an
approximation of the change (due to the linear term in the Taylor
series). We can solve for 5 ′(G) to get 5 ′(G) = dH/dG. This states that
the derivative of 5 with respect to G is the differential of H divided by
the differential of G. Strictly speaking, dH/dG here is not the derivative,
although it is written in the same way. The derivative is a symbol, not a
fraction. However, for our purposes, we will use these representations
interchangeably and treat differentials algebraically. We also write the
differentials of functions as

d 5 = 5 ′(G)dG . (A.12)

Example A.6 Multivariable chain rule using differentials
We can solve Ex. A.5 using differentials as follows. Taking the definition of

each function, we write their differentials,

d 5 = 26ℎ3 d6 + 362ℎ2 dℎ, d6 = − sin(G)dG, dℎ = cos(G)dG .
Substituting 6, d6, ℎ, and dℎ into the differential of 5 we get obtain

d 5 = 2 cos(G) sin(G)3(− sin(G)dG) + 3 cos(G)2 sin(G)2 cos(G)dG .
Simplifying and dividing by dG yields the total derivative

d 5
dG = −2 cos(G) sin4(G) + 3 cos3(G) sin2(G).

A Mathematics Background 544

=

(< × ?) (< × =) (= × ?)

� � �

�8 9 �8∗ �∗9

Fig. A.3Matrix product and resulting
size.
∗In this notation, < is the number of rows
and = is the number of columns.

In Ex.A.5, there is no clear advantage in usingdifferentials. However,
differentials are more straightforward for finding total derivatives of
multivariable implicit equations because there is no need to identify
the independent variables. Given an equation, we just need to (1)
find the differential of the equation and (2) solve for the derivative
of interest. When we want quantities to remain constant, we can set
the corresponding differential to zero. Differentials can be applied to
vectors (say a vector G of size =), yielding a vector of differentials with
the same size (dG of size =). We use this technique to derive the unified
derivatives equation (UDE) in Section 6.9.

Example A.7 Total derivatives of an implicit equation
Suppose we have the equation for a circle,

G2 + H2 = A2 .

The differential of this equation is

2G dG + 2H dH = 2A dA .

Say we want to find the slope of the tangent of a circle with a fixed radius. Then,
dA = 0, and we can solve for the derivative dH/dG as follows:

2G dG + 2H dH = 0 ⇒ dH
dG = −

G
H
.

Another interpretation of this derivative is that it is the first-order change in
H with respect to a change in G subject to the constraint of staying on a circle
(keeping a constant A). Similarly, we could find the derivative of G with respect
to H as dG/dH = −H/G. Furthermore, we can find relationships between any
derivative involving A, G, or H.

A.3 Matrix Multiplication
Consider a matrix � of size (< × =)∗ and a matrix � of size (= × ?). The
two matrices can be multiplied together (� = ��) as follows:

�8 9 =
=∑
:=1

�8:�: 9 , (A.13)

where � is an (<×?)matrix. Thismultiplication is illustrated in Fig. A.3.
Two matrices can be multiplied only if their inner dimensions are equal
(= in this case). The remaining products discussed in this section are
just special cases of matrix multiplication, but they are common enough
that we discuss them separately.

A Mathematics Background 545

=

(1 × 1) (1 × =) (= × 1)

 D E

Fig. A.4 Dot (or inner) product of two
vectors.

=

(< × ?) (< × 1) (1 × ?)

� D E

�8 9

D8 E 9

Fig. A.5Outer product of twovectors.

A.3.1 Vector-Vector Products
In this book, a vector D is a column vector; thus, the row vector is
represented as Dᵀ. The product of two vectors can be performed in
two ways. The more common is called an inner product (also known
as a dot product or scalar product). The inner product is a functional,
meaning that it is an operator that acts on vectors and produces a
scalar. This product is illustrated in Fig. A.4. In the real vector space
of = dimensions, the inner product of two vectors, D and E, whose
dimensions are equal, is defined algebraically as

 = DᵀE =
[
D1 D2 . . . D=

]


E1
E2
...
E=


=

=∑
8=1

D8E8 . (A.14)

The order of multiplication is irrelevant, and therefore,

DᵀE = EᵀD . (A.15)

In Euclidean space, where vectors have magnitude and direction, the
inner product is defined as

DᵀE = ‖D‖ ‖E‖ cos(�) , (A.16)

where ‖·‖ represents the 2-norm (Eq. A.25), and � is the angle between
the two vectors.

The outer product takes the two vectors and multiplies them element-
wise to produce a matrix, as illustrated in Fig. A.5. Unlike the inner
product, the outer product does not require the vectors to be of the
same length. The matrix form is as follows:

� = DEᵀ =



D1
D2
...
D<


[
E1 E2 · · · E=

]

=



D1E1 D1E2 · · · D1E=
D2E1 D2E2 · · · D2E=
...

...
. . .

...
D<E1 D<E2 · · · D<E=


.

(A.17)

The index form is as follows:

(DEᵀ)8 9 = D8E 9 . (A.18)

Outer products generate rank 1 matrices. They are used in quasi-
Newton methods (Section 4.4.4 and Appendix C).

A Mathematics Background 546

=

(< × 1) (< × =) (= × 1)

E � D

E8

�8∗

Fig. A.6 Matrix-vector product.

A.3.2 Matrix-Vector Products
Consider multiplying a matrix � of size (< × =) by vector D of size =.
The result is a vector of size <:

E = �D ⇒ E8 =
=∑
9=1

�8 9D9 . (A.19)

This multiplication is illustrated in Fig. A.6. The entries in E are dot
products between the rows of � and D:

E =



—— �1∗ ——
—— �2∗ ——

...
—— �<∗ ——


D , (A.20)

where �8∗ is the 8th row of the matrix �. Thus, a matrix-vector
product transforms a vector in =-dimensional space (R=) to a vector in
<-dimensional space (R<).

A matrix-vector product can be thought of as a linear combination
of the columns of �, where the D9 values are the weights:

E =


|
�∗1
|


D1 +


|
�∗2
|


D2 + . . . +


|
�∗=
|


D= , (A.21)

and �∗9 are the columns of �.
We can also multiply by a vector on the left, instead of on the right:

Eᵀ = Dᵀ�. (A.22)

In this case, a row vector is multiplied with a matrix, producing a row
vector.

A.3.3 Quadratic Form (Vector-Matrix-Vector Product)
Another common product is a quadratic form. A quadratic form consists
of a row vector, times a matrix, times a column vector, producing a
scalar:

 = Dᵀ�D =
[
D1 D2 . . . D=

]


�11 �12 · · · �1=
�21 �22 · · · �2=
...

...
. . .

...
�=1 �=2 · · · �==





D1
D2
...
D= .


(A.23)

A Mathematics Background 547

∗Strang87 provides a comprehensive cov-
erage of linear algebra and is creditedwith
popularizing the concept of the “four fun-
damental subspaces”.

87. Strang, Linear Algebra and its Applica-
tions, 2006.

The index form is as follows:

 =
=∑
8=1

=∑
9=1

D8�8 9D9 . (A.24)

In general, a vector-matrix-vector product can have a nonsquare �
matrix, and the vectors would be two different sizes, but for a quadratic
form, the two vectors D are identical, and thus � is square. Also, in a
quadratic form, we assume that � is symmetric (even if it is not, only the
symmetric part of � contributes, so effectively, it acts like a symmetric
matrix).

A.4 Four Fundamental Subspaces in Linear Algebra
This section reviews how the dimensions of a matrix in a linear system
relate to dimensional spaces.∗ These concepts are especially helpful for
understanding constrained optimization (Chapter 5) and build on the
review in Section 5.2.

A vector space is the set of all points that can be obtained by linear
combinations of a given set of vectors. The vectors are said to span
the vector space. A basis is a set of linearly independent vectors that
generates all points in a vector space. A subspace is a space of lower
dimension than the space that contains it (e.g., a line is a subspace of a
plane).

Two vectors are orthogonal if the angle between them is 90 degrees.
Then, their dot product is zero. A subspace (1 is orthogonal to another
subspace (2 if every vector in (1 is orthogonal to every vector in (2.

Consider an (< × =)matrix �. The rank (A) of a matrix � is the maxi-
mum number of linearly independent row vectors of � or, equivalently,
themaximumnumber of linearly independent columnvectors. The rank
can also be defined as the dimensionality of the vector space spanned
by the rows or columns of �. For an (< × =)matrix, A ≤ min(<, =).

Through a matrix-vector multiplication �G = 1, this matrix maps
an =-vector G into an <-vector 1. Figure A.7 shows this mapping and
illustrates the four fundamental subspaces that we now explain.

The column space of a matrix � is the vector space spanned by the
vectors in the columns of �. The dimensionality of this space is given
by A, where A ≤ =, so the column space is a subspace of =-dimensional
space. The row space of a matrix � is the vector space spanned by the
vectors in the rows of � (or equivalently, it is the column space of �)).
The dimensionality of this space is given by A, where A ≤ <, so the row
space is a subspace of =-dimensional space.

https://books.google.com/books?vid=ISBN0030105676
https://books.google.com/books?vid=ISBN0030105676

A Mathematics Background 548

R= R<
�

Row space
�ᵀH ≠ 0
dim = A

Nullspace
�G = 0

dim = = − A

0

GA

G=

G = GA + G=

Column space
�G ≠ 0
dim = A

Left nullspace
�ᵀH = 0

dim = < − A

0

1
�GA = 1

�G = 1

�G= = 0

Fig. A.7 The four fundamental sub-
spaces of linear algebra. An (< × =)
matrix �maps vectors from =-space
to <-space. When the vector is in
the row space of the matrix, it maps
to the column space of � (GA → 1).
When the vector is in the nullspace
of �, it maps to zero (G= → 0). Com-
bining the row space and nullspace
of �, we can obtain any vector in
=-dimensional space (G = GA + G=),
which maps to the column space of
� (G → 1).

The nullspace of a matrix � is the vector space consisting of all the
vectors that are orthogonal to the rows of �. Equivalently, the nullspace
of � is the vector space of all vectors G= such that �G= = 0. Therefore,
the nullspace is orthogonal to the row space of �. The dimension of
the nullspace of � is = − A.

Combining the nullspace and row space of � adds up to the whole
=-dimensional space, that is, G = GA + G= , where GA is in the row space
of � and G= is in the nullspace of �.

The left nullspace of a matrix � is the vector space of all G such that
�ᵀG = 0. Therefore, the left nullspace is orthogonal to the column space
of�. Thedimension of the left nullspace of� is<−A. Combining the left
nullspace and column space of � adds up to the whole <-dimensional
space.

A.5 Vector and Matrix Norms
Norms give an idea of the magnitude of the entries in vectors and
matrices. They are a generalization of the absolute value for real
numbers. A norm ‖·‖ is a real-valued function with the following
properties:

• ‖G‖ ≥ 0 for all G.
• ‖G‖ = 0 if an only if G = 0.
• ‖
G‖ = |
 | ‖G‖ for all real numbers
.
•

G + H

 ≤ ‖G‖ +

H

 for all G and H.

Most commonmatrix norms also have the property that

GH

 ≤ ‖G‖

H

,

although this is not required in general.

A Mathematics Background 549

| |G | |1

| |G | |2

| |G | |∞

| |G | |?

Fig. A.8 Norms for two-dimensional
case.

Westart bydefiningvector norms,where thevector is G = [G1 , . . . , G=].
The most familiar norm for vectors is the 2-norm, also known as the
Euclidean norm, which corresponds to the Euclidean length of the vector:

‖G‖2 =
(
=∑
8=1

G2
8

) 1
2

=
(
G2

1 + G2
2 + . . . + G2

=
) 1

2 . (A.25)

Because this norm is used so often, we often omit the subscript and just
write ‖G‖. In this book, we sometimes use the square of the 2-norm,
which can be written as the dot product,

‖G‖22 = GᵀG . (A.26)

More generally, we can refer to a class of norms called ?-norms:

‖G‖? =
(
=∑
8=1
|G8 |?

) 1
?

= (|G1 |? + |G2 |? + . . . + |G= |?)
1
? , (A.27)

where 1 ≤ ? < ∞. Of all the ?-norms, three are most commonly used:
the 2-norm (Eq. A.25), the 1-norm, and the∞-norm. From the previous
definition, we see that the 1-norm is the sum of the absolute values of
all the entries in G:

‖G‖1 =
=∑
8=1
|G8 | = |G1 | + |G2 | + . . . + |G= | . (A.28)

The application of∞ in the ?-norm definition is perhaps less obvious,
but as ? →∞, the largest term in that sum dominates all of the others.
Raising that quantity to the power of 1/? causes the exponents to cancel,
leaving only the largest-magnitude component of G. Thus, the infinity
norm is

‖G‖∞ = max
8
|G8 | . (A.29)

The infinity norm is commonly used in optimization convergence
criteria.

The vector norms are visualized in Fig. A.8 for = = 2. If G = [1, . . . , 1],
then

‖G‖1 = =, ‖G‖2 = =
1
2 , ‖G‖∞ = 1 . (A.30)

It is also possible to assign different weights to each vector compo-
nent to form a weighted norm:

‖G‖? = (F1 |G1 |? + F2 |G2 |? + . . . + F= |G= |?)
1
? . (A.31)

A Mathematics Background 550

Several norms for matrices exist. There are matrix norms similar to
the vector norms that we defined previously. Namely,

‖�‖1 = max
1≤ 9≤=

=∑
8=1

���8 9 ��
‖�‖2 = (�max (�ᵀ�)) 1

2

‖�‖∞ = max
1≤8≤=

=∑
8=1

���8 9 �� ,
(A.32)

where �max (�ᵀ�) is the largest eigenvalue of �ᵀ�. When � is a square
symmetric matrix, then

‖�‖2 = |�max (�)| . (A.33)

Another matrix norm that is useful but not related to any vector
norm is the Frobenius norm, which is defined as the square root of the
absolute squares of its elements, that is,

‖�‖� =
√√√ <∑

8=1

=∑
9=1

�2
8 9 . (A.34)

The Frobenius norm can be weighted by a matrix, as follows:

‖�‖, =

, 1

2�,
1
2

�
. (A.35)

This norm is used in the formal derivation of the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) update formula (see Appendix C).

A.6 Matrix Types
There are several common types of matrices that appear regularly
throughout this book. We review some terminology here.

A diagonal matrix is a matrix where all off-diagonal terms are zero.
In other words, � is diagonal if:

�8 9 = 0 for all 8 ≠ 9 . (A.36)

The identity matrix � is a special diagonal matrix where all diagonal
components are 1.

The transpose of a matrix is defined as follows:

[�ᵀ]8 9 = � 98 . (A.37)

A Mathematics Background 551

�

�:

�1

=

:

=
:

Fig. A.9 For � to be positive definite,
the determinants of the submatrices
�1 , �2 , . . . �= must be greater than
zero.

Note that
(�ᵀ)ᵀ = �

(� + �)ᵀ = �ᵀ + �ᵀ

(��)ᵀ = �ᵀ�ᵀ .

(A.38)

A symmetric matrix is one where the matrix is equal to its transpose:

�ᵀ = � ⇒ �8 9 = � 98 . (A.39)

The inverse of a matrix, �−1, satisfies

��−1 = � = �−1� . (A.40)

Not all matrices are invertible. Some common properties for inverses
are as follows: (

�−1)−1
= �

(��)−1 = �−1�−1(
�−1)ᵀ = (�ᵀ)−1 .

(A.41)

A symmetric matrix � is positive definite if and only if

Gᵀ�G > 0 (A.42)

for all nonzero vectors G. One property of positive-definite matrices is
that their inverse is also positive definite.

The positive-definite condition (Eq. A.42) can be challenging to
verify. Still, we can use equivalent definitions that are more practical.

For example, by choosing appropriate Gs, we can derive the neces-
sary conditions for positive definiteness:

�88 > 0 for all 8

�8 9 <
√
�88� 9 9 for all 8 ≠ 9 .

(A.43)

These are necessary but not sufficient conditions. Thus, if any diagonal
element is less than or equal to zero, we know that the matrix is not
positive definite.

An equivalent condition to Eq. A.42 is that all the eigenvalues of �
are positive. This is a sufficient condition.

Another practical condition equivalent to Eq. A.42 is that all the
leading principal minors of � are positive. A leading principal minor is
the determinant of a leading principal submatrix. A leading principal
submatrix of order :, �: of an (= × =)matrix � is obtained by removing
the last =−: rows and columns of�, as shown in Fig. A.9. Thus, to verify
if � is positive definite, we start with : = 1, check that �1 > 0 (only

A Mathematics Background 552

one element), then check that det(�2) > 0, and so on, until det(�=) > 0.
Suppose any of the determinants in this sequence is not positive. In
that case, we can stop the process and conclude that � is not positive
definite.

A positive-semidefinitematrix satisfies

Gᵀ�G ≥ 0 (A.44)

for all nonzero vectors G. In this case, the eigenvalues are nonnegative,
and there is at least one that is zero. A negative-definite matrix satisfies

Gᵀ�G < 0 (A.45)

for all nonzero vectors G. In this case, all the eigenvalues are negative.
An indefinite matrix is one that is neither positive definite nor negative
definite. Then, there are at least two nonzero vectors G and H such that

Gᵀ�G > 0 > Hᵀ�H . (A.46)

A.7 Matrix Derivatives
Let us consider the derivatives of a few common cases: linear and
quadratic functions. Combining the concept of partial derivatives and
matrix forms of equations allows us to find the gradients of matrix
functions. First, let us consider a linear function, 5 , defined as

5 (G) = 0ᵀG + 1 =
=∑
8=1

08G8 + 18 , (A.47)

where 0, G, and 1 are vectors of length =, and 08 , G8 , and 18 are the 8th
elements of 0, G, and 1, respectively. If we take the partial derivative
of each element with respect to an arbitrary element of G, namely, G: ,
we get

%

%G:

[
=∑
8=1

08G8 + 18
]
= 0: . (A.48)

Thus,
∇G(0ᵀG + 1) = 0 . (A.49)

Recall the quadratic form presented in Appendix A.3.3; we can
combine that with a linear term to form a general quadratic function:

5 (G) = Gᵀ�G + 1ᵀG + 2 , (A.50)

A Mathematics Background 553

where G, 1, and 2 are still vectors of length =, and � is an =-by-=
symmetric matrix. In index notation, 5 is as follows:

5 (G) =
=∑
8=1

=∑
9=1

G808 9G 9 + 18G8 + 28 . (A.51)

For convenience, we separate the diagonal terms from the off-
diagonal terms, leaving us with

5 (G) =
=∑
8=1

[
088G2

8 + 18G8 + 28
] +∑

9≠8

G808 9G 9 . (A.52)

Nowwe take the partial derivativeswith respect to G: as before, yielding

% 5
%G:

= 20::G: + 1: +
∑
9≠8

G 90 9: +
∑
9≠8

0: 9G 9 . (A.53)

We now move the diagonal terms back into the sums to get

% 5
%G:

= 1: +
=∑
9=1
(G 90 9: + 0: 9G 9) , (A.54)

which we can put back into matrix form as follows:

∇G 5 (G) = �ᵀG + �G + 1 . (A.55)

If � is symmetric, then �ᵀ = �, and thus

∇G(Gᵀ�G + 1ᵀG + 2) = 2�G + 1 . (A.56)

A.8 Eigenvalues and Eigenvectors
Given an (= × =) matrix, if there is a scalar � and a nonzero vector E
that satisfy

�E = �E , (A.57)

then � is an eigenvalue of the matrix �, and E is an eigenvector. The
left-hand side of Eq. A.57 is a matrix-vector product that represents a
linear transformation applied to E. The right-hand side of Eq. A.57 is a
scalar-vector product that represents a vector aligned with E. Therefore,
the eigenvalue problem (Eq. A.57) answers the question: Which vectors,
when transformed by �, remain in the same direction, and how much
do their corresponding lengths change in that transformation?

The solutions of the eigenvalue problem (Eq. A.57) are given by the
solutions of the scalar equation,

det (� − ��) = 0 . (A.58)

A Mathematics Background 554

∗Unbiased means that the expected value
of the sample variance is the same as the
true population variance. If = were used
in the denominator instead of = − 1, then
the two quantities would differ by a con-
stant.

This equation yields a polynomial of degree = called the characteristic
equation, whose roots are the eigenvalues of �.

If � is symmetric, it has = real eigenvalues (�1 , . . . ,�=) and =
linearly independent eigenvectors (E1 , . . . , E=) corresponding to those
eigenvalues. It is possible to choose the eigenvectors to be orthogonal
to each other (i.e., Eᵀ8 E 9 = 0 for 8 ≠ 9) and to normalize them (so that
Eᵀ8 E8 = 1).

We use the eigenvalue problem in Section 4.1.2, where the eigen-
vectors are the directions of principal curvature, and the eigenvalues
quantify the curvature. Eigenvalues are also helpful in determining if a
matrix is positive definite.

A.9 Random Variables
Imagine measuring the axial strength of a rod by performing a tensile
test with many rods, each designed to be identical. Even with “iden-
tical” rods, every time you perform the test, you get a different result
(hopefully with relatively small differences). This variation has many
potential sources, including variation in the manufactured size and
shape, in the composition of the material, and in the contact between
the rod and testing fixture. In this example, we would call the axial
strength a random variable, and the result from one test would be a
random sample. The random variable, axial strength, is a function of
several other random variables, such as bar length, bar diameter, and
material Young’s modulus.

One measurement does not tell us anything about how variable
the axial strength is, but if we perform the test many times, we can
learn a lot about its distribution. From this information, we can infer
various statistical quantities, such as themean value of the axial strength.
The mean of some variable G that is measured = times is estimated as
follows:

�G =
1
=

=∑
8=1

G8 . (A.59)

This is actually a sample mean, which would differ from the pop-
ulation mean (the true mean if you could measure every bar). With
enough samples, the sample mean approaches the population mean. In
this brief review, we do not distinguish between sample and population
statistics.

Another important quantity is the variance or standard deviation. This
is a measure of spread, or how far away our samples are from the mean.
The unbiased∗ estimate of the variance is

A Mathematics Background 555

†This is not a definition, but rather uses
the expected value definitionwith a some-
what lengthy derivation.

�2
G =

1
= − 1

=∑
8=1
(G8 − �G)2 , (A.60)

and the standard deviation is just the square root of the variance. A
small variance implies that measurements are clustered tightly around
themean,whereas a large variancemeans thatmeasurements are spread
out far from the mean. The variance can also be written in the following
mathematically equivalent but more computationally-friendly format:

�2
G =

1
= − 1

(
=∑
8=1

(
G2
8

) − =�2
G

)
. (A.61)

More generally, we might want to know what the probability is of
getting a bar with a specific axial strength. In our testing, we could
tabulate the frequency of each measurement in a histogram. If done
enough times, it would define a smooth curve, as shown in Fig. A.10.
This curve is called the probability density function (PDF), ?(G), and it
tells us the relative probability of a certain value occurring.

More specifically, a PDF gives the probability of getting a value with
a certain range:

Prob(0 ≤ G ≤ 1) =
∫ 1

0
?(G)dG . (A.62)

The total integral of the PDF must be 1 because it contains all possible
outcomes (100 percent): ∫ ∞

−∞
?(G)dG = 1 . (A.63)

From the PDF, we can also measure various statistics, such as the mean
value:

�G = E(G) =
∫ ∞

−∞
G?(G)dG . (A.64)

This quantity is also referred to as the expected value of G (E[G]). The
expected value of a function of a random variable, 5 (G), is given by:†

� 5 = E
(
5 (G)) = ∫ ∞

−∞
5 (G)?(G)dG . (A.65)

We can also compute the variance, which is the expected value of
the squared difference from the mean:

�2
G = E

(
(G − E (G))2

)
=

∫ ∞

−∞
(G − �G)2?(G)dG , (A.66)

A Mathematics Background 556

or in a mathematically equivalent format:

�2
G =

∫ ∞

−∞
G2?(G)dG − �2

G . (A.67)

The mean and variance are the first and second moments of the
distribution. In general, a distribution may require an infinite number
of moments to describe it fully. Higher-order moments are generally
mean centered and are normalized by the standard deviation so that
the =th normalized moment is computed as follows:

E
((G − �G

�

)=)
. (A.68)

The third moment is called skewness, and the fourth is called kurtosis,
although these higher-order moments are less commonly used.

The cumulative distribution function (CDF) is related to the PDF,which
is the cumulative integral of the PDF and is defined as follows:

%(G) =
∫ G

−∞
?(C)dC . (A.69)

The capital % denotes the CDF, and the lowercase ? denotes the PDF.
As an example, the PDF and corresponding CDF for the axial strength
are shown in Fig. A.10. The CDF always approaches 1 as G →∞.

990 995 1,000 1,005 1,010
0

0.1

0.2

0.3

�

?(�)

PDF for the axial strength of a rod.

990 995 1,000 1,005 1,010
0

0.2

0.4

0.6

0.8

1

�

%(�)

CDF for the axial strength of a rod.

Fig. A.10 Comparison between PDF
and CDF for a simple example.

We often fit a named distribution to the PDF of empirical data. One
of the most popular distributions is the normal distribution, also known
as the Gaussian distribution. Its PDF is as follows:

?(G;�, �2) = 1
�
√

2�
exp

(−(G − �)2
2�2

)
. (A.70)

For a normal distribution, the mean and variance are visible in the func-
tion, but these quantities are defined for any distribution. Figure A.11

A Mathematics Background 557

� = 1, � = 0.5

� = 3, � = 1.0

−1 0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

G

?(G)

Fig. A.11 Two normal distributions.
Changing the mean causes a shift
along the G-axis. Increasing the stan-
dard deviation causes the PDF to
spread out.

shows two normal distributions with different means and standard
deviations to illustrate the effect of those parameters.

Several other popular distributions are shown in Fig. A.12: uni-
form distribution, Weibull distribution, lognormal distribution, and
exponential distribution. These are only a few of many other possible
probability distributions.

0 2 4 6

0

0.1

0.2

0.3

G

?(G)

Uniform distribution

0 2 4 6

0

0.1

0.2

0.3

G

?(G)

Weibull distribution

0 2 4 6

0

0.1

0.2

0.3

G

?(G)

Lognormal distribution

0 2 4 6

0

0.1

0.2

0.3

G

?(G)

Exponential distribution

Fig. A.12 Popular probability distri-
butions besides the normal distribu-
tion.

A Mathematics Background 558

An extension of variance is the covariance, which measures the
variability between two random variables:

cov(G, H) = E ((G − E(G)) (H − E(H)))
= E(GH) − �G�H .

(A.71)

From this definition, we see that the variance is related to covariance
by the following:

�2
G = var(G) = cov(G, G) . (A.72)

Covariance is often expressed as a matrix, in which case the variance of
each variable appears on the diagonal. The correlation is the covariance
divided by the standard deviations:

corr(G, H) = cov(G, H)
�G�H

. (A.73)

∗Trefethen and Bau III220 provides a
much more detailed explanation of linear
solvers.
220. Trefethen and Bau III, Numerical
Linear Algebra, 1997.

BLinear Solvers
In Section 3.6, we present an overview of solution methods for dis-
cretized systems of equations, followed by an introduction to Newton-
based methods for solving nonlinear equations. Here, we review the
solvers for linear systems required to solve for each step of Newton-
based methods.∗

B.1 Systems of Linear Equations
If the equations are linear, they can be written as

�D = 1 , (B.1)

where � is a square (= × =) matrix, and 1 is a vector, and neither of
these depends on D. If this system of equations has a unique solution,
then the system and the matrix � are nonsingular. This is equivalent to
saying that � has an inverse, �−1. If �−1 does not exist, the matrix and
the system are singular.

A matrix � is singular if its rows (or equivalently, its columns) are
linearly dependent (i.e., if one of the rows can be written as a linear
combination of the others).

If the matrix � is nonsingular and we know its inverse �−1, the
solution of the linear system (Eq. B.1) can be written as G = �−11.
However, the numerical methods described here do not form �−1. The
main reason for this is that forming �−1 is expensive: the computational
cost is proportional to =3.

For practical problemswith large =, it is typical for thematrix� to be
sparse, that is, for most of its entries to be zeros. An entry �8 9 represents
the interaction between variables 8 and 9. When solving differential
equations on a discretized grid, for example, a given variable 8 only
interacts with variables 9 in its vicinity in the grid. These interactions
correspond to nonzero entries, whereas all other entries are zero.
Sparse linear systems tend to have a number of nonzero terms that is
proportional to =. This is in contrast with a dense matrix, which has =2

nonzero entries. Solvers should take advantage of sparsity to remain
efficient for large =.

559

https://books.google.com/books?vid=ISBN0898713617
https://books.google.com/books?vid=ISBN0898713617

B Linear Solvers 560

� =
!

1
1

1
1

1
1

*

Fig. B.1 !* factorization.

We rewrite the linear system (Eq. B.1) as a set of residuals,

A(D) = �D − 1 = 0. (B.2)

To solve this system of equations, we can use either a direct method
or an iterative method. We explain these briefly in the rest of this
appendix, but we do not cover more advanced techniques that take
advantage of sparsity.

B.2 Conditioning
The distinction between singular and nonsingular systems blurs once
we have to deal with finite-precision arithmetic. Systems that are
singular in the exact sense are ill-conditionedwhen a small change in the
data (entries of � or 1) results in a large change in the solution. This
large sensitivity of the solution to the problem parameters is an issue
because the parameters themselves have finite precision. Then, any
imprecision in these parameters can lead to significant errors in the
solution, even if no errors are introduced in the numerical solution of
the linear system.

The conditioning of a linear system can be quantified by the condition
number of the matrix, which is defined as the scalar

cond(�) = ‖�‖ ·

�−1

 , (B.3)

where any matrix norm can be used. Because ‖�‖ ·

�−1

 ≥

��−1

,
we have

cond(�) ≥ 1 (B.4)

for all matrices. A matrix � is well-conditioned if cond(�) is small and
ill-conditioned if cond(�) is large.

B.3 Direct Methods
The standard way to solve linear systems of equations with a computer
is Gaussian elimination, which in matrix form is equivalent to LU
factorization. This is a factorization (or decomposition) of �, such as
� = !* , where ! is a unit lower triangular matrix, and* is an upper
triangular matrix, as shown in Fig. B.1.

The factorization transforms the matrix � into an upper triangular
matrix * by introducing zeros below the diagonal, one column at a
time, starting with the first one and progressing from left to right. This
is done by subtracting multiples of each row from subsequent rows.

B Linear Solvers 561

These operations can be expressed as a sequence of multiplications
with lower triangular matrices !8 ,

!=−1 · · · !2!1︸ ︷︷ ︸
!−1

� = *. (B.5)

After completing these operations, we have * , and we can find ! by
computing ! = !−1

1 !−1
2 · · · !−1

=−1.
Once we have this factorization, we have !*D = 1. Setting *D to

H, we can solve !H = 1 for H by forward substitution. Now we have
*D = H, which we can solve by back substitution for D.

Algorithm B.1 Solving �D = 1 by !* factorization
Inputs:
�: Nonsingular square matrix
1: A vector

Outputs:
D: Solution to �D = 1

Perform forward substitution to solve !H = 1 for H:

H1 =
11
!11

, H8 =
1
!88

©­«
18 −

8−1∑
9=1

!8 9H9
ª®¬

for 8 = 2, . . . , =

Perform backward substitution to solve the following*D = H for D:

D= =
H=
*==

, D8 =
1
*88

©­«
H8 −

=∑
9=8+1

*8 9D9
ª®¬

for 8 = = − 1, . . . , 1

This process is not stable in general because roundoff errors are
magnified in the backward substitution when diagonal elements of �
have a small magnitude. This issue is resolved by partial pivoting, which
interchanges rows to obtain more favorable diagonal elements.

Cholesky factorization is an LU factorization specialized for the case
where the matrix � is symmetric and positive definite. In this case,
pivoting is unnecessary because the Gaussian elimination is always
stable for symmetric positive-definite matrices. The factorization can
be written as

� = !�!ᵀ , (B.6)
where � = diag[*11 , . . . , *==]. This can be expressed as the matrix
product

� = ��ᵀ , (B.7)
where � = !�1/2.

B Linear Solvers 562

�EE

Fig. B.2 Iterativemethods just require
a process (which can be a black box)
to compute products of � with an
arbitrary vector E.

B.4 Iterative Methods
Although direct methods are usually more efficient and robust, iterative
methods have several advantages:

• Iterativemethodsmake it possible to trade between computational
cost and precision because they can be stopped at any point and
still yield an approximation of D. On the other hand, direct
methods only get the solution at the end of the process with the
final precision.

• Iterative methods have the advantage when a good guess for D
exists. This is often the case in optimization, where the D from
the previous optimization iteration can be used as the guess for
the new evaluations (called a warm start).

• Iterative methods do not require forming and manipulating
the matrix �, which can be computationally costly in terms of
both time and memory. Instead, iterative methods require the
computation of the residuals A(D) = �D − 1 and, in the case of
Krylov subspace methods, products of � with a given vector.
Therefore, iterative methods can be more efficient than direct
methods for cases where � is large and sparse. All that is needed
is an efficient process to get the product of � with a given vector,
as shown in Fig. B.2.

Iterative methods are divided into stationary methods (also known
as fixed-point iteration methods) and Krylov subspace methods.

B.4.1 Jacobi, Gauss–Seidel, and SOR
Fixed-pointmethods generate a sequence of iterates D1 , . . . , D: , . . . using
a function

D:+1 = � (D:) , : = 0, 1, . . . (B.8)

starting from an initial guess D0. The function �(D) is devised such
that the iterates converge to the solution D∗, which satisfies A(D∗) = 0.
Many stationary methods can be derived by splitting the matrix such
that � = " −# . Then, �D = 1 leads to"D = #D + 1, and substituting
this into the linear system yields

D = "−1(#D + 1). (B.9)

Because #D = "D − �D, substituting this into the previous equation
results in the iteration

D:+1 = D: +"−1 (1 − �D:) . (B.10)

B Linear Solvers 563

Defining the residual at iteration : as

A (D:) = 1 − �D: , (B.11)

we can write
D:+1 = D: +"−1A (D:) . (B.12)

The splitting matrix " is fixed and constructed so that it is easy to
invert. The closer "−1 is to the inverse of �, the better the iterations
work. We now introduce three stationary methods corresponding to
three different splitting matrices.

The Jacobi method consists of setting " to be a diagonal matrix �,
where the diagonal entries are those of �. Then,

D:+1 = D: + �−1A (D:) . (B.13)

In component form, this can be written as

D8 :+1 =
1
�88


18 −

=D∑
9=1, 9≠8

�8 9D9 :


, 8 = 1, . . . , =D . (B.14)

Using this method, each component in D:+1 is independent of each
other at a given iteration; they only depend on the previous iteration
values, D: , and can therefore be done in parallel.

The Gauss–Seidel method is obtained by setting " to be the lower
triangular portion of � and can be written as

D:+1 = D: + �−1A(D:), (B.15)

where � is the lower triangular matrix. Because of the triangular
matrix structure, each component in D:+1 is dependent on the previous
elements in the vector, but the iteration can be performed in a single
forward sweep. Writing this in component form yields

D8 :+1 =
1
�88


18 −

∑
9<8

�8 9D9 :+1 −
∑
9>8

�8 9D9 :


, 8 = 1, . . . , =D . (B.16)

Unlike the Jacobi iterations, a Gauss–Seidel iteration cannot be per-
formed in parallel because of the terms where 9 < 8, which require
the latest values. Instead, the states must be updated sequentially.
However, the advantage of Gauss–Seidel is that it generally converges
faster than Jacobi iterations.

B Linear Solvers 564

D0

D∗

0 1 2
0

0.5

1

1.5

2

D1

D2

D0

D∗

0 1 2
0

0.5

1

1.5

2

D1

D2

D0

D∗

0 1 2
0

0.5

1

1.5

2

D1

D2

Jacobi

Gauss–Seidel

SOR

Fig. B.3 Jacobi, Gauss–Seidel, and
SOR iterations.

The successive over-relaxation (SOR) method uses an update that
is a weighted average of the Gauss–Seidel update and the previous
iteration,

D:+1 = D: + $ ((1 − $)� + $�)−1 A(D:), (B.17)

where $, the relaxation factor, is a scalar between 1 and 2. Setting $ = 1
yields the Gauss–Seidel method. SOR in component form is as follows:

D8 :+1 = (1−$)D8 :+ $
�88


18 −

∑
9<8

�8 9D9 :+1 −
∑
9>8

�8 9D9 :


, 8 = 1, . . . , =D .

(B.18)
With the correct value of $, SOR converges faster than Gauss–Seidel.

Example B.1 Iterative methods applied to a simple linear system.
Suppose we have the following linear system of two equations:[

2 −1
−2 3

] [
D1
D2

]
=

[
0
1

]
.

This corresponds to the two lines shown in Fig. B.3, where the solution is at
their intersection.

Applying the Jacobian iteration (Eq. B.14),

D1:+1 =
1
2D2:

D2:+1 =
1
3 (1 + 2D1:) .

Starting with the guess D(0) = (2, 1), we get the iterations shown in Fig. B.3. The
Gauss–Seidel iteration (Eq. B.16) is similar, where the only change is that the
second equation uses the latest state from the first one:

D1:+1 =
1
2D2:

D2:+1 =
1
3 (1 + 2D1:+1) .

As expected, Gauss–Seidel converges faster than the Jacobi iteration, taking a
more direct path. The SOR iteration is

D1:+1 = (1 − $)D1: + $
2 D2:

D2:+1 = (1 − $)D2: + $
3 (1 + 2D1:) .

SOR converges even faster for the right values of $. The result shown here is
for $ = 1.2.

B Linear Solvers 565

B.4.2 Conjugate Gradient Method
The conjugate gradient method applies to linear systems where � is
symmetric and positive definite. This method can be adapted to solve
nonlinear minimization problems (see Section 4.4.2).

We want to solve a linear system (Eq. B.2) iteratively. This means
that at a given iteration D: , the residual is not necessarily zero and can
be written as

A: = �D: − 1 . (B.19)

Solving this linear system is equivalent to minimizing the quadratic
function

5 (D) = 1
2D

ᵀ�D − 1ᵀD . (B.20)

This is because the gradient of this function is

∇ 5 (D) = �D − 1 . (B.21)

Thus, the gradient of the quadratic is the residual of the linear system,

A: = ∇ 5 (D:) . (B.22)

We can express the path from any starting point to a solution D∗ as
a sequence of = steps with directions ?: and length
: :

D∗ =
=−1∑
:=0

:?: . (B.23)

Substituting this into the quadratic (Eq. B.20), we get

5 (D∗) = 5

(
=−1∑
:=0

:?:

)

=
1
2

(
=−1∑
:=0

:?:

)ᵀ
�

(
=−1∑
:=0

:?:

)
− 1ᵀ

(
=−1∑
:=0

:?:

)

=
1
2

=−1∑
:=0

=−1∑
9=0

:
 9?:ᵀ�? 9 −
=−1∑
:=0

:1ᵀ?: .

(B.24)

The conjugate gradient method uses a set of = vectors ?: that are
conjugate with respect to matrix �. Such vectors have the following
property:

?:ᵀ�? 9 = 0, for all : ≠ 9 . (B.25)

Using this conjugacy property, the double-sum term can be simplified
to a single sum,

1
2

=−1∑
:=0

=−1∑
9=0

:
 9?:ᵀ�? 9 =
1
2

=−1∑
:=0

:
2?:ᵀ�?: . (B.26)

B Linear Solvers 566

∗Suppose we have two eigenvectors, E:
and E 9 . Then E:ᵀ�E 9 = E:ᵀ(�9E 9) =
�9E:ᵀE 9 . This dot product is zero because
the eigenvectors of a symmetricmatrix are
mutually orthogonal.

Then, Eq. B.24 simplifies to

5 (D∗) =
=−1∑
:=0

(
1
2
:

2?:ᵀ�?: −
:1ᵀ?:
)
. (B.27)

Because each term in this sum involves only one direction ?: , we have
reduced the original problem to a series of one-dimensional quadratic
functions that can be minimized one at a time. Each one-dimensional
problem corresponds to minimizing the quadratic with respect to the
step length
: . Differentiating each term and setting it to zero yields
the following:

:?:ᵀ�?: − 1ᵀ?: = 0⇒
: =
1ᵀ?:
?:ᵀ�?:

. (B.28)

Now, the question is: How do we find this set of directions? There
are many sets of directions that satisfy conjugacy. For example, the
eigenvectors of � satisfy Eq. B.25.∗ However, it is costly to compute the
eigenvectors of a matrix. We want a more convenient way to compute a
sequence of conjugate vectors.

The conjugate gradient method sets the first direction to the steepest-
descent direction of the quadratic at the first point. Because the gradient
of the function is the residual of the linear system (Eq. B.22), this first
direction is obtained from the residual at the starting point,

?1 = −A (D0) . (B.29)

Each subsequent direction is set to a new conjugate direction using
the update

?:+1 = −A:+1 + �:?: , (B.30)

where � is set such that ?:+1 and ?: are conjugate with respect to �.
We can find the expression for � by starting with the conjugacy

property that we want to achieve,

?:+1
ᵀ�?: = 0 . (B.31)

Substituting the new direction ?:+1 with the update (Eq. B.30), we get
(−A:+1 + �:?:

)ᵀ �?: = 0 . (B.32)

Expanding the terms and solving for �, we get

�: =
A:+1

ᵀ�?:
?:ᵀ�?:

. (B.33)

B Linear Solvers 567

†For a proof of this property, see Theorem
5.2 in Nocedal and Wright.79

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

For each search direction ?: , we can perform an exact line search by
minimizing the quadratic analytically. The directional derivative of the
quadratic at a point G along the search direction ? is as follows:

% 5 (G +
?)
%

=
%

%

(
1
2 (G +
?)

ᵀ�(G +
?) − 1ᵀ(G +
?)
)

= ?ᵀ�(G +
?) − ?ᵀ1
= ?ᵀ(�G − 1) +
?ᵀ�?
= ?ᵀA(G) +
?ᵀ�? .

(B.34)

By setting this derivative to zero, we can get the step size that minimizes
the quadratic along the line to be

: = −
A:ᵀ?:
?:ᵀ�?:

. (B.35)

The numerator can be written as a function of the residual alone.
Replacing ?: with the conjugate direction update (Eq. B.30), we get

A:ᵀ?: = A:ᵀ
(−A:ᵀ + �:?:−1

)
= −A:ᵀA:ᵀ + �:A:ᵀ?:−1

= −A:ᵀA: .
(B.36)

Here we have used the property of the conjugate directions stating that
the residual vector is orthogonal to all previous conjugate directions,
so that A8ᵀ?8 for 8 = 0, 1, . . . , : − 1.† Thus, we can now write,

: = − A:ᵀA:
?ᵀ:�?:

. (B.37)

The numerator of the expression for � (Eq. B.33) can also be written
in terms of the residual alone. Using the expression for the residual
(Eq. B.19) and taking the difference between two subsequent residuals,
we get

A:+1 − A: = (�D:+1 − 1) − (�D: − 1) = � (D:+1 − D:)
= �

(
D: +
:?: − D:

)
=
:�?: .

(B.38)

Using this result in the numerator of � in Eq. B.33, we can write

A:+1
ᵀ�?: =

1

:
A:+1

ᵀ (A:+1 − A:)

=
1

:
(A:+1

ᵀA:+1 − A:+1
ᵀA:)

https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-0-387-40065-5

B Linear Solvers 568

‡For a proof of this property, see Theorem
5.3 in Nocedal and Wright.79

79. Nocedal and Wright, Numerical Opti-
mization, 2006.

§Because the linear conjugate gradient
method converges in = steps, it was orig-
inally thought of as a direct method. It
was initially dismissed in favor of more ef-
ficient direct methods, such as LU factor-
ization. However, the conjugate gradient
method was later reframed as an effective
iterativemethod to obtain approximate so-
lutions to large problems.

A:+1
ᵀ�?: =

1

:
(A:+1

ᵀA:+1) , (B.39)

where we have used the property that the residual at any conjugate
residual iteration is orthogonal to the residuals at all previous iterations,
so A:+1

ᵀA: = 0.‡
Now, using this new numerator and using Eq. B.37 to write the

denominator as a function of the previous residual, we obtain

�: =
A:ᵀA:

A:−1ᵀA:−1
. (B.40)

We use this result in the nonlinear conjugate gradient method for
function minimization in Section 4.4.2.

The linear conjugate gradient steps are listed in Alg. B.2. The
advantage of this method relative to the direct method is that � does
not need to be stored or given explicitly. Instead, we only need to
provide a function that computes matrix-vector products with �. These
products are required to compute residuals (A = �D − 1) and the �?
term in the computation of
. Assuming a well-conditioned problem
with good enough arithmetic precision, the algorithm should converge
to the solution in = steps.§

Algorithm B.2 Linear conjugate gradient
Inputs:
D(0): Starting point
�: Convergence tolerance

Outputs:
D∗: Solution of linear system

: = 0 Initialize iteration counter
while ‖A: ‖∞ > � do

if : = 0 then
?: = −A: First direction is steepest descent

else
�: =

A:ᵀA:
A:−1ᵀA:−1

?: = −A: + �:?:−1 Conjugate gradient direction update
end if

: = −

A:ᵀA:
?ᵀ: �?:

Step length
D:+1 = D: +
:?: Update variables
: = : + 1 Increment iteration index

end while

https://dx.doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1007/978-0-387-40065-5

B Linear Solvers 569

¶This is just an overview of Krylov sub-
space methods; for more details, see Tre-
fethen and Bau III220 or Saad.75

75. Saad, Iterative Methods for Sparse
Linear Systems, 2003.

220. Trefethen and Bau III, Numerical
Linear Algebra, 1997.

B.4.3 Krylov Subspace Methods
Krylov subspacemethods are amore general class of iterativemethods.¶
The conjugate gradient is a special case of aKrylov subspacemethod that
applies only to symmetric positive-definite matrices. However, more
general Krylov subspace methods, such as the generalized minimum
residual (GMRES) method, do not have such restrictions on the matrix.
Comparedwith stationarymethods of Appendix B.4.1, Krylovmethods
have the advantage that they use information gathered throughout the
iterations. Instead of using a fixed splitting matrix, Krylov methods
effectively vary the splitting so that " is changed at each iteration
according to some criteria that use the information gathered so far. For
this reason, Krylov methods are usually more efficient than stationary
methods.

Like stationary iteration methods, Krylov methods do not require
forming or storing �. Instead, the iterations require only matrix-vector
products of the form �E, where E is some vector given by the Krylov
algorithm. The matrix-vector product could be given by a black box, as
shown in Fig. B.2.

For the linear conjugate gradient method (Appendix B.4.2), we
found conjugate directions and minimized the residual of the linear
system in a sequence of these directions.

Krylov subspace methods minimize the residual in a space,

G0 +K: , (B.41)

where G0 is the initial guess, andK: is the Krylov subspace,

K:(�; A0) ≡ span{A0 , �A0 , �2A0 , . . . , �:−1A0} . (B.42)

In other words, a Krylov subspace method seeks a solution that is a
linear combination of the vectors A0 , �A0 , . . . , �:−1A0. The definition
of this particular sequence is convenient because these terms can be
computed recursively with the matrix-vector product black box as
A0 , �(A0), �(�(A0)), �(�(�(A0))), Under certain conditions, it can be
shown that the solution of the linear system of size = is contained in
the subspaceK= .

Krylov subspacemethods (including the conjugate gradientmethod)
converge much faster when using preconditioning. Instead of solving
�G = 1, we solve

("−1�)G = "−11 , (B.43)

where " is the preconditioning matrix (or simply preconditioner). The
matrix" should be similar to � and correspond to a linear system that
is easier to solve. The inverse, "−1, should be available explicitly, and

https://https://www.google.ca/books/edition/Iterative_Methods_for_Sparse_Linear_Syst/qtzmkzzqFmcC
https://https://www.google.ca/books/edition/Iterative_Methods_for_Sparse_Linear_Syst/qtzmkzzqFmcC
https://books.google.com/books?vid=ISBN0898713617
https://books.google.com/books?vid=ISBN0898713617

B Linear Solvers 570

‖The splitting matrix " we used in the
equation for the stationary methods (Ap-
pendix B.4.1) is effectively a precondi-
tioner. An " using the diagonal entries
of � corresponds to the Jacobi method
(Eq. B.13).

221. Saad and Schultz, GMRES: A gener-
alized minimal residual algorithm for solving
nonsymmetric linear systems, 1986.
∗∗GMRES and other Krylov subspace
methods are available in most program-
ming languages, including C/C++, For-
tran, Julia, MATLAB, and Python.

we do not need an explicit form for ". The matrix resulting from the
product"−1� should have a smaller condition number so that the new
linear system is better conditioned.

In the extreme case where " = �, that means we have computed
the inverse of �, and we can get G explicitly. In another extreme, "
could be a diagonal matrix with the diagonal elements of �, which
would scale � such that the diagonal elements are 1.‖

Krylov subspace solvers require three main components: (1) an
orthogonal basis for the Krylov subspace, (2) an optimal property that
determines the solution within the subspace, and (3) an effective pre-
conditioner. Various Krylov subspace methods are possible, depending
on the choice for each of these three components. One of the most
popular Krylov subspace methods is the GMRES.221∗∗

https://dx.doi.org/10.1137/0907058
https://dx.doi.org/10.1137/0907058
https://dx.doi.org/10.1137/0907058

222. Broyden, A class of methods for solving
nonlinear simultaneous equations, 1965.

CQuasi-Newton Methods
C.1 Broyden’s Method
Broyden’s method is the extension of the secant method (from Sec-
tion 3.8) to = dimensions.222 It can also be viewed as the analog of the
quasi-Newton methods from Section 4.4.4 for solving equations (as
opposed to finding a minimum).

Using the notation from Chapter 3, suppose we have a set of =
equations A(D) = [A1 , . . . , A=] = 0 and = unknowns D = [D1 , . . . , D=].
Writing a Taylor series expansion of A(D) and selecting the linear term
of the Taylor series expansion of A yields

�:+1 (D:+1 − D:) ≈ A:+1 − A: , (C.1)

where � is the (= × =) Jacobian, %A/%D. Defining the step in D as

B: = D:+1 − D: , (C.2)

and the change in the residuals as

H: = A:+1 − A: , (C.3)

we can write Eq. C.1 as
�̃:+1B: = H: . (C.4)

This is the equivalent of the secant equation (Eq. 4.80). The difference is
that we now approximate the Jacobian instead of the Hessian. The right-
hand side is the difference between two subsequent function values
(which quantifies the directional derivative along the last step) instead
of the difference between gradients (which quantifies the curvature).

We seek a rank 1 update of the form

�̃ = �̃: + EEᵀ , (C.5)

where the self outer product EEᵀ yields a symmetric matrix of rank 1.
Substituting this update into the required condition (Eq. C.4) yields(

�̃: + EEᵀ
)
B: = H: . (C.6)

571

https://dx.doi.org/10.1090/S0025-5718-1965-0198670-6
https://dx.doi.org/10.1090/S0025-5718-1965-0198670-6

C Quasi-Newton Methods 572

Post-multiplying both sides by Bᵀ, rearranging, and dividing by Bᵀ: B:
yields

EEᵀ =

(
H: − �̃: B:

)
Bᵀ:

Bᵀ: B:
. (C.7)

Substituting this result into the update (Eq. C.5), we get the Jacobian
approximation update,

�̃:+1 = �̃: +

(
H: − �̃: B:

)
Bᵀ:

Bᵀ: B:
, (C.8)

where
H: = A:+1 − A: (C.9)

is the difference in the function values (as opposed to the difference in
the gradients used in optimization).

Thisupdate canbe invertedusing the Sherman–Morrison–Woodbury
formula (Appendix C.3) to get the more useful update on the inverse of
the Jacobian,

�̃−1
:+1 = �̃

−1
: +

(
B: − �̃−1

: H:
)
Hᵀ:

Hᵀ: H:
. (C.10)

We can start with �̃−1
0 = �. Similar to the Newton step (Eq. 3.30), the step

in Broyden’s method is given by solving the linear system. Because the
inverse is provided explicitly, we can just perform the multiplication,

ΔD: = −�̃−1A: . (C.11)

Then we update the variables as

D:+1 = D: + ΔD: . (C.12)

C.2 Additional Quasi-Newton Approximations
In Section 4.4.4, we introduced the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) quasi-Newton approximation for unconstrained optimization,
which was also used in Section 5.5 for constrained optimization. Here
we expand on that to introduce other quasi-Newton approximations
and generalize them.

To get a unique solution for the approximate Hessian update,
quasi-Newton methods quantify the “closeness” of successive Hessian

C Quasi-Newton Methods 573

approximations by using some norm of the difference between the two
matrices, leading to the following optimization problem:

minimize

�̃ − �̃:

by varying �̃

subject to �̃ = �̃ᵀ

�̃B: = H: ,

(C.13)

where, H: = ∇ 5:+1 − ∇ 5: , and B: = G:+1 − G: (the latest step). There
are several possibilities for quantifying the “closeness” between matri-
ces and satisfying the constraints, leading to different quasi-Newton
updates. With a convenient choice of matrix norm, we can solve this
optimization problem analytically to obtain a formula for �̃:+1 as a
function of �̃: , B: , and H: .

The optimization problem (Eq. C.13) does not enforce a positive-
definiteness constraint. It turns out that the update formula always
produces a �̃:+1 that is positive definite, provided that �̃: is positive
definite. The fact that the curvature condition (Eq. 4.81) is satisfied for
each step helps with this.

C.2.1 Davidon–Fletcher–Powell Update
The Davidon–Fletcher–Powell (DFP) update can be derived using a
similar approach to that used to derive the BFGS update in Section 4.4.4.
However, instead of starting with the update for the Hessian, we start
with the update to the Hessian inverse,

+̃:+1 = +̃: +
DDᵀ + �EEᵀ . (C.14)

We need the inverse version of the secant equation (Eq. 4.80), which is

+̃:+1H: = B: . (C.15)

Setting D = B: and E = +̃:H: in the update (Eq. C.14) and substituting it
into the inverse version of the secant equation (Eq. C.15), we get

+̃:H: +
B: Bᵀ: H: + �+̃:H:Hᵀ: +̃:H: = B: . (C.16)

We can obtain the coefficients
 and � by rearranging this equation and
using similar arguments to those used in the BFGS update derivation
(see Section 4.4.4). The DFP update for the Hessian inverse approxima-
tion is

+̃:+1 = +̃: + 1
B: B:ᵀ

H:ᵀB: − 1
+̃:H:H:ᵀ+̃:

H:ᵀ+̃:H: . (C.17)

C Quasi-Newton Methods 574

However, the DFP update was originally derived by solving the
optimization problem (Eq. C.13), which minimizes a matrix norm
of the update while enforcing symmetry and the secant equation.
This problem can be solved analytically through the Karush–Kuhn–
Tucker (KKT) conditions and a convenient matrix norm. The weighted
Frobenius norm (Eq. A.35) was the norm used in this case, where the
weights were based on an averaged Hessian inverse. The derivation is
lengthy and is not included here. The final result is the update,

�̃:+1 =
(
� − �: B:H:ᵀ

)
�̃:

(
� − �:H: B:ᵀ

) + �:H:H:ᵀ , (C.18)

where
�: =

1
H:ᵀB:

. (C.19)

This can be inverted using the Sherman–Morrison–Woodbury formula
(Appendix C.3) to get the update on the inverse (Eq. C.17).

C.2.2 BFGS
The BFGS update was informally derived in Section 4.4.4. As discussed
previously, obtaining an approximation of the Hessian inverse is a more
efficient way to get the quasi-Newton step.

Similar to DFP, BFGS was originally formally derived by analytically
solving an optimization problem. However, instead of solving the
optimization problem of Eq. C.13, we solve a similar problem using the
Hessian inverse approximation instead. This problem can be stated as

minimize

+̃ − +̃:

subject to +̃ H: = B:

+̃ = +̃ᵀ ,

(C.20)

where +̃ is the updated inverse Hessian that we seek, +̃: is the inverse
Hessian approximation from the previous step. The first constraint is
known as the secant equation applied to the inverse. The second constraint
enforces symmetric updates. We do not explicitly specify positive
definiteness. The matrix norm is again a weighted Frobenius norm
(Eq. A.35), but now the weights are based on an averaged Hessian
(instead of the inverse for DFP). Solving this optimization problem
(Eq. C.20), the final result is

+̃:+1 =
(
� − �: B:H:ᵀ

)
+̃:

(
� − �:H: B:ᵀ

) + �: B: B:ᵀ , (C.21)

where
�: =

1
H:ᵀB:

. (C.22)

This is identical to Eq. 4.88.

C Quasi-Newton Methods 575

C.2.3 Symmetric Rank 1 Update
The symmetric rank 1 (SR1) update is a quasi-Newton update that is
rank 1 as opposed to the rank 2 update of DFP and BFGS (Eq. C.14). The
SR1 update can be derived formally without solving the optimization
problem of Eq. C.13 because there is only one update that satisfies the
secant equation.

Similar to the rank 2 update of the approximate inverse Hessian
(Eq. 4.82), we construct the update,

+̃ = +̃: +
EEᵀ , (C.23)

where we only need one self outer product to produce a rank 1 update
(as opposed to two).

Substituting the rank 1 update (Eq. C.23) into the secant equation,
we obtain

+̃:H: +
EEᵀH: = B: . (C.24)

Rearranging yields (

EᵀH:

)
E = B: − +̃:H: . (C.25)

Thus, we have to make sure that E is in the direction of H: − �: B: . The
scalar
must be such that the scaling of the vectors on both sides of the
equation match each other. We define a normalized E in the desired
direction,

E =
B: − +̃:H:

B: − +̃:H:

2

. (C.26)

To find the correct value for
, we substitute Eq. C.26 into Eq. C.25 to
get

B: − +̃:H: =

Bᵀ: H: − Hᵀ: +̃:H:

B: − +̃:H:

2

2

(
B: − +̃:H:

)
. (C.27)

Solving for
 yields

 =

B: − +̃:H:

2
2

Bᵀ: H: − Hᵀ: +̃:H:
. (C.28)

Substituting Eqs. C.26 and C.28 into Eq. C.23, we get the SR1 update

+̃ = +̃: + 1
Bᵀ: H: − Hᵀ: +̃:H:

(
B: − +̃:H:

) (
B: − +̃:H:

)ᵀ
. (C.29)

Because it is possible for the denominator in this update to be zero, the
update requires safeguarding. This update is not positive definite in
general because the denominator can be negative.

C Quasi-Newton Methods 576

As in the BFGS method, the search direction at each major iteration
is given by ?: = −+̃:∇ 5: and a line search with
init = 1 determines the
final step length.

C.2.4 Unification of SR1, DFP, and BFGS
The SR1, DFP, and BFGS updates for the inverse Hessian approximation
can be expressed using the following more general formula:

+̃:+1 = +̃: +
[
+̃:H: B:

] [

 �
� �

] [
Hᵀ: +̃:
Bᵀ:

]
. (C.30)

For the SR1 method, we have

SR1 =
1

Hᵀ: B: − Hᵀ: +̃:H:
�SR1 = − 1

Hᵀ: B: − Hᵀ: +̃:H:
�SR1 =

1
Hᵀ: B: − Hᵀ: +̃:H:

.

(C.31)

For the DFP method, we have

DFP = − 1
H:+̃:H:

, �DFP = 0, �DFP =
1

Hᵀ: B:
. (C.32)

For the BFGS method, we have

BFGS = 0, �BFGS = − 1
Hᵀ: B:

, �BFGS =
1

Hᵀ: B:
+ Hᵀ: +̃:H:(

Hᵀ: B:
)2 . (C.33)

C.3 Sherman–Morrison–Woodbury Formula
The formal derivations of the DFP and BFGSmethods use the Sherman–
Morrison–Woodbury formula (also known as the Woodbury matrix
identity). Suppose that the inverse of a matrix is known, and then the
matrix is perturbed. The Sherman–Morrison–Woodbury formula gives
the inverse of the perturbed matrix without having to re-invert the
perturbed matrix. We used this formula in Section 4.4.4 to derive the
quasi-Newton update.

One possible perturbation is a rank 1 update of the form

�̂ = � + DEᵀ , (C.34)

C Quasi-Newton Methods 577

where D and E are =-vectors. This is a rank 1 update to � because DEᵀ
is an outer product that produces a matrix whose rank is equal to 1 (see
Fig. 4.50).

If �̂ is nonsingular, and �−1 is known, the Sherman–Morrison–
Woodbury formula gives

�̂−1 = �−1 − �
−1DEᵀ�−1

1 + Eᵀ�−1D
. (C.35)

This formula can be verified by multiplying Eq. C.34 and Eq. C.35,
which yields the identity matrix.

This formula can be generalized for higher-rank updates as follows:

�̂ = � +*+ᵀ , (C.36)

where* and + are (= × ?)matrices for some ? between 1 and =. Then,

�̂−1 = �−1 − �−1*
(
� ++ᵀ�−1*

)
+ᵀ�−1 . (C.37)

Although we need to invert a new matrix,
(
� ++ᵀ�−1*

)
, this matrix is

typically small and can be inverted analytically for ? = 2 for the rank 2
update, for example.

G∗

−10 −5 0 5 10
−8

−4

0

4

8

G1

G2

Fig. D.1 Slanted quadratic function
for � = 3/2.

G∗

−1 0 1
−1

0

1

2

G1

G2

Fig. D.2 Rosenbrock function.

223. Rosenbrock, An automatic method
for finding the greatest or least value of a
function, 1960.

DTest Problems
D.1 Unconstrained Problems
D.1.1 Slanted Quadratic Function
This is a smooth two-dimensional function suitable for a first test of a
gradient-based optimizer:

5 (G1 , G2) = G2
1 + G2

2 − �G1G2 , (D.1)

where � ∈ [0, 2). A � value of zero corresponds to perfectly circular
contours. As � increases, the contours become increasingly slanted.
For � = 2, the quadratic becomes semidefinite, and there is a line of
weak minima. For � > 2, the quadratic is indefinite, and there is no
minimum. An intermediate value of � = 3/2 is suitable for first tests
and yields the contours shown in Fig. D.1.

Global minimum: 5 (G∗) = 0 at G∗ = (0, 0).

D.1.2 Rosenbrock Function
The two-dimensional Rosenbrock function, shown in Fig. D.2, is also
known as Rosenbrock’s valley or banana function. This function was
introduced by Rosenbrock,223 who used it as a benchmark problem for
optimization algorithms.

The function is defined as follows:

5 (G1 , G2) = (1 − G1)2 + 100
(
G2 − G2

1
)2
. (D.2)

This became a classic benchmarking function because of its narrow turn-
ing valley. The large difference between the maximum and minimum
curvatures, and the fact that the principal curvature directions change
along the valley, makes it a good test for quasi-Newton methods.

The Rosenbrock function can be extended to = dimensions by
defining the sum,

5 (G) =
=−1∑
8=1

(
100

(
G8+1 − G82

)2 + (1 − G8)2
)
. (D.3)

579

https://dx.doi.org/10.1093/comjnl/3.3.175
https://dx.doi.org/10.1093/comjnl/3.3.175
https://dx.doi.org/10.1093/comjnl/3.3.175

D Test Problems 580

G∗

−2 0 2
−1

0

1

2

3

G1

G2

Fig. D.3 Bean function.

G∗

−1 0 1 2 3

−1

0

1

2

3

G1

G2

Fig. D.4 Jones multimodal function.

G∗

0 0.25 0.5 0.75 1 1.25

0.2

0.4

0.6

0.8

1

G2

G3

Fig. D.5 An G2−G3 slice of Hartmann
function at G1 = 0.1148.

Global minimum: 5 (G∗) = 0.0 at G∗ = (1, 1, . . . , 1).
Local minimum: For = ≥ 4, a localminimumexists near G = (−1, 1, . . . , 1).

D.1.3 Bean Function
The “bean” function was developed in this book as a milder version
of the Rosenbrock function: it has the same curved valley as the
Rosenbrock function but without the extreme variations in curvature.
The function, shown in Fig. D.3, is

5 (G1 , G2) = (1 − G1)2 + (1 − G2)2 + 1
2

(
2G2 − G2

1
)2
. (D.4)

Global minimum: 5 (G∗) = 0.09194 at G∗ = (1.21314, 0.82414).

D.1.4 Jones Function
This is a fourth-order smooth multimodal function that is useful to test
global search algorithms and also gradient-based algorithms starting
from different points. There are saddle points, maxima, and minima,
with one global minimum. This function, shown in Fig. D.4 along with
the local and global minima, is

5 (G1 , G2) = G4
1 + G4

2 − 4G3
1 − 3G3

2 + 2G2
1 + 2G1G2. (D.5)

Global minimum: 5 (G∗) = −13.5320 at G∗ = (2.6732,−0.6759).
Local minima: 5 (G) = −9.7770 at G = (−0.4495, 2.2928).

5 (G) = −9.0312 at G = (2.4239, 1.9219).

D.1.5 Hartmann Function
The Hartmann function is a three-dimensional smooth function with
multiple local minima:

5 (G) = −
4∑
8=1

8 exp ©­«
−

3∑
9=1

�8 9(G 9 − %8 9)2ª®¬
, (D.6)

where

 = [1.0, 1.2, 3.0, 3.2] ,

� =



3 10 30
0.1 10 35
3 10 30

0.1 10 35


, % = 10−4



3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828


.

(D.7)

A slice of the function, at the optimal value of G1 = 0.1148, is shown
in Fig. D.5.

Global minimum: 5 (G∗) = −3.86278 at G∗ = (0.11480, 0.55566, 0.85254).

D Test Problems 581

D.1.6 Aircraft Wing Design
We want to optimize the rectangular planform wing of a general
aviation-sized aircraft by changing its wingspan and chord (see Ex. 1.1).
In general, we would add many more design variables to a problem
like this, but we are limiting it to a simple two-dimensional problem so
that we can easily visualize the results.

The objective is to minimize the required power, thereby taking into
account drag and propulsive efficiency, which are speed dependent.
The following describes a basic performance estimation methodology
for a low-speed aircraft. Implementing it may not seem like it has
much to do with optimization. The physics is not important for our
purposes, but practice translating equations and concepts into code is
an important element of formulating optimization problems in general.

In level flight, the aircraft must generate enough lift to equal the
required weight, so

! =, . (D.8)

We assume that the total weight consists of a fixed aircraft and payload
weight,0 and a component of the weight that depends on the wing
area (—that is,

, =,0 +,B(. (D.9)

The wing can produce a certain lift coefficient (�!) and so we must
make the wing area (() large enough to produce sufficient lift. Using
the definition of lift coefficient, the total lift can be computed as

! = @�!(, (D.10)

where @ is the dynamic pressure and

@ =
1
2�E

2 . (D.11)

If we use a rectangular wing, then the wing area can be computed from
the wingspan (1) and the chord (2) as

(= 12 . (D.12)

The aircraft drag consists of two components: viscous drag and
induced drag. The viscous drag can be approximated as

� 5 = :� 5 @(wet . (D.13)

For a fully turbulent boundary layer, the skin friction coefficient, � 5 ,
can be approximated as

� 5 =
0.074
'40.2 . (D.14)

D Test Problems 582

5 15 25 35
0.3

0.6

0.9

1.2

1.5

1

2

Fig. D.6 Wing design problem with
power requirement contour.

In this equation, the Reynolds number is based on the wing chord and
is defined as follows:

'4 =
�E2
�

, (D.15)

where � is the air density, and � is the air dynamic viscosity. The form
factor, :, accounts for the effects of pressure drag. The wetted area,
(wet, is the area over which the skin friction drag acts, which is a little
more than twice the planform area. We will use

(wet = 2.05(. (D.16)

The induced drag is defined as

�8 =
!2

@�124
, (D.17)

where 4 is the Oswald efficiency factor. The total drag is the sum of
induced and viscous drag, � = �8 + � 5 .

Our objective function, the power required by the motor for level
flight, is

%(1, 2) = �E
�
, (D.18)

where � is the propulsive efficiency. We assume that our electric
propellers have a Gaussian efficiency curve (real efficiency curves are
not Gaussian, but this is simple and will be sufficient for our purposes):

� = �max exp
(−(E − E)2

2�2

)
. (D.19)

In this problem, the lift coefficient is provided. Therefore, to satisfy
the lift requirement in Eq. D.8, we need to compute the velocity using
Eq. D.11 and Eq. D.10 as

E =

√
2!

��!(
. (D.20)

This is the same problem that was presented in Ex. 1.2 of Chapter 1.
The optimal wingspan and chord are 1 = 25.48 m and 2 = 0.50 m,
respectively, given the parameters. The contour and the optimal wing
shape are shown in Fig. D.6.

Because there are no structural considerations in this problem, the
resulting wing has a higher wing aspect ratio than is realistic. This
emphasizes the importance of carefully selecting the objective and
including all relevant constraints.

D Test Problems 583

The parameters for this problem are given as follows:

Parameter Value Unit Description

� 1.2 kg/m3 Density of air
� 1.8 × 10−5 kg/(m sec) Viscosity of air
: 1.2 Form factor
�! 0.4 Lift coefficient
4 0.80 Oswald efficiency factor
,0 1,000 N Fixed aircraft weight
,B 8.0 N/m2 Wing area dependent weight
�max 0.8 Peak propulsive efficiency
Ē 20.0 m/s Flight speed at peak

propulsive efficiency
� 5.0 m/s Standard deviation of

efficiency function

D.1.7 Brachistochrone Problem
The brachistochrone problem is a classic problem proposed by Johann
Bernoulli (see Section 2.2 for the historical background). Although this
was originally solved analytically, we discretize the model and solve
the problem using numerical optimization. This is a useful problem
for benchmarking because you can change the number of dimensions.

A bead is set on a wire that defines a path that we can shape. The
bead starts at some H-position ℎ with zero velocity. For convenience,
we define the starting point at G = 0.

From the law of conservation of energy, we can then find the
velocity of the bead at any other location. The initial potential energy
is converted to kinetic energy, potential energy, and dissipative work
from friction acting along the path length, yielding the following:

<6ℎ =
1
2<E

2 + <6H +
∫ G

0
�:<6 cos� dB

0 = 1
2E

2 + 6(H − ℎ) + �: 6G

E =
√

26(ℎ − H − �:G) .

(D.21)

Now that we know the speed of the bead as a function of G, we can
compute the time it takes to traverse an differential element of length
dB:

ΔC =
∫ G8+dG

G8

dB
E(G)

D Test Problems 584

(G8 , H8)

(G8+1 , H8+1)ΔH

ΔG

G

H

Fig. D.7 A discretized representation
of the brachistochrone problem.

ΔC =
∫ G8+dG

G8

√
dG2 + dH2√

26(ℎ − H(G) − �:G)

=
∫ G8+dG

G8

√
1 +

(
dH
dG

)2
dG√

26(ℎ − H(G) − �:G)
.

(D.22)

To discretize this problem, we can divide the path into linear
segments. As an example, Fig. D.7 shows the wire divided into four
linear segments (five nodes) as an approximation of a continuous wire.
The slope B8 = (ΔH/ΔG)8 is then a constant along a given segment, and
H(G) = H8 + B8(G − G8). Making these substitutions results in

ΔC8 =

√
1 + B2

8√
26

∫ G8+1

G8

dG√
ℎ − H8 − B8(G − G8) − �:G

. (D.23)

Performing the integration and simplifying (many steps omitted here)
results in

ΔC8 =

√
2
6

√
ΔG2

8 + ΔH2
8√

ℎ − H8+1 − �:G8+1 +
√
ℎ − H8 − �:G8

, (D.24)

where ΔG8 = (G8+1 − G8), and ΔH8 = (H8+1 − H8). The objective of the
optimization is to minimize the total travel time, so we need to sum up
the travel time across all of our linear segments:

) =
=−1∑
8=1

ΔC8 . (D.25)

Minimization is unaffected by multiplying by a constant, so we can
remove the multiplicative constant for simplicity (we see that the
magnitude of the acceleration of gravity has no effect on the optimal
path):

minimize 5 =
=−1∑
8=1

√
ΔG2

8 + ΔH2
8√

ℎ − H8+1 − �:G8+1 +
√
ℎ − H8 − �:G8

by varying H8 , 8 = 1, . . . , =.

(D.26)

The design variables are the =−2positions of the path parameterized
by H8 . The endpointsmust be fixed; otherwise, the problem is ill-defined,
which is why there are = − 2 design variables instead of =. Note that
G is a parameter, meaning that it is fixed. We could space the G8 any
reasonable way and still find the same underlying optimal curve, but

D Test Problems 585

it is easiest to just use uniform spacing. As the dimensionality of the
problem increases, the solution becomes more challenging. We will
use the following specifications:

• Starting point: (G, H) = (0, 1)m.
• Ending point: (G, H) = (1, 0)m.
• Kinetic coefficient of friction �: = 0.3.

The analytic solution for the case with friction is more difficult to
derive, but the analytic solution for the frictionless case (�: = 0) with
our starting and ending points is as follows:

G = 0(� − sin(�))
H = −0(1 − cos(�)) + 1 ,

(D.27)

where 0 = 0.572917 and � ∈ [0, 2.412].

D.1.8 Spring System
Consider a connected spring system of two springs with lengths of ;1
and ;2 and stiffnesses of :1 and :2, fixed at the walls as shown in Fig. D.8.
An object with mass < is suspended between the two springs. It will
naturally deform such that the sum of the gravitational and spring
potential energy, �? , is at the minimum.

:1 :2

ℓ1 ℓ2

<6

G1

G2
Fig. D.8 Two-spring system with no
applied force (top) and with applied
force (bottom).

The total potential energy of the spring system is

�?(G1 , G2) = 1
2 :1(Δ;1)2 + 1

2 :2(Δ;2)2 − <6G2 , (D.28)

where Δ;1 and Δ;2 are the changes in length for the two springs. With
respect to the original lengths, and displacements G1 and G2 as shown,

D Test Problems 586

−5 0 5 10 15
−8

−4

0

4

8

12

G1

G2

Fig. D.9 Total potential energy con-
tours for two-spring system.

224. Barnes, A comparative study of nonlin-
ear optimization codes, 1967.

they are defined as

Δ;1 =
√
(;1 + G1)2 + G2

2 − ;1
Δ;2 =

√
(;2 − G1)2 + G2

2 − ;2 .
(D.29)

This can be minimized to determine the final location of the object.
With initial lengths of ;1 = 12 cm, ;2 = 8 cm; spring stiffnesses of

:1 = 1.0 N·cm, :2 = 10.0 N·cm; and a force due to gravity of <6 = 7N,
the minimum potential energy is at (G1 , G2) = (2.7852, 6.8996). The
contour of �: with respect to G1 and G2 is shown in Fig. D.9.

The analytic derivatives can also be computed for use in a gradient-
based optimization. The derivative of �? with respect to G1 is

%�?
%G1

=
1
2 :1

(
2Δ;1

%(Δ;1)
%G1

)
+ 1

2 :2

(
2Δ;2

%(Δ;2)
%G1

)
− <6 , (D.30)

where the partial derivatives of Δ;1 and Δ;2 are

%(Δ;1)
%G1

=
;1 + G1√

(;1 + G1)2 + G2
2

%(Δ;2)
%G2

=
;2 − G1√

(;2 − G1)2 + G2
2

.
(D.31)

By letting ℒ1 =
√
(;1 + G1)2 + G2

2 and ℒ2 =
√
(;2 − G1)2 + G2

2, the partial
derivative of �? with respect to G1 can be written as

%�?
%G1

=
:1(ℒ1 − ;1)(;1 + G1)

ℒ1
+ :2(ℒ2 − ;2)(;2 − G1)

ℒ2
− <6. (D.32)

Similarly, the partial derivative of �? with respect to G2 can be written
as

%�?
%G2

=
:1G2(ℒ1 − ;1)

ℒ1
+ :2G2(ℒ2 − ;2)

ℒ2
. (D.33)

D.2 Constrained Problems
D.2.1 Barnes Problem
The Barnes problem was devised in a master’s thesis224 and has been
used in various optimization demonstration studies. It is a good starter
problem because it only has two dimensions for easy visualization
while also including constraints.

D Test Problems 587

G∗

0 20 40 60

20

40

60

G1

G2

Fig. D.10 Barnes function.

The objective function contains the following coefficients:

01 = 75.196 02 = −3.8112
03 = 0.12694 04 = −2.0567 × 10−3

05 = 1.0345 × 10−5 06 = −6.8306
07 = 0.030234 08 = −1.28134 × 10−3

09 = 3.5256 × 10−5 010 = −2.266 × 10−7

011 = 0.25645 012 = −3.4604 × 10−3

013 = 1.3514 × 10−5 014 = −28.106
015 = −5.2375 × 10−6 016 = −6.3 × 10−8

017 = 7.0 × 10−10 018 = 3.4054 × 10−4

019 = −1.6638 × 10−6 020 = −2.8673
021 = 0.0005

For convenience, we define the following quantities:

H1 = G1G2 , H2 = H1G1 , H3 = G2
2 , H4 = G2

1 (D.34)

The objective function is then:

5 (G1 , G2) = 01 + 02G1 + 03H4 + 04H4G1 + 05H2
4 + 06G2 + 07H1+

08G1H1 + 09H1H4 + 010H2H4 + 011H3 + 012G2H3 + 013H2
3+

014
G2 + 1 + 015H3H4 + 016H1H4G2 + 017H1H3H4 + 018G1H3+
019H1H3 + 020 exp(021H1).

(D.35)

There are three constraints of the form 6(G) ≤ 0:

61 = 1 − H1

700
62 =

H4

252 −
G2
5

63 =
G1

500 − 0.11 −
(G2
50 − 1

)2
.

(D.36)

The problem also has bound constraints. The original formulation
is bounded from [0, 80] in both dimensions, in which case the global
optimum occurs in the corner at G∗ = [80, 80], with a local minimum in
the middle. However, for our usage, we preferred the global optimum
not to be in the corner and so set the bounds to [0, 65] in both dimen-
sions. The contour of this function is plotted in Fig. D.10.

Global minimum: 5 (G∗) = −31.6368 at G∗ = (49.5263, 19.6228).
Local minimum: 5 (G) = −17.7754 at G = (65, 65).

D Test Problems 588

225. Venkayya, Design of optimum struc-
tures, 1971.

!

1

2

D1

E1

D2

E2

)

Fig. D.12 A truss element oriented
at some angle), where) is mea-
sured from a horizontal line emanat-
ing from the first node, oriented in
the positive G direction.

D.2.2 Ten-Bar Truss
The 10-bar truss is a classic optimization problem.225 In this problem,
we want to find the optimal cross-sectional areas for the 10-bar truss
shown in Fig. D.11. A simple truss finite-element code set up for this
particular configuration is available in the book code repository. The
function takes in an array of cross-sectional areas and returns the total
mass and an array of stresses for each truss member.

1 2

3 4

5 6

7 8 9 10

% %

ℓ ℓ

ℓ

Fig. D.11 Ten-bar truss and element
numbers.

The objective of the optimization is to minimize the mass of the
structure, subject to the constraints that every segment does not yield in
compression or tension. The yield stress of all elements is 25 × 103 psi,
except for member 9, which uses a stronger alloy with a yield stress of
75 × 103 psi. Mathematically, the constraint is

|�8 | ≤ �H 8 for 8 = 1, . . . , 10, (D.37)

where the absolute value is needed to handle tension and compression
(with the same yield strength for tension and compression). Abso-
lute values are not differentiable at zero and should be avoided in
gradient-based optimization if possible. Thus, we should put this in
a mathematically equivalent form that avoids absolute value. Each
element should have a cross-sectional area of at least 0.1 in2 for manu-
facturing reasons (bound constraint). When solving this optimization
problem, you may need to scale the objective and constraints.

Although not needed to solve the problem, an overview of the
equations is provided. A truss element is the simplest type of structural
finite element and only has an axial degree of freedom. The theory and
derivation for truss elements are simple, but for our purposes, we skip
to the result. Given a two-dimensional element oriented arbitrarily in
space (Fig. D.12), we can relate the displacements at the nodes to the
forces at the nodes through a stiffness relationship.

In matrix form, the equation for a given element is 43 = @. In

https://dx.doi.org/10.1016/0045-7949(71)90013-7
https://dx.doi.org/10.1016/0045-7949(71)90013-7

D Test Problems 589

detail, the equation is

��
!



22 2B −22 −2B
2B B2 −2B −B2

−22 −2B 22 2B
−2B −B2 2B B2





D1
E1
D2
E2


=



-1
.1
-2
.2


(D.38)

where the displacement vector is 3 = [D1 , E1 , D2 , E2]. The meanings of
the variables in the equation are described in Table D.1.

Table D.1 The variables used in the stiffness equation.

Variable Description

-8 Force in the G-direction at node 8
.8 Force in the H-direction at node 8
� Modulus of elasticity of truss element material
� Area of truss element cross section
! Length of truss element
2 cos)
B sin)
D8 Displacement in the G-direction at node 8
E8 Displacement in the H-direction at node 8

The stress in the truss element can be computed from the equation
� = (43, where � is a scalar, 3 is the same vector as before, and the
element (4 matrix (really a row vector because stress is one-dimensional
for truss elements) is

(4 =
�
!

[−2 −B 2 B
]
. (D.39)

The global structure (an assembly ofmultiple finite elements) has the
same equations, 3 = @ and � = (3, but now 3 contains displacements
for all of the nodes in the structure, 3 = [G1 , G2 , . . . , G=]. If we have =
nodes and < elements, then @ and 3 are 2=-vectors, is a (2= × 2=)
matrix, (is an (< × 2=) matrix, and � is an <-vector. The elemental
stiffness and stress matrices are first computed and then assembled into
the global matrices. This is straightforward because the displacements
and forces of the individual elements add linearly.

After we assemble the global matrices, we must remove any degrees
of freedom that are structurally rigid (already known to have zero
displacement). Otherwise, the problem is ill-defined, and the stiffness
matrix will be ill-conditioned.

D Test Problems 590

Given the geometry, materials, and external loading, we can pop-
ulate the stiffness matrix and force vector. We can then solve for the
unknown displacements from

 3 = @ . (D.40)

With the solved displacements, we can compute the stress in each
element using

� = (3 . (D.41)

Bibliography
1 cited on pp. 15, 200Wu, N., Kenway, G., Mader, C. A., Jasa, J., and Martins, J. R. R. A.,

“PyOptSparse: A Python framework for large-scale constrained
nonlinear optimization of sparse systems,” Journal of Open Source
Software, Vol. 5, No. 54, October 2020, p. 2564.
doi: 10.21105/joss.02564

2 cited on p. 20Lyu, Z., Kenway, G. K. W., and Martins, J. R. R. A., “Aerodynamic
ShapeOptimization Investigations of the CommonResearchModel
Wing Benchmark,”AIAA Journal, Vol. 53, No. 4, April 2015, pp. 968–
985.
doi: 10.2514/1.J053318

3 cited on p. 20He, X., Li, J., Mader, C. A., Yildirim, A., and Martins, J. R. R. A.,
“Robust aerodynamic shape optimization—From a circle to an
airfoil,” Aerospace Science and Technology, Vol. 87, April 2019, pp. 48–
61.
doi: 10.1016/j.ast.2019.01.051

4 cited on p. 26Betts, J. T., “Survey of numerical methods for trajectory optimiza-
tion,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998,
pp. 193–207.
doi: 10.2514/2.4231

5 cited on p. 26Bryson, A. E. and Ho, Y. C., Applied Optimal Control; Optimization,
Estimation, and Control. Waltham, MA: Blaisdell Publishing, 1969.

6 cited on p. 26Bertsekas, D. P.,Dynamic Programming andOptimal Control. Belmont,
MA: Athena Scientific, 1995.

7 cited on p. 34Kepler, J.,Nova stereometria doliorum vinariorum (New Solid Geometry
of Wine Barrels). Linz, Austria: Johannes Planck, 1615.

8 cited on p. 34Ferguson, T. S., “Who solved the secretary problem?” Statistical
Science, Vol. 4, No. 3, August 1989, pp. 282–289.
doi: 10.1214/ss/1177012493

9 cited on p. 35Fermat, P. de, Methodus ad disquirendam maximam et minimam
(Method for the Study of Maxima and Minima). 1636, translated by
Jason Ross.

591

https://dx.doi.org/10.21105/joss.02564
https://dx.doi.org/10.21105/joss.02564
https://doi.org/10.21105/joss.02564
https://dx.doi.org/10.2514/1.J053318
https://dx.doi.org/10.2514/1.J053318
https://dx.doi.org/10.2514/1.J053318
https://doi.org/10.2514/1.J053318
https://dx.doi.org/10.1016/j.ast.2019.01.051
https://dx.doi.org/10.1016/j.ast.2019.01.051
https://doi.org/10.1016/j.ast.2019.01.051
https://dx.doi.org/10.2514/2.4231
https://dx.doi.org/10.2514/2.4231
https://doi.org/10.2514/2.4231
https://https://books.google.com/books/about/Applied_Optimal_Control.html
https://https://books.google.com/books/about/Applied_Optimal_Control.html
https://https://books.google.com/books/about/Dynamic_Programming_and_Optimal_Control.html
https://https://books.google.com/books/about/Nova_Stereometria_dolorium_vinariorum.html?id=lVGAtwEACAAJ
https://https://books.google.com/books/about/Nova_Stereometria_dolorium_vinariorum.html?id=lVGAtwEACAAJ
https://dx.doi.org/10.1214/ss/1177012493
https://doi.org/10.1214/ss/1177012493
https://science.larouchepac.com/fermat/fermat-maxmin.pdf
https://science.larouchepac.com/fermat/fermat-maxmin.pdf

Bibliography 592

10 cited on p. 35Kollerstrom, N., “Thomas Simpson and ‘Newton’s method of
approximation’: An enduring myth,” The British Journal for the
History of Science, Vol. 25, No. 3, 1992, pp. 347–354.

11 cited on p. 36Lagrange, J.-L., Mécanique analytique. Paris, France: Jacques Gabay,
1788, Vol. 1.

12 cited on p. 36Cauchy, A.-L., “Méthode générale pour la résolution des systèmes
d’équations simultanées,” Comptes rendus hebdomadaires des séances
de l’Académie des sciences, Vol. 25, October 1847, pp. 536–538.

13 cited on p. 36Hancock, H., Theory of Minima and Maxima. Boston, MA: Ginn and
Company, 1917.

14 cited on p. 36Menger, K., “Das botenproblem,” Ergebnisse eines Mathematischen
Kolloquiums. Leipzig, Germany: Teubner, 1932, pp. 11–12.

15 cited on p. 37Karush, W., “Minima of functions of several variables with inequal-
ities as side constraints,” Master’s thesis, University of Chicago,
Chicago, IL, 1939.

16 cited on p. 37Dantzig,G.,Linear programming and extensions. Princeton,NJ: Prince-
ton University Press, 1998.
isbn: 0691059136

17 cited on p. 37Krige, D. G., “A statistical approach to some mine valuation and
allied problems on the Witwatersrand,” Master’s thesis, University
of the Witwatersrand, Johannesburg, South Africa, 1951.

18 cited on p. 38Markowitz,H., “Portfolio selection,” Journal of Finance, Vol. 7,March
1952, pp. 77–91.
doi: 10.2307/2975974

19 cited on p. 38Bellman, R., Dynamic Programming. Princeton, NJ: Princeton Uni-
versity Press, 1957.
isbn: 9780691146683

20 cited on pp. 38, 126Davidon, W. C., “Variable metric method for minimization,” SIAM
Journal on Optimization, Vol. 1, No. 1, February 1991, pp. 1–17, issn:
1095-7189.
doi: 10.1137/0801001

21 cited on pp. 38, 126Fletcher, R. and Powell, M. J. D., “A rapidly convergent descent
method for minimization,” The Computer Journal, Vol. 6, No. 2,
August 1963, pp. 163–168, issn: 1460-2067.
doi: 10.1093/comjnl/6.2.163

22 cited on p. 38Wolfe, P., “Convergence conditions for ascent methods,” SIAM
Review, Vol. 11, No. 2, 1969, pp. 226–235.
doi: 10.1137/1011036

https://https://www.jstor.org/stable/4027257
https://https://www.jstor.org/stable/4027257
https://https://books.google.ca/books/about/M%C3%A9canique_analytique.html?id=Q8MKAAAAYAAJ
https://https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiC_IPhnoHxAhXZWc0KHZVICzgQFjAAegQICRAD&url=http%3A%2F%2Fcerebro.xu.edu%2Fmath%2FSources%2FCauchy%2FOrbits%2F1847%2520CR%2520536%2528383%2529.pdf&usg=AOvVaw2OyvHXVbr42-VCI3uIgnMj
https://https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiC_IPhnoHxAhXZWc0KHZVICzgQFjAAegQICRAD&url=http%3A%2F%2Fcerebro.xu.edu%2Fmath%2FSources%2FCauchy%2FOrbits%2F1847%2520CR%2520536%2528383%2529.pdf&usg=AOvVaw2OyvHXVbr42-VCI3uIgnMj
https://https://books.google.com/books/about/Theory_of_Maxima_and_Minima.html?id=DBwPAAAAIAAJ
https://https://www.google.ca/books/edition/Karl_Menger_Ergebnisse_eines_Mathematisc/oakkBgAAQBAJ
https://https://catalog.lib.uchicago.edu/vufind/Record/4111654
https://https://catalog.lib.uchicago.edu/vufind/Record/4111654
https://books.google.com/books?vid=ISBN0691059136
http://books.google.com/books?vid=ISBN0691059136
https://https://books.google.com/books/about/A_Statistical_Approach_to_Some_Mine_Valu.html?id=M6jASgAACAAJ
https://https://books.google.com/books/about/A_Statistical_Approach_to_Some_Mine_Valu.html?id=M6jASgAACAAJ
https://dx.doi.org/10.2307/2975974
https://doi.org/10.2307/2975974
https://books.google.com/books?vid=ISBN9780691146683
http://books.google.com/books?vid=ISBN9780691146683
https://dx.doi.org/10.1137/0801001
https://doi.org/10.1137/0801001
https://dx.doi.org/10.1093/comjnl/6.2.163
https://dx.doi.org/10.1093/comjnl/6.2.163
https://doi.org/10.1093/comjnl/6.2.163
https://dx.doi.org/10.1137/1011036
https://doi.org/10.1137/1011036

Bibliography 593

23 cited on p. 38Wilson, R. B., “A simplicial algorithm for concave programming,”
PhD dissertation, Harvard University, Cambridge, MA, June 1963.

24 cited on p. 38Han, S.-P., “Superlinearly convergent variable metric algorithms
for general nonlinear programming problems,”Mathematical Pro-
gramming, Vol. 11, No. 1, 1976, pp. 263–282.
doi: 10.1007/BF01580395

25 cited on pp. 38, 200Powell, M. J. D., “Algorithms for nonlinear constraints that use
Lagrangian functions,”Mathematical Programming, Vol. 14, No. 1,
December 1978, pp. 224–248.
doi: 10.1007/bf01588967

26 cited on p. 39Holland, J. H., Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: University of Michigan Press, 1975.

27 cited on p. 39Hooke, R. and Jeeves, T. A., “‘Direct search’ solution of numerical
and statistical problems,” Journal of the ACM, Vol. 8, No. 2, 1961,
pp. 212–229.
doi: 10.1145/321062.321069

28 cited on pp. 39, 287Nelder, J. A. and Mead, R., “A simplex method for function mini-
mization,” Computer Journal, Vol. 7, 1965, pp. 308–313.
doi: 10.1093/comjnl/7.4.308

29 cited on p. 39Karmarkar, N., “A new polynomial-time algorithm for linear pro-
gramming,” Proceedings of the Sixteenth Annual ACM Symposium on
Theory of Computing. New York, NY: Association for Computing
Machinery, 1984, pp. 302–311.
doi: 10.1145/800057.808695

30 cited on p. 39Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and
Mishchenko, E. F., The Mathematical Theory of Optimal Processes.
New York, NY: Interscience Publishers, 1961, translated by K. N.
Triruguf, edited by T. W. Neustadt.

31 cited on p. 39Bryson Jr, A. E., “Optimal control—1950 to 1985,” IEEE Control
Systems Magazine, Vol. 16, No. 3, June 1996, pp. 26–33.
doi: 10.1109/37.506395

32 cited on pp. 40, 219Schmit, L. A., “Structural design by systematic synthesis,” Proceed-
ings of the 2nd National Conference on Electronic Computation. New
York, NY: American Society of Civil Engineers, 1960, pp. 105–122.

33 Schmit, L. A. and Thornton, W. A. cited on p. 40, “Synthesis of an airfoil at
supersonic Mach number,” CR 144, National Aeronautics and
Space Administration, January 1965.

https://https://books.google.com/books/about/A_Simplicial_Algorithm_for_Concave_Progr.html?id=Ec4oYAAACAAJ
https://dx.doi.org/10.1007/BF01580395
https://dx.doi.org/10.1007/BF01580395
https://doi.org/10.1007/BF01580395
https://dx.doi.org/10.1007/bf01588967
https://dx.doi.org/10.1007/bf01588967
https://doi.org/10.1007/bf01588967
https://https://mitpress.mit.edu/books/adaptation-natural-and-artificial-systems
https://dx.doi.org/10.1145/321062.321069
https://dx.doi.org/10.1145/321062.321069
https://doi.org/10.1145/321062.321069
https://dx.doi.org/10.1093/comjnl/7.4.308
https://dx.doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://dx.doi.org/10.1145/800057.808695
https://dx.doi.org/10.1145/800057.808695
https://doi.org/10.1145/800057.808695
https://https://www.google.ca/books/dfdfedition/Mathematical_Theory_of_Optimal_Processes/l3dZDwAAQBAJ
https://dx.doi.org/10.1109/37.506395
https://doi.org/10.1109/37.506395
https://https://www.google.ca/books/edition/Synthesis_of_an_Airfoil_at_Supersonic_Ma/_pT8uiFwbpsC
https://https://www.google.ca/books/edition/Synthesis_of_an_Airfoil_at_Supersonic_Ma/_pT8uiFwbpsC

Bibliography 594

34 cited on p. 40Fox, R. L., “Constraint surface normals for structural synthesis
techniques,” AIAA Journal, Vol. 3, No. 8, August 1965, pp. 1517–
1518.
doi: 10.2514/3.3182

35 cited on p. 40Arora, J. and Haug, E. J., “Methods of design sensitivity analysis
in structural optimization,” AIAA Journal, Vol. 17, No. 9, 1979,
pp. 970–974.
doi: 10.2514/3.61260

36 cited on p. 40Haftka, R. T. andGrandhi, R. V., “Structural shape optimization—A
survey,” Computer Methods in Applied Mechanics and Engineering,
Vol. 57, No. 1, 1986, pp. 91–106, issn: 0045-7825.
doi: 10.1016/0045-7825(86)90072-1

37 cited on p. 40Eschenauer, H. A. and Olhoff, N., “Topology optimization of
continuum structures: A review,” Applied Mechanics Reviews, Vol.
54, No. 4, July 2001, pp. 331–390.
doi: 10.1115/1.1388075

38 cited on p. 40Pironneau, O., “On optimum design in fluid mechanics,” Journal of
Fluid Mechanics, Vol. 64, No. 01, 1974, p. 97, issn: 0022-1120.
doi: 10.1017/S0022112074002023

39 cited on p. 40Jameson, A., “Aerodynamic design via control theory,” Journal of
Scientific Computing, Vol. 3, No. 3, September 1988, pp. 233–260.
doi: 10.1007/BF01061285

40 cited on p. 40Sobieszczanski–Sobieski, J. and Haftka, R. T., “Multidisciplinary
aerospace design optimization: Survey of recent developments,”
Structural Optimization, Vol. 14, No. 1, 1997, pp. 1–23.
doi: 10.1007/BF011

41 cited on pp. 40, 520, 532, 534Martins, J. R. R. A. and Lambe, A. B., “Multidisciplinary design
optimization: A survey of architectures,” AIAA Journal, Vol. 51, No.
9, September 2013, pp. 2049–2075.
doi: 10.2514/1.J051895

42 cited on p. 40Sobieszczanski–Sobieski, J., “Sensitivity of complex, internally
coupled systems,” AIAA Journal, Vol. 28, No. 1, 1990, pp. 153–160.
doi: 10.2514/3.10366

43 cited on p. 41Martins, J. R. R. A., Alonso, J. J., and Reuther, J. J., “A coupled-
adjoint sensitivity analysis method for high-fidelity aero-structural
design,” Optimization and Engineering, Vol. 6, No. 1, March 2005,
pp. 33–62.
doi: 10.1023/B:OPTE.0000048536.47956.62

https://dx.doi.org/10.2514/3.3182
https://dx.doi.org/10.2514/3.3182
https://doi.org/10.2514/3.3182
https://dx.doi.org/10.2514/3.61260
https://dx.doi.org/10.2514/3.61260
https://doi.org/10.2514/3.61260
https://dx.doi.org/10.1016/0045-7825(86)90072-1
https://dx.doi.org/10.1016/0045-7825(86)90072-1
https://doi.org/10.1016/0045-7825(86)90072-1
https://dx.doi.org/10.1115/1.1388075
https://dx.doi.org/10.1115/1.1388075
https://doi.org/10.1115/1.1388075
https://dx.doi.org/10.1017/S0022112074002023
https://doi.org/10.1017/S0022112074002023
https://dx.doi.org/10.1007/BF01061285
https://doi.org/10.1007/BF01061285
https://dx.doi.org/10.1007/BF011
https://dx.doi.org/10.1007/BF011
https://doi.org/10.1007/BF011
https://dx.doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/1.J051895
https://doi.org/10.2514/1.J051895
https://dx.doi.org/10.2514/3.10366
https://dx.doi.org/10.2514/3.10366
https://doi.org/10.2514/3.10366
https://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
https://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
https://dx.doi.org/10.1023/B:OPTE.0000048536.47956.62
https://doi.org/10.1023/B:OPTE.0000048536.47956.62

Bibliography 595

44 cited on pp. 41, 498Hwang, J. T. andMartins, J. R. R. A., “A computational architecture
for coupling heterogeneous numerical models and computing
coupled derivatives,” ACM Transactions on Mathematical Software,
Vol. 44, No. 4, June 2018, Article 37.
doi: 10.1145/3182393

45 cited on p. 41Wright, M. H., “The interior-point revolution in optimization:
History, recent developments, and lasting consequences,” Bulletin
of the American Mathematical Society, Vol. 42, 2005, pp. 39–56.
doi: 10.1007/978-1-4613-3279-4_23

46 cited on pp. 41, 430Grant, M., Boyd, S., and Ye, Y., “Disciplined convex programming,”
Global Optimization—From Theory to Implementation, Liberti, L. and
Maculan, N., Eds. Boston, MA: Springer, 2006, pp. 155–210.
doi: 10.1007/0-387-30528-9_7

47 cited on p. 41Wengert, R. E., “A simple automaticderivative evaluationprogram,”
Communications of the ACM, Vol. 7, No. 8, August 1964, pp. 463–464,
issn: 0001-0782.
doi: 10.1145/355586.364791

48 cited on p. 41Speelpenning, B., “Compiling fast partial derivatives of functions
given by algorithms,” PhD dissertation, University of Illinois at
Urbana–Champaign, Champaign, IL, January 1980.
doi: 10.2172/5254402

49 cited on pp. 42, 232Squire, W. and Trapp, G., “Using complex variables to estimate
derivatives of real functions,” SIAM Review, Vol. 40, No. 1, 1998,
pp. 110–112, issn: 0036-1445 (print), 1095-7200 (electronic).
doi: 10.1137/S003614459631241X

50 cited on pp. 42, 233, 235, 237Martins, J. R. R. A., Sturdza, P., and Alonso, J. J., “The complex-
step derivative approximation,” ACM Transactions on Mathematical
Software, Vol. 29, No. 3, September 2003, pp. 245–262.
doi: 10.1145/838250.838251

51 cited on p. 42Torczon, V., “On the convergence of pattern search algorithms,”
SIAM Journal on Optimization, Vol. 7, No. 1, February 1997, pp. 1–25.
doi: 10.1137/S1052623493250780

52 cited on pp. 42, 298Jones, D., Perttunen, C., and Stuckman, B., “Lipschitzian optimiza-
tion without the Lipschitz constant,” Journal of Optimization Theory
and Application, Vol. 79, No. 1, October 1993, pp. 157–181.
doi: 10.1007/BF00941892

53 cited on pp. 42, 298Jones, D. R. and Martins, J. R. R. A., “The DIRECT algorithm—25
years later,” Journal of Global Optimization, Vol. 79, March 2021,
pp. 521–566.
doi: 10.1007/s10898-020-00952-6

https://dx.doi.org/10.1145/3182393
https://dx.doi.org/10.1145/3182393
https://dx.doi.org/10.1145/3182393
https://doi.org/10.1145/3182393
https://dx.doi.org/10.1007/978-1-4613-3279-4_23
https://dx.doi.org/10.1007/978-1-4613-3279-4_23
https://doi.org/10.1007/978-1-4613-3279-4_23
https://dx.doi.org/10.1007/0-387-30528-9_7
https://doi.org/10.1007/0-387-30528-9_7
https://dx.doi.org/10.1145/355586.364791
https://doi.org/10.1145/355586.364791
https://dx.doi.org/10.2172/5254402
https://dx.doi.org/10.2172/5254402
https://doi.org/10.2172/5254402
https://dx.doi.org/10.1137/S003614459631241X
https://dx.doi.org/10.1137/S003614459631241X
https://doi.org/10.1137/S003614459631241X
https://dx.doi.org/10.1145/838250.838251
https://dx.doi.org/10.1145/838250.838251
https://doi.org/10.1145/838250.838251
https://dx.doi.org/10.1137/S1052623493250780
https://doi.org/10.1137/S1052623493250780
https://dx.doi.org/10.1007/BF00941892
https://dx.doi.org/10.1007/BF00941892
https://doi.org/10.1007/BF00941892
https://dx.doi.org/10.1007/s10898-020-00952-6
https://dx.doi.org/10.1007/s10898-020-00952-6
https://doi.org/10.1007/s10898-020-00952-6

Bibliography 596

54 cited on p. 42Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization by
simulated annealing,” Science, Vol. 220, No. 4598, 1983, pp. 671–680.
doi: 10.1126/science.220.4598.671

55 cited on p. 42Kennedy, J. and Eberhart, R. C., “Particle swarm optimization,”
Proceedings of the IEEE International Conference on Neural Networks.
Institute of Electrical and Electronics Engineers, 1995, Vol. IV,
pp. 1942–1948.
doi: 10.1007/978-0-387-30164-8_630

56 cited on p. 42Forrester, A. I. and Keane, A. J., “Recent advances in surrogate-
based optimization,” Progress in Aerospace Sciences, Vol. 45, No. 1,
2009, pp. 50–79, issn: 0376-0421.
doi: 10.1016/j.paerosci.2008.11.001

57 cited on p. 43Bottou, L., Curtis, F. E., and Nocedal, J., “Optimization methods for
large-scale machine learning,” SIAM Review, Vol. 60, No. 2, 2018,
pp. 223–311.
doi: 10.1137/16M1080173

58 cited on pp. 43, 412Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M.,
“Automatic differentiation in machine learning: A survey,” Journal
of Machine Learning Research, Vol. 18, No. 1, January 2018, pp. 5595–
5637.
doi: 10.5555/3122009.3242010

59 cited on p. 43Gerdes, P., “On mathematics in the history of sub-Saharan Africa,”
Historia Mathematica, Vol. 21, No. 3, 1994, pp. 345–376, issn: 0315-
0860.
doi: 10.1006/hmat.1994.1029

60 cited on p. 43Closs, M. P., Native American Mathematics. Austin, TX: University of
Texas Press, 1986.

61 cited on p. 43Shen, K., Crossley, J. N., Lun, A. W.-C., and Liu, H., The Nine
Chapters on theMathematical Art: Companion and Commentary. Oxford
University Press on Demand, 1999.

62 cited on p. 43Hodgkin, L., A History of Mathematics: From Mesopotamia to Moder-
nity. Oxford University Press on Demand, 2005.

63 cited on p. 43Joseph, G. G., The Crest of the Peacock: Non-European Roots of Mathe-
matics. Princeton, NJ: Princeton University Press, 2010.

64 cited on p. 44Hollings, C., Martin, U., and Rice, A., Ada Lovelace: The Making of a
Computer Scientist. Oxford, UK: Bodleian Library, 2014.

65 cited on p. 44Osen, L. M., Women in Mathematics. Cambridge, MA: MIT Press,
1974.

https://dx.doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1007/978-0-387-30164-8_630
https://doi.org/10.1007/978-0-387-30164-8_630
https://dx.doi.org/10.1016/j.paerosci.2008.11.001
https://dx.doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.1016/j.paerosci.2008.11.001
https://dx.doi.org/10.1137/16M1080173
https://dx.doi.org/10.1137/16M1080173
https://doi.org/10.1137/16M1080173
https://dx.doi.org/10.5555/3122009.3242010
https://doi.org/10.5555/3122009.3242010
https://dx.doi.org/10.1006/hmat.1994.1029
https://doi.org/10.1006/hmat.1994.1029
https://https://www.google.ca/books/edition/Native_American_Mathematics/YFlfAgAAQBAJ
https://https://www.google.ca/books/edition/The_Nine_Chapters_on_the_Mathematical_Ar/eiTJHRGTG6YC
https://https://www.google.ca/books/edition/The_Nine_Chapters_on_the_Mathematical_Ar/eiTJHRGTG6YC
https://https://www.google.ca/books/edition/A_History_of_Mathematics/nSO5iMujRUYC
https://https://www.google.ca/books/edition/A_History_of_Mathematics/nSO5iMujRUYC
https://https://www.google.ca/books/edition/The_Crest_of_the_Peacock/c-xT0KNJp0cC
https://https://www.google.ca/books/edition/The_Crest_of_the_Peacock/c-xT0KNJp0cC
https://https://www.google.ca/books/edition/Ada_Lovelace/TVkQtAEACAAJ
https://https://www.google.ca/books/edition/Ada_Lovelace/TVkQtAEACAAJ
https://https://www.google.ca/books/edition/Women_in_Mathematics/81kQ9VtTal4C

Bibliography 597

66 cited on p. 44Hodges, A., Alan Turing: The Enigma. Princeton, NJ: Princeton
University Press, 2014.
isbn: 9780691164724

67 cited on p. 44Lipsitz, G., How Racism Takes Place. Philadelphia, PA: Temple
University Press, 2011.

68 cited on p. 44Rothstein, R., The Color of Law: A Forgotten History of How Our
Government Segregated America. NewYork,NY: Liveright Publishing,
2017.

69 cited on p. 44King, L. J., “More than slaves: Black founders, Benjamin Banneker,
and critical intellectual agency,” Social Studies Research & Practice
(Board of Trustees of the University of Alabama), Vol. 9, No. 3, 2014.

70 cited on p. 45Shetterly, M. L., Hidden Figures: The American Dream and the Untold
Story of the Black Women Who Helped Win the Space Race. New York,
NY: William Morrow and Company, 2016.

71 cited on p. 49Box,G. E. P., “Science and statistics,” Journal of theAmerican Statistical
Association, Vol. 71, No. 356, 1976, pp. 791–799, issn: 01621459.
doi: 10.2307/2286841

72 cited on p. 59Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M.,
Guy, R. T., Haddock, S. H. D., Huff, K. D., Mitchell, I. M., Plumbley,
M. D., Waugh, B., White, E. P., and Wilson, P., “Best practices for
scientific computing,” PLoS Biology, Vol. 12, No. 1, 2014, e1001745.
doi: 10.1371/journal.pbio.1001745

73 cited on p. 60Grotker, T., Holtmann, U., Keding, H., and Wloka, M., The De-
veloper’s Guide to Debugging, 2nd ed. New York, NY: Springer,
2012.

74 cited on p. 61Ascher, U. M. and Greif, C., A First Course in Numerical Methods.
Philadelphia, PA: SIAM, 2011.

75 cited on pp. 62, 569Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd ed. Philadel-
phia, PA: SIAM, 2003.

76 cited on p. 85Higgins, T. J., “A note on the history of mixed partial derivatives,”
Scripta Mathematica, Vol. 7, 1940, pp. 59–62.

77 cited on p. 99Hager, W. W. and Zhang, H., “A new conjugate gradient method
with guaranteed descent and an efficient line search,” SIAM Journal
on Optimization, Vol. 16, No. 1, January 2005, pp. 170–192, issn:
1095-7189.
doi: 10.1137/030601880

https://books.google.com/books?vid=ISBN9780691164724
http://books.google.com/books?vid=ISBN9780691164724
https://https://www.google.ca/books/edition/How_Racism_Takes_Place/lv0musrlBGYC
https://https://www.google.ca/books/edition/The_Color_of_Law_A_Forgotten_History_of/SdtDDQAAQBAJ
https://https://www.google.ca/books/edition/The_Color_of_Law_A_Forgotten_History_of/SdtDDQAAQBAJ
https://https://www.google.ca/books/edition/Hidden_Figures/lHNtjwEACAAJ
https://https://www.google.ca/books/edition/Hidden_Figures/lHNtjwEACAAJ
https://dx.doi.org/10.2307/2286841
https://doi.org/10.2307/2286841
https://dx.doi.org/10.1371/journal.pbio.1001745
https://dx.doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://https://www.google.ca/books/edition/The_Developer_s_Guide_to_Debugging/OlHMSAAACAAJ
https://https://www.google.ca/books/edition/The_Developer_s_Guide_to_Debugging/OlHMSAAACAAJ
https://https://www.google.ca/books/edition/A_First_Course_in_Numerical_Methods/eGDMSIqPYdYC
https://https://www.google.ca/books/edition/Iterative_Methods_for_Sparse_Linear_Syst/qtzmkzzqFmcC
https://dx.doi.org/10.1137/030601880
https://dx.doi.org/10.1137/030601880
https://doi.org/10.1137/030601880

Bibliography 598

78 cited on p. 103Moré, J. J. and Thuente, D. J., “Line search algorithms with guaran-
teed sufficient decrease,”ACMTransactions onMathematical Software
(TOMS), Vol. 20, No. 3, 1994, pp. 286–307.
doi: 10.1145/192115.192132

79 cited on pp. 103, 118, 141, 142, 190,
209, 567, 568

Nocedal, J. and Wright, S. J., Numerical Optimization, 2nd ed. Berlin:
Springer, 2006.
doi: 10.1007/978-0-387-40065-5

80 cited on p. 126Broyden, C. G., “The convergence of a class of double-rank min-
imization algorithms 1. General considerations,” IMA Journal of
Applied Mathematics, Vol. 6, No. 1, 1970, pp. 76–90, issn: 1464-3634.
doi: 10.1093/imamat/6.1.76

81 cited on p. 126Fletcher, R., “A new approach to variable metric algorithms,” The
Computer Journal, Vol. 13, No. 3, March 1970, pp. 317–322, issn:
1460-2067.
doi: 10.1093/comjnl/13.3.317

82 cited on p. 126Goldfarb, D., “A family of variable-metric methods derived by
variational means,” Mathematics of Computation, Vol. 24, No. 109,
January 1970, pp. 23–23, issn: 0025-5718.
doi: 10.1090/s0025-5718-1970-0258249-6

83 cited on p. 126Shanno, D. F., “Conditioning of quasi-Newton methods for func-
tion minimization,” Mathematics of Computation, Vol. 24, No. 111,
September 1970, pp. 647–647, issn: 0025-5718.
doi: 10.1090/s0025-5718-1970-0274029-x

84 cited on pp. 140, 141, 142, 143Conn, A. R., Gould, N. I. M., and Toint, P. L., Trust Region Methods.
Philadelphia, PA: SIAM, 2000.
isbn: 0898714605

85 cited on p. 141Steihaug, T., “The conjugate gradient method and trust regions in
large scale optimization,” SIAM Journal on Numerical Analysis, Vol.
20, No. 3, June 1983, pp. 626–637, issn: 1095-7170.
doi: 10.1137/0720042

86 cited on pp. 156, 425Boyd, S. P. and Vandenberghe, L., Convex Optimization. Cambridge,
UK: Cambridge University Press, March 2004.
isbn: 0521833787

87 cited on pp. 156, 547Strang, G., Linear Algebra and its Applications, 4th ed. Boston, MA:
Cengage Learning, 2006.
isbn: 0030105676

88 cited on p. 166Dax, A., “Classroom note: An elementary proof of Farkas’ lemma,”
SIAM Review, Vol. 39, No. 3, 1997, pp. 503–507.
doi: 10.1137/S0036144594295502

https://dx.doi.org/10.1145/192115.192132
https://dx.doi.org/10.1145/192115.192132
https://doi.org/10.1145/192115.192132
https://dx.doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/10.1093/imamat/6.1.76
https://dx.doi.org/10.1093/imamat/6.1.76
https://doi.org/10.1093/imamat/6.1.76
https://dx.doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1093/comjnl/13.3.317
https://dx.doi.org/10.1090/s0025-5718-1970-0258249-6
https://dx.doi.org/10.1090/s0025-5718-1970-0258249-6
https://doi.org/10.1090/s0025-5718-1970-0258249-6
https://dx.doi.org/10.1090/s0025-5718-1970-0274029-x
https://dx.doi.org/10.1090/s0025-5718-1970-0274029-x
https://doi.org/10.1090/s0025-5718-1970-0274029-x
https://books.google.com/books?vid=ISBN0898714605
http://books.google.com/books?vid=ISBN0898714605
https://dx.doi.org/10.1137/0720042
https://dx.doi.org/10.1137/0720042
https://doi.org/10.1137/0720042
https://books.google.com/books?vid=ISBN0521833787
http://books.google.com/books?vid=ISBN0521833787
https://books.google.com/books?vid=ISBN0030105676
http://books.google.com/books?vid=ISBN0030105676
https://dx.doi.org/10.1137/S0036144594295502
https://doi.org/10.1137/S0036144594295502

Bibliography 599

89 Gill, P. E., Murray, W., Saunders, M. A., and Wright, M. H. cited on p. 183, “Some
theoretical properties of an augmented Lagrangianmerit function,”
SOL 86-6R, Systems Optimization Laboratory, September 1986.

90 cited on p. 183Di Pillo, G. andGrippo, L., “AnewaugmentedLagrangian function
for inequality constraints in nonlinear programming problems,”
Journal of Optimization Theory and Applications, Vol. 36, No. 4, 1982,
pp. 495–519
doi: 10.1007/BF00940544

91 cited on p. 183Birgin, E. G., Castillo, R. A., and MartÍnez, J. M., “Numerical
comparison of augmented Lagrangian algorithms for nonconvex
problems,” Computational Optimization and Applications, Vol. 31, No.
1, 2005, pp. 31–55
doi: 10.1007/s10589-005-1066-7

92 cited on p. 183Rockafellar, R. T., “The multiplier method of Hestenes and Powell
applied to convex programming,” Journal of Optimization Theory
and Applications, Vol. 12, No. 6, 1973, pp. 555–562
doi: 10.1007/BF00934777

93 cited on p. 187Murray, W., “Analytical expressions for the eigenvalues and eigen-
vectors of the Hessian matrices of barrier and penalty functions,”
Journal of Optimization Theory and Applications, Vol. 7, No. 3, March
1971, pp. 189–196.
doi: 10.1007/bf00932477

94 cited on p. 187Forsgren, A., Gill, P. E., and Wright, M. H., “Interior methods for
nonlinear optimization,” SIAM Review, Vol. 44, No. 4, January 2002,
pp. 525–597.
doi: 10.1137/s0036144502414942

95 cited on p. 190Gill, P. E. and Wong, E., “Sequential quadratic programming
methods,” Mixed Integer Nonlinear Programming, Lee, J. and Leyffer,
S., Eds., ser. The IMAVolumes inMathematics and Its Applications.
New York, NY: Springer, 2012, Vol. 154.
doi: 10.1007/978-1-4614-1927-3_6

96 cited on pp. 190, 197, 200Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP
algorithm for large-scale constrained optimization,” SIAM Review,
Vol. 47, No. 1, 2005, pp. 99–131.
doi: 10.1137/S0036144504446096

97 cited on p. 198Fletcher, R. and Leyffer, S., “Nonlinear programming without a
penalty function,”Mathematical Programming, Vol. 91,No. 2, January
2002, pp. 239–269.
doi: 10.1007/s101070100244

https://https://apps.dtic.mil/sti/citations/ADA168503
https://https://apps.dtic.mil/sti/citations/ADA168503
https://dx.doi.org/10.1007/BF00940544
https://dx.doi.org/10.1007/BF00940544
https://doi.org/10.1007/BF00940544
https://dx.doi.org/10.1007/s10589-005-1066-7
https://dx.doi.org/10.1007/s10589-005-1066-7
https://dx.doi.org/10.1007/s10589-005-1066-7
https://doi.org/10.1007/s10589-005-1066-7
https://dx.doi.org/10.1007/BF00934777
https://dx.doi.org/10.1007/BF00934777
https://doi.org/10.1007/BF00934777
https://dx.doi.org/10.1007/bf00932477
https://dx.doi.org/10.1007/bf00932477
https://doi.org/10.1007/bf00932477
https://dx.doi.org/10.1137/s0036144502414942
https://dx.doi.org/10.1137/s0036144502414942
https://doi.org/10.1137/s0036144502414942
https://dx.doi.org/10.1007/978-1-4614-1927-3_6
https://dx.doi.org/10.1007/978-1-4614-1927-3_6
https://doi.org/10.1007/978-1-4614-1927-3_6
https://dx.doi.org/10.1137/S0036144504446096
https://dx.doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096
https://dx.doi.org/10.1007/s101070100244
https://dx.doi.org/10.1007/s101070100244
https://doi.org/10.1007/s101070100244

Bibliography 600

98 cited on p. 198Benson, H. Y., Vanderbei, R. J., and Shanno, D. F., “Interior-point
methods for nonconvex nonlinear programming: Filter methods
and merit functions,” Computational Optimization and Applications,
Vol. 23, No. 2, 2002, pp. 257–272.
doi: 10.1023/a:1020533003783

99 Fletcher, R., Leyffer, S., and Toint, P. cited on p. 198, “A brief history of filter
methods,” ANL/MCS-P1372-0906, Argonne National Laboratory,
September 2006.

100 cited on p. 200Fletcher, R., Practical Methods of Optimization, 2nd ed. Hoboken, NJ:
Wiley, 1987.

101 cited on p. 200Liu, D. C. and Nocedal, J., “On the limited memory BFGS method
for large scale optimization,” Mathematical Programming, Vol. 45,
No. 1–3, August 1989, pp. 503–528.
doi: 10.1007/bf01589116

102 cited on pp. 200, 208Byrd, R. H., Nocedal, J., and Waltz, R. A., “Knitro: An integrated
package for nonlinear optimization,” Large-Scale Nonlinear Opti-
mization, Di Pillo, G. and Roma, M., Eds. Boston, MA: Springer US,
2006, pp. 35–59.
doi: 10.1007/0-387-30065-1_4

103 Kraft, D. cited on p. 200, “A software package for sequential quadratic program-
ming,” DFVLR-FB 88-28, DLR German Aerospace Center–Institute
for Flight Mechanics, Koln, Germany, 1988.

104 cited on p. 208Wächter, A. and Biegler, L. T., “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear
programming,”Mathematical Programming, Vol. 106, No. 1, April
2005, pp. 25–57.
doi: 10.1007/s10107-004-0559-y

105 cited on p. 208Byrd, R. H., Hribar, M. E., and Nocedal, J., “An interior point
algorithm for large-scale nonlinear programming,” SIAM Journal
on Optimization, Vol. 9, No. 4, January 1999, pp. 877–900.
doi: 10.1137/s1052623497325107

106 cited on p. 208Wächter, A. and Biegler, L. T., “On the implementation of a primal-
dual interior point filter line search algorithm for large-scale non-
linear programming,”Mathematical Programming, Vol. 106, No. 1,
2006, pp. 25–57.

107 cited on p. 209Gill, P. E., Saunders, M. A., and Wong, E., “On the performance
of SQP methods for nonlinear optimization,” Modeling and Opti-
mization: Theory and Applications, Defourny, B. and Terlaky, T., Eds.
New York, NY: Springer, 2015, Vol. 147, pp. 95–123.
doi: 10.1007/978-3-319-23699-5_5

https://dx.doi.org/10.1023/a:1020533003783
https://dx.doi.org/10.1023/a:1020533003783
https://dx.doi.org/10.1023/a:1020533003783
https://doi.org/10.1023/a:1020533003783
https://http://www.optimization-online.org/DB_FILE/2006/10/1489.pdf
https://http://www.optimization-online.org/DB_FILE/2006/10/1489.pdf
https://https://www.google.ca/books/edition/Practical_Methods_of_Optimization/_WuAvIx0EE4C
https://dx.doi.org/10.1007/bf01589116
https://dx.doi.org/10.1007/bf01589116
https://doi.org/10.1007/bf01589116
https://dx.doi.org/10.1007/0-387-30065-1_4
https://dx.doi.org/10.1007/0-387-30065-1_4
https://doi.org/10.1007/0-387-30065-1_4
https://http://www.opengrey.eu/item/display/10068/147127
https://http://www.opengrey.eu/item/display/10068/147127
https://dx.doi.org/10.1007/s10107-004-0559-y
https://dx.doi.org/10.1007/s10107-004-0559-y
https://dx.doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://dx.doi.org/10.1137/s1052623497325107
https://dx.doi.org/10.1137/s1052623497325107
https://doi.org/10.1137/s1052623497325107
https://dx.doi.org/10.1007/978-3-319-23699-5_5
https://dx.doi.org/10.1007/978-3-319-23699-5_5
https://doi.org/10.1007/978-3-319-23699-5_5

Bibliography 601

108 cited on p. 212Kreisselmeier, G. and Steinhauser, R., “Systematic control design by
optimizing a vector performance index,” IFAC Proceedings Volumes,
Vol. 12, No. 7, September 1979, pp. 113–117, issn: 1474-6670.
doi: 10.1016/s1474-6670(17)65584-8

109 cited on p. 213Duysinx, P. and Bendsøe, M. P., “Topology optimization of contin-
uum structures with local stress constraints,” International Journal
for Numerical Methods in Engineering, Vol. 43, 1998, pp. 1453–1478.
doi: 10 . 1002/(SICI)1097 - 0207(19981230)43 :8%3C1453 ::AID-
NME480%3E3.0.CO;2-2

110 cited on p. 213Kennedy, G. J. and Hicken, J. E., “Improved constraint-aggregation
methods,” Computer Methods in Applied Mechanics and Engineering,
Vol. 289, 2015, pp. 332–354, issn: 0045-7825.
doi: 10.1016/j.cma.2015.02.017

111 cited on p. 219Hoerner, S. F., Fluid-Dynamic Drag. Bakersfield, CA: Hoerner Fluid
Dynamics, 1965.

112 cited on p. 232Lyness, J. N. andMoler, C. B., “Numerical differentiation of analytic
functions,” SIAM Journal on Numerical Analysis, Vol. 4, No. 2, 1967,
pp. 202–210, issn: 0036-1429 (print), 1095-7170 (electronic).
doi: 10.1137/0704019

113 cited on p. 233Lantoine, G., Russell, R. P., and Dargent, T., “Using multicomplex
variables for automatic computation of high-order derivatives,”
ACM Transactions on Mathematical Software, Vol. 38, No. 3, April
2012, pp. 1–21, issn: 0098-3500.
doi: 10.1145/2168773.2168774

114 cited on p. 233Fike, J. A. and Alonso, J. J., “Automatic differentiation through the
use of hyper-dual numbers for second derivatives,”Recent Advances
in Algorithmic Differentiation, Forth, S., Hovland, P., Phipps, E., Utke,
J., and Walther, A., Eds. Berlin: Springer, 2012, pp. 163–173, isbn:
978-3-642-30023-3.
doi: 10.1007/978-3-642-30023-3_15

115 cited on pp. 237, 247, 249Griewank, A., Evaluating Derivatives. Philadelphia, PA: SIAM, 2000.
doi: 10.1137/1.9780898717761

116 cited on p. 237Naumann, U., The Art of Differentiating Computer Programs—An
Introduction to Algorithmic Differentiation. Philadelphia, PA: SIAM,
2011.

117 cited on p. 250Utke, J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach,
P., Hill, C., and Wunsch, C., “OpenAD/F: A modular open-source
tool for automatic differentiation of Fortran codes,” ACM Trans-
actions on Mathematical Software, Vol. 34, No. 4, July 2008, issn:

https://dx.doi.org/10.1016/s1474-6670(17)65584-8
https://dx.doi.org/10.1016/s1474-6670(17)65584-8
https://doi.org/10.1016/s1474-6670(17)65584-8
https://dx.doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
https://dx.doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
https://doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
https://doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
https://dx.doi.org/10.1016/j.cma.2015.02.017
https://dx.doi.org/10.1016/j.cma.2015.02.017
https://doi.org/10.1016/j.cma.2015.02.017
https://https://www.google.ca/books/edition/Fluid_dynamic_Drag/6K12uAAACAAJ
https://dx.doi.org/10.1137/0704019
https://dx.doi.org/10.1137/0704019
https://doi.org/10.1137/0704019
https://dx.doi.org/10.1145/2168773.2168774
https://dx.doi.org/10.1145/2168773.2168774
https://doi.org/10.1145/2168773.2168774
https://dx.doi.org/10.1007/978-3-642-30023-3_15
https://dx.doi.org/10.1007/978-3-642-30023-3_15
https://doi.org/10.1007/978-3-642-30023-3_15
https://dx.doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9780898717761
https://https://books.google.ca/books/about/The_Art_of_Differentiating_Computer_Prog.html?id=OgQuUR4nLu0C
https://https://books.google.ca/books/about/The_Art_of_Differentiating_Computer_Prog.html?id=OgQuUR4nLu0C
https://dx.doi.org/10.1145/1377596.1377598
https://dx.doi.org/10.1145/1377596.1377598

Bibliography 602

0098-3500.
doi: 10.1145/1377596.1377598

118 cited on p. 250Hascoet, L. and Pascual, V., “The Tapenade automatic differentia-
tion tool: Principles, model, and specification,” ACM Transactions
on Mathematical Software, Vol. 39, No. 3, May 2013, 20:1–20:43, issn:
0098-3500.
doi: 10.1145/2450153.2450158

119 cited on p. 250Griewank, A., Juedes, D., and Utke, J., “Algorithm 755: ADOL-C:
A package for the automatic differentiation of algorithms written
in C/C++,” ACM Transactions on Mathematical Software, Vol. 22, No.
2, June 1996, pp. 131–167, issn: 0098-3500.
doi: 10.1145/229473.229474

120 cited on p. 250Wiltschko, A. B., Merriënboer, B. van, and Moldovan, D., “Tangent:
Automatic differentiation using source code transformation in
Python,” arXiv:1711.02712, 2017.
url: https://arxiv.org/abs/1711.02712.

121 cited on p. 250Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C.,
Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-
Milne, S., and Zhang, Q., “JAX: Composable Transformations of
Python+NumPy Programs,” 2018.
url: http://github.com/google/jax.

122 cited on p. 250Revels, J., Lubin, M., and Papamarkou, T., “Forward-mode auto-
matic differentiation in Julia,” arXiv:1607.07892, July 2016.
url: https://arxiv.org/abs/1607.07892.

123 cited on p. 250Neidinger, R. D., “Introduction to automatic differentiation and
MATLAB object-oriented programming,” SIAM Review, Vol. 52,
No. 3, January 2010, pp. 545–563.
doi: 10.1137/080743627

124 cited on p. 250Betancourt, M., “A geometric theory of higher-order automatic
differentiation,” arXiv:1812.11592 [stat.CO], December 2018.
url: https://arxiv.org/abs/1812.11592.

125 cited on pp. 251, 252Giles, M., “An extended collection of matrix derivative results for
forward and reverse mode algorithmic differentiation,” Oxford,
UK, January 2008.
url: https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf.

126 cited on p. 252Peter, J. E. V. and Dwight, R. P., “Numerical sensitivity analysis for
aerodynamic optimization: A survey of approaches,” Computers
and Fluids, Vol. 39, No. 3, March 2010, pp. 373–391.
doi: 10.1016/j.compfluid.2009.09.013

https://doi.org/10.1145/1377596.1377598
https://dx.doi.org/10.1145/2450153.2450158
https://dx.doi.org/10.1145/2450153.2450158
https://doi.org/10.1145/2450153.2450158
https://dx.doi.org/10.1145/229473.229474
https://dx.doi.org/10.1145/229473.229474
https://dx.doi.org/10.1145/229473.229474
https://doi.org/10.1145/229473.229474
https://https://arxiv.org/abs/1711.02712
https://https://arxiv.org/abs/1711.02712
https://https://arxiv.org/abs/1711.02712
https://arxiv.org/abs/1711.02712
https://http://github.com/google/jax
https://http://github.com/google/jax
http://github.com/google/jax
https://https://arxiv.org/abs/1607.07892
https://https://arxiv.org/abs/1607.07892
https://arxiv.org/abs/1607.07892
https://dx.doi.org/10.1137/080743627
https://dx.doi.org/10.1137/080743627
https://doi.org/10.1137/080743627
https://https://arxiv.org/abs/1812.11592
https://https://arxiv.org/abs/1812.11592
https://arxiv.org/abs/1812.11592
https://https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://people.maths.ox.ac.uk/gilesm/files/NA-08-01.pdf
https://dx.doi.org/10.1016/j.compfluid.2009.09.013
https://dx.doi.org/10.1016/j.compfluid.2009.09.013
https://doi.org/10.1016/j.compfluid.2009.09.013

Bibliography 603

127 cited on pp. 257, 444Martins, J. R. R. A., “Perspectives on aerodynamic design optimiza-
tion,” Proceedings of the AIAA SciTech Forum. American Institute of
Aeronautics and Astronautics, January 2020.
doi: 10.2514/6.2020-0043

128 cited on p. 260Lambe, A. B.,Martins, J. R. R. A., andKennedy, G. J., “An evaluation
of constraint aggregation strategies for wing box mass minimiza-
tion,” Structural and Multidisciplinary Optimization, Vol. 55, No. 1,
January 2017, pp. 257–277.
doi: 10.1007/s00158-016-1495-1

129 cited on p. 260Kenway, G. K. W., Mader, C. A., He, P., and Martins, J. R. R. A.,
“Effective Adjoint Approaches for Computational Fluid Dynamics,”
Progress in Aerospace Sciences, Vol. 110, October 2019, p. 100 542.
doi: 10.1016/j.paerosci.2019.05.002

130 cited on p. 263Curtis, A. R., Powell, M. J. D., and Reid, J. K., “On the estimation
of sparse Jacobian matrices,” IMA Journal of Applied Mathematics,
Vol. 13, No. 1, February 1974, pp. 117–119, issn: 1464-3634.
doi: 10.1093/imamat/13.1.117

131 cited on p. 264Gebremedhin, A. H., Manne, F., and Pothen, A., “What color is
your Jacobian? Graph coloring for computing derivatives,” SIAM
Review, Vol. 47, No. 4, January 2005, pp. 629–705, issn: 1095-7200.
doi: 10.1137/s0036144504444711

132 cited on pp. 264, 494, 501, 508, 533Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., and
Naylor, B. A., “OpenMDAO: An open-source framework for multi-
disciplinary design, analysis, and optimization,” Structural and
Multidisciplinary Optimization, Vol. 59, No. 4, April 2019, pp. 1075–
1104.
doi: 10.1007/s00158-019-02211-z

133 cited on p. 265Ning, A., “Using blade elementmomentummethodswith gradient-
based design optimization,” Structural and Multidisciplinary Opti-
mization, May 2021
doi: 10.1007/s00158-021-02883-6

134 cited on p. 266Martins, J. R. R. A. and Hwang, J. T., “Review and unification of
methods for computing derivatives of multidisciplinary compu-
tational models,” AIAA Journal, Vol. 51, No. 11, November 2013,
pp. 2582–2599.
doi: 10.2514/1.J052184

135 cited on p. 283Yu, Y., Lyu, Z., Xu, Z., and Martins, J. R. R. A., “On the influence of
optimization algorithm and starting design on wing aerodynamic
shape optimization,”Aerospace Science and Technology, Vol. 75, April

https://dx.doi.org/10.2514/6.2020-0043
https://dx.doi.org/10.2514/6.2020-0043
https://doi.org/10.2514/6.2020-0043
https://dx.doi.org/10.1007/s00158-016-1495-1
https://dx.doi.org/10.1007/s00158-016-1495-1
https://dx.doi.org/10.1007/s00158-016-1495-1
https://doi.org/10.1007/s00158-016-1495-1
https://dx.doi.org/10.1016/j.paerosci.2019.05.002
https://doi.org/10.1016/j.paerosci.2019.05.002
https://dx.doi.org/10.1093/imamat/13.1.117
https://dx.doi.org/10.1093/imamat/13.1.117
https://doi.org/10.1093/imamat/13.1.117
https://dx.doi.org/10.1137/s0036144504444711
https://dx.doi.org/10.1137/s0036144504444711
https://doi.org/10.1137/s0036144504444711
https://dx.doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z
https://dx.doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.1007/s00158-021-02883-6
https://doi.org/10.1007/s00158-021-02883-6
https://dx.doi.org/10.2514/1.J052184
https://dx.doi.org/10.2514/1.J052184
https://dx.doi.org/10.2514/1.J052184
https://doi.org/10.2514/1.J052184
https://dx.doi.org/10.1016/j.ast.2018.01.016
https://dx.doi.org/10.1016/j.ast.2018.01.016
https://dx.doi.org/10.1016/j.ast.2018.01.016

Bibliography 604

2018, pp. 183–199.
doi: 10.1016/j.ast.2018.01.016

136 cited on pp. 283, 284Rios, L. M. and Sahinidis, N. V., “Derivative-free optimization: A
reviewof algorithmsandcomparisonof software implementations,”
Journal of Global Optimization, Vol. 56, 2013, pp. 1247–1293.
doi: 10.1007/s10898-012-9951-y

137 cited on p. 285Conn, A. R., Scheinberg, K., and Vicente, L. N., Introduction to
Derivative-Free Optimization. Philadelphia, PA: SIAM, 2009.
doi: 10.1137/1.9780898718768

138 cited on p. 285Audet, C. and Hare, W., Derivative-Free and Blackbox Optimization.
New York, NY: Springer, 2017.
doi: 10.1007/978-3-319-68913-5

139 cited on p. 285Kokkolaras, M., “When, why, and how can derivative-free opti-
mization be useful to computational engineering design?” Journal
of Mechanical Design, Vol. 142, No. 1, January 2020, p. 010 301.
doi: 10.1115/1.4045043

140 cited on pp. 286, 312Simon, D., Evolutionary Optimization Algorithms. Hoboken, NJ: John
Wiley & Sons, June 2013.
isbn: 1118659503

141 cited on p. 297Audet, C. and J. E. Dennis, J., “Mesh adaptive direct search algo-
rithms for constrained optimization,” SIAM Journal on Optimization,
Vol. 17, No. 1, July 2006, pp. 188–217.
doi: 10.1137/040603371

142 cited on p. 298Le Digabel, S., “Algorithm 909: NOMAD: Nonlinear optimization
with the MADS algorithm,” ACM Transactions on Mathematical
Software, Vol. 37, No. 4, 2011, pp. 1–15.
doi: 10.1145/1916461.1916468

143 cited on pp. 298, 304Jones, D. R., “Direct global optimization algorithm,” Encyclopedia
of Optimization, Floudas, C. A. and Pardalos, P. M., Eds. Boston,
MA: Springer, 2009, pp. 725–735, isbn: 978-0-387-74759-0.
doi: 10.1007/978-0-387-74759-0_128

144 cited on p. 303Jarvis, R. A., “On the identification of the convex hull of a finite set
of points in the plane,” Information Processing Letters, Vol. 2, No. 1,
1973, pp. 18–21.
doi: 10.1016/0020-0190(73)90020-3

145 cited on pp. 304, 415Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient global
optimization of expensive black-box functions,” Journal of Global
Optimization, Vol. 13, 1998, pp. 455–492.
doi: 10.1023/A:1008306431147

https://doi.org/10.1016/j.ast.2018.01.016
https://dx.doi.org/10.1007/s10898-012-9951-y
https://dx.doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1007/s10898-012-9951-y
https://dx.doi.org/10.1137/1.9780898718768
https://dx.doi.org/10.1137/1.9780898718768
https://doi.org/10.1137/1.9780898718768
https://dx.doi.org/10.1007/978-3-319-68913-5
https://doi.org/10.1007/978-3-319-68913-5
https://dx.doi.org/10.1115/1.4045043
https://dx.doi.org/10.1115/1.4045043
https://doi.org/10.1115/1.4045043
https://books.google.com/books?vid=ISBN1118659503
http://books.google.com/books?vid=ISBN1118659503
https://dx.doi.org/10.1137/040603371
https://dx.doi.org/10.1137/040603371
https://doi.org/10.1137/040603371
https://dx.doi.org/10.1145/1916461.1916468
https://dx.doi.org/10.1145/1916461.1916468
https://doi.org/10.1145/1916461.1916468
https://dx.doi.org/10.1007/978-0-387-74759-0_128
https://doi.org/10.1007/978-0-387-74759-0_128
https://dx.doi.org/10.1016/0020-0190(73)90020-3
https://dx.doi.org/10.1016/0020-0190(73)90020-3
https://doi.org/10.1016/0020-0190(73)90020-3
https://dx.doi.org/10.1023/A:1008306431147
https://dx.doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147

Bibliography 605

146 cited on p. 306Barricelli, N., “Esempi numerici di processi di evoluzione,” Metho-
dos, 1954, pp. 45–68.

147 cited on p. 306Jong, K. A. D., “An analysis of the behavior of a class of genetic
adaptive systems,” PhD dissertation, University of Michigan, Ann
Arbor, MI, 1975.

148 cited on pp. 308, 364Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A fast and
elitistmultiobjective genetic algorithm:NSGA-II,” IEEETransactions
on Evolutionary Computation, Vol. 6, No. 2, April 2002, pp. 182–197.
doi: 10.1109/4235.996017

149 cited on p. 313Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms.
Hoboken, NJ: John Wiley & Sons, 2001.
isbn: 047187339X

150 cited on p. 316Eberhart, R. and Kennedy, J. A., “New optimizer using particle
swarm theory,” Proceedings of the Sixth International Symposium
on Micro Machine and Human Science. Institute of Electrical and
Electronics Engineers, 1995, pp. 39–43.
doi: 10.1109/MHS.1995.494215

151 cited on p. 317Zhan, Z.-H., Zhang, J., Li, Y., and Chung, H. S.-H., “Adaptive
particle swarm optimization,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), Vol. 39, No. 6, April 2009,
pp. 1362–1381.
doi: 10.1109/TSMCB.2009.2015956

152 cited on p. 338Gutin, G., Yeo, A., and Zverovich, A., “Traveling salesman should
not be greedy: Domination analysis of greedy-type heuristics for
the TSP,” Discrete Applied Mathematics, Vol. 117, No. 1–3, March
2002, pp. 81–86, issn: 0166-218X.
doi: 10.1016/s0166-218x(01)00195-0

153 cited on p. 347Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization
by simulated annealing,” Science, Vol. 220, No. 4598, May 1983,
pp. 671–680, issn: 1095-9203.
doi: 10.1126/science.220.4598.671

154 cited on p. 347Černý, V., “Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm,” Journal of Optimization
Theory and Applications, Vol. 45, No. 1, January 1985, pp. 41–51, issn:
1573-2878.
doi: 10.1007/bf00940812

155 cited on p. 347Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.,
and Teller, E., “Equation of state calculations by fast computing
machines,” Journal of Chemical Physics, March 1953.
doi: 10.2172/4390578

https://dx.doi.org/10.1109/4235.996017
https://dx.doi.org/10.1109/4235.996017
https://doi.org/10.1109/4235.996017
https://books.google.com/books?vid=ISBN047187339X
http://books.google.com/books?vid=ISBN047187339X
https://dx.doi.org/10.1109/MHS.1995.494215
https://dx.doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/MHS.1995.494215
https://dx.doi.org/10.1109/TSMCB.2009.2015956
https://dx.doi.org/10.1109/TSMCB.2009.2015956
https://doi.org/10.1109/TSMCB.2009.2015956
https://dx.doi.org/10.1016/s0166-218x(01)00195-0
https://dx.doi.org/10.1016/s0166-218x(01)00195-0
https://dx.doi.org/10.1016/s0166-218x(01)00195-0
https://doi.org/10.1016/s0166-218x(01)00195-0
https://dx.doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://dx.doi.org/10.1007/bf00940812
https://dx.doi.org/10.1007/bf00940812
https://doi.org/10.1007/bf00940812
https://dx.doi.org/10.2172/4390578
https://dx.doi.org/10.2172/4390578
https://doi.org/10.2172/4390578

Bibliography 606

156 cited on p. 348Andresen, B. and Gordon, J. M., “Constant thermodynamic speed
for minimizing entropy production in thermodynamic processes
and simulated annealing,” Physical Review E, Vol. 50, No. 6, Decem-
ber 1994, pp. 4346–4351, issn: 1095-3787.
doi: 10.1103/physreve.50.4346

157 cited on p. 349Lin, S., “Computer solutions of the traveling salesman problem,”
Bell System Technical Journal, Vol. 44, No. 10, December 1965,
pp. 2245–2269, issn: 0005-8580.
doi: 10.1002/j.1538-7305.1965.tb04146.x

158 cited on p. 351Press, W. H., Wevers, J., Flannery, B. P., Teukolsky, S. A., Vetterling,
W. T., Flannery, B. P., and Vetterling, W. T., Numerical Recipes in
C: The Art of Scientific Computing. Cambridge, UK: Cambridge
University Press, 1992.
isbn: 0521431085

159 cited on p. 360Haimes, Y. Y., Lasdon, L. S., and Wismer, D. A., “On a bicriterion
formulation of the problems of integrated system identification
and system optimization,” IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-1, No. 3, July 1971, pp. 296–297.
doi: 10.1109/tsmc.1971.4308298

160 cited on p. 360Das, I. and Dennis, J. E., “Normal-boundary intersection: A new
method for generating the Pareto surface in nonlinear multicriteria
optimization problems,” SIAM Journal on Optimization, Vol. 8, No.
3, August 1998, pp. 631–657.
doi: 10.1137/s1052623496307510

161 cited on p. 362Ismail-Yahaya, A. and Messac, A., “Effective generation of the
Pareto frontier using the normal constraint method,” Proceedings
of the 40th AIAA Aerospace Sciences Meeting & Exhibit. American
Institute of Aeronautics and Astronautics, January 2002.
doi: 10.2514/6.2002-178

162 cited on p. 362Messac, A. and Mattson, C. A., “Normal constraint method with
guarantee of even representation of complete Pareto frontier,”
AIAA Journal, Vol. 42, No. 10, October 2004, pp. 2101–2111.
doi: 10.2514/1.8977

163 cited on p. 362Hancock, B. J. and Mattson, C. A., “The smart normal constraint
method for directly generating a smart Pareto set,” Structural and
MultidisciplinaryOptimization, Vol. 48, No. 4, June 2013, pp. 763–775.
doi: 10.1007/s00158-013-0925-6

164 cited on p. 363Schaffer, J. D., “Some experiments in machine learning using
vector evaluated genetic algorithms.” PhD dissertation, Vanderbilt
University, Nashville, TN, 1984.

https://dx.doi.org/10.1103/physreve.50.4346
https://dx.doi.org/10.1103/physreve.50.4346
https://dx.doi.org/10.1103/physreve.50.4346
https://doi.org/10.1103/physreve.50.4346
https://dx.doi.org/10.1002/j.1538-7305.1965.tb04146.x
https://doi.org/10.1002/j.1538-7305.1965.tb04146.x
https://books.google.com/books?vid=ISBN0521431085
https://books.google.com/books?vid=ISBN0521431085
http://books.google.com/books?vid=ISBN0521431085
https://dx.doi.org/10.1109/tsmc.1971.4308298
https://dx.doi.org/10.1109/tsmc.1971.4308298
https://dx.doi.org/10.1109/tsmc.1971.4308298
https://doi.org/10.1109/tsmc.1971.4308298
https://dx.doi.org/10.1137/s1052623496307510
https://dx.doi.org/10.1137/s1052623496307510
https://dx.doi.org/10.1137/s1052623496307510
https://doi.org/10.1137/s1052623496307510
https://dx.doi.org/10.2514/6.2002-178
https://dx.doi.org/10.2514/6.2002-178
https://doi.org/10.2514/6.2002-178
https://dx.doi.org/10.2514/1.8977
https://dx.doi.org/10.2514/1.8977
https://doi.org/10.2514/1.8977
https://dx.doi.org/10.1007/s00158-013-0925-6
https://dx.doi.org/10.1007/s00158-013-0925-6
https://doi.org/10.1007/s00158-013-0925-6

Bibliography 607

165 cited on p. 364Deb,K., “Introduction to evolutionarymultiobjective optimization,”
Multiobjective Optimization. Berlin: Springer, 2008, pp. 59–96.
doi: 10.1007/978-3-540-88908-3_3

166 cited on p. 364Kung, H. T., Luccio, F., and Preparata, F. P., “On finding themaxima
of a set of vectors,” Journal of the ACM, Vol. 22, No. 4, October 1975,
pp. 469–476.
doi: 10.1145/321906.321910

167 cited on p. 384Faure, H., “Discrépance des suites associées à un systéme de
numération (en dimension s).” Acta Arithmetica, Vol. 41, 1982,
pp. 337–351.
doi: 10.4064/aa-41-4-337-351

168 cited on p. 384Faure, H. and Lemieux, C., “Generalized Halton sequences in 2008:
A comparative study,” ACM Transactions on Modeling and Computer
Simulation, Vol. 19, No. 4, October 2009, pp. 1–31.
doi: 10.1145/1596519.1596520

169 cited on p. 384Sobol, I. M., “On the distribution of points in a cube and the approx-
imate evaluation of integrals,” USSR Computational Mathematics
and Mathematical Physics, Vol. 7, No. 4, 1967, pp. 86–112.
doi: 10.1016/0041-5553(67)90144-9

170 cited on p. 384Niederreiter, H., “Low-discrepancy and low-dispersion sequences,”
Journal of Number Theory, Vol. 30, No. 1, 1988, pp. 51–70.
doi: 10.1016/0022-314X(88)90025-X

171 cited on p. 399Bouhlel, M. A., Hwang, J. T., Bartoli, N., Lafage, R., Morlier, J., and
Martins, J. R. R. A., “A Python surrogate modeling framework with
derivatives,” Advances in Engineering Software, 2019, p. 102 662, issn:
0965-9978.
doi: https://doi.org/10.1016/j.advengsoft.2019.03.005

172 cited on pp. 399, 408Bouhlel, M. A. andMartins, J. R. R. A., “Gradient-enhanced kriging
for high-dimensional problems,” Engineering with Computers, Vol.
1, No. 35, January 2019, pp. 157–173.
doi: 10.1007/s00366-018-0590-x

173 cited on p. 403Jones, D. R., “A taxonomy of global optimization methods based
on response surfaces,” Journal of Global Optimization, Vol. 21, 2001,
pp. 345–383.
doi: 10.1023/A:1012771025575

174 cited on p. 404Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P., “Design and
analysis of computer experiments,” Statistical Science, Vol. 4, No. 4,
1989, pp. 409–423, issn: 08834237.
doi: 10.2307/2245858

https://dx.doi.org/10.1007/978-3-540-88908-3_3
https://doi.org/10.1007/978-3-540-88908-3_3
https://dx.doi.org/10.1145/321906.321910
https://dx.doi.org/10.1145/321906.321910
https://doi.org/10.1145/321906.321910
https://dx.doi.org/10.4064/aa-41-4-337-351
https://dx.doi.org/10.4064/aa-41-4-337-351
https://doi.org/10.4064/aa-41-4-337-351
https://dx.doi.org/10.1145/1596519.1596520
https://dx.doi.org/10.1145/1596519.1596520
https://doi.org/10.1145/1596519.1596520
https://dx.doi.org/10.1016/0041-5553(67)90144-9
https://dx.doi.org/10.1016/0041-5553(67)90144-9
https://doi.org/10.1016/0041-5553(67)90144-9
https://dx.doi.org/10.1016/0022-314X(88)90025-X
https://doi.org/10.1016/0022-314X(88)90025-X
https://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2019.03.005
https://dx.doi.org/https://doi.org/10.1016/j.advengsoft.2019.03.005
https://doi.org/https://doi.org/10.1016/j.advengsoft.2019.03.005
https://dx.doi.org/10.1007/s00366-018-0590-x
https://dx.doi.org/10.1007/s00366-018-0590-x
https://doi.org/10.1007/s00366-018-0590-x
https://dx.doi.org/10.1023/A:1012771025575
https://dx.doi.org/10.1023/A:1012771025575
https://doi.org/10.1023/A:1012771025575
https://dx.doi.org/10.2307/2245858
https://dx.doi.org/10.2307/2245858
https://doi.org/10.2307/2245858

Bibliography 608

175 cited on p. 408Han, Z.-H., Zhang, Y., Song, C.-X., and Zhang, K.-S., “Weighted
gradient-enhanced kriging for high-dimensional surrogate model-
ing and design optimization,”AIAA Journal, Vol. 55, No. 12, August
2017, pp. 4330–4346.
doi: 10.2514/1.J055842

176 cited on p. 408Forrester, A., Sobester, A., and Keane, A., Engineering Design via
Surrogate Modelling: A Practical Guide. Hoboken, NJ: John Wiley &
Sons, 2008.
isbn: 0470770791

177 cited on p. 414Ruder, S., “An overview of gradient descent optimization algo-
rithms,” arXiv:1609.04747, 2016.
url: http://arxiv.org/abs/1609.04747.

178 cited on p. 414Goh, G., “Why momentum really works,” Distill, 2017.
doi: 10.23915/distill.00006

179 cited on p. 423Diamond, S. and Boyd, S., “Convex optimization with abstract lin-
ear operators,” Proceedings of the 2015 IEEE International Conference
on Computer Vision (ICCV). Institute of Electrical and Electronics
Engineers, December 2015.
doi: 10.1109/iccv.2015.84

180 cited on p. 425Lobo, M. S., Vandenberghe, L., Boyd, S., and Lebret, H., “Applica-
tions of second-order cone programming,” Linear Algebra and Its
Applications, Vol. 284, No. 1–3, November 1998, pp. 193–228.
doi: 10.1016/s0024-3795(98)10032-0

181 cited on p. 425Parikh, N. and Boyd, S., “Block splitting for distributed optimiza-
tion,”Mathematical Programming Computation, Vol. 6, No. 1, October
2013, pp. 77–102.
doi: 10.1007/s12532-013-0061-8

182 cited on p. 425Vandenberghe, L. and Boyd, S., “Semidefinite programming,”
SIAM Review, Vol. 38, No. 1, March 1996, pp. 49–95.
doi: 10.1137/1038003

183 cited on p. 425Vandenberghe, L. and Boyd, S., “Applications of semidefinite
programming,”AppliedNumericalMathematics, Vol. 29,No. 3,March
1999, pp. 283–299.
doi: 10.1016/s0168-9274(98)00098-1

184 cited on p. 436Boyd, S., Kim, S.-J., Vandenberghe, L., and Hassibi, A., “A tutorial
on geometric programming,” Optimization and Engineering, Vol. 8,
No. 1, April 2007, pp. 67–127.
doi: 10.1007/s11081-007-9001-7

https://dx.doi.org/10.2514/1.J055842
https://dx.doi.org/10.2514/1.J055842
https://dx.doi.org/10.2514/1.J055842
https://doi.org/10.2514/1.J055842
https://books.google.com/books?vid=ISBN0470770791
https://books.google.com/books?vid=ISBN0470770791
http://books.google.com/books?vid=ISBN0470770791
https://http://arxiv.org/abs/1609.04747
https://http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://dx.doi.org/10.23915/distill.00006
https://doi.org/10.23915/distill.00006
https://dx.doi.org/10.1109/iccv.2015.84
https://dx.doi.org/10.1109/iccv.2015.84
https://doi.org/10.1109/iccv.2015.84
https://dx.doi.org/10.1016/s0024-3795(98)10032-0
https://dx.doi.org/10.1016/s0024-3795(98)10032-0
https://doi.org/10.1016/s0024-3795(98)10032-0
https://dx.doi.org/10.1007/s12532-013-0061-8
https://dx.doi.org/10.1007/s12532-013-0061-8
https://doi.org/10.1007/s12532-013-0061-8
https://dx.doi.org/10.1137/1038003
https://doi.org/10.1137/1038003
https://dx.doi.org/10.1016/s0168-9274(98)00098-1
https://dx.doi.org/10.1016/s0168-9274(98)00098-1
https://doi.org/10.1016/s0168-9274(98)00098-1
https://dx.doi.org/10.1007/s11081-007-9001-7
https://dx.doi.org/10.1007/s11081-007-9001-7
https://doi.org/10.1007/s11081-007-9001-7

Bibliography 609

185 cited on p. 436Hoburg,W.,Kirschen, P., andAbbeel, P., “Datafittingwithgeometric-
programming-compatible softmax functions,” Optimization and
Engineering, Vol. 17, No. 4, August 2016, pp. 897–918.
doi: 10.1007/s11081-016-9332-3

186 cited on p. 437Kirschen, P. G., York, M. A., Ozturk, B., and Hoburg, W. W., “Ap-
plication of signomial programming to aircraft design,” Journal of
Aircraft, Vol. 55, No. 3, May 2018, pp. 965–987.
doi: 10.2514/1.c034378

187 cited on p. 437York, M. A., Hoburg, W. W., and Drela, M., “Turbofan engine
sizing and tradeoff analysis via signomial programming,” Journal
of Aircraft, Vol. 55, No. 3, May 2018, pp. 988–1003.
doi: 10.2514/1.c034463

188 cited on p. 444Stanley, A. P. and Ning, A., “Coupled wind turbine design and
layout optimization with non-homogeneous wind turbines,” Wind
Energy Science, Vol. 4, No. 1, January 2019, pp. 99–114.
doi: 10.5194/wes-4-99-2019

189 cited on p. 444Gagakuma, B., Stanley, A. P. J., and Ning, A., “Reducing wind
farm power variance from wind direction using wind farm layout
optimization,” Wind Engineering, January 2021.
doi: 10.1177/0309524X20988288

190 cited on p. 444Padrón, A. S., Thomas, J., Stanley, A. P. J., Alonso, J. J., and Ning,
A., “Polynomial chaos to efficiently compute the annual energy
production in wind farm layout optimization,”Wind Energy Science,
Vol. 4, May 2019, pp. 211–231.
doi: 10.5194/wes-4-211-2019

191 cited on p. 450Cacuci, D., Sensitivity & Uncertainty Analysis. Boca Raton, FL:
Chapman and Hall/CRC, May 2003, Vol. 1.
doi: 10.1201/9780203498798

192 cited on p. 450Parkinson, A., Sorensen, C., and Pourhassan, N., “A general ap-
proach for robust optimal design,” Journal of Mechanical Design, Vol.
115, No. 1, 1993, p. 74.
doi: 10.1115/1.2919328

193 cited on p. 455Golub, G. H. and Welsch, J. H., “Calculation of Gauss quadrature
rules,”Mathematics of Computation, Vol. 23, No. 106, 1969, pp. 221–
230, issn: 00255718, 10886842.
doi: 10.1090/S0025-5718-69-99647-1

194 cited on p. 457Wilhelmsen, D. R., “Optimal quadrature for periodic analytic
functions,” SIAM Journal on Numerical Analysis, Vol. 15, No. 2, 1978,
pp. 291–296, issn: 00361429.
doi: 10.1137/0715020

https://dx.doi.org/10.1007/s11081-016-9332-3
https://dx.doi.org/10.1007/s11081-016-9332-3
https://doi.org/10.1007/s11081-016-9332-3
https://dx.doi.org/10.2514/1.c034378
https://dx.doi.org/10.2514/1.c034378
https://doi.org/10.2514/1.c034378
https://dx.doi.org/10.2514/1.c034463
https://dx.doi.org/10.2514/1.c034463
https://doi.org/10.2514/1.c034463
https://dx.doi.org/10.5194/wes-4-99-2019
https://dx.doi.org/10.5194/wes-4-99-2019
https://doi.org/10.5194/wes-4-99-2019
https://dx.doi.org/10.1177/0309524X20988288
https://dx.doi.org/10.1177/0309524X20988288
https://dx.doi.org/10.1177/0309524X20988288
https://doi.org/10.1177/0309524X20988288
https://dx.doi.org/10.5194/wes-4-211-2019
https://dx.doi.org/10.5194/wes-4-211-2019
https://doi.org/10.5194/wes-4-211-2019
https://dx.doi.org/10.1201/9780203498798
https://doi.org/10.1201/9780203498798
https://dx.doi.org/10.1115/1.2919328
https://dx.doi.org/10.1115/1.2919328
https://doi.org/10.1115/1.2919328
https://dx.doi.org/10.1090/S0025-5718-69-99647-1
https://dx.doi.org/10.1090/S0025-5718-69-99647-1
https://doi.org/10.1090/S0025-5718-69-99647-1
https://dx.doi.org/10.1137/0715020
https://dx.doi.org/10.1137/0715020
https://doi.org/10.1137/0715020

Bibliography 610

195 cited on p. 457Trefethen, L. N. andWeideman, J. A. C., “The exponentially conver-
gent trapezoidal rule,” SIAM Review, Vol. 56, No. 3, 2014, pp. 385–
458, issn: 00361445, 10957200.
doi: 10.1137/130932132

196 cited on p. 457Johnson, S. G., “Notes on the convergence of trapezoidal-rule
quadrature,” March 2010.
url: http://math.mit.edu/~stevenj/trapezoidal.pdf.

197 cited on p. 458Smolyak, S. A., “Quadrature and interpolation formulas for tensor
products of certain classes of functions,” Proceedings of the USSR
Academy of Sciences, 5. 1963, Vol. 148, pp. 1042–1045.
doi: 10.3103/S1066369X10030084

198 cited on p. 462Wiener, N., “The homogeneous chaos,” American Journal of Mathe-
matics, Vol. 60, No. 4, October 1938, p. 897.
doi: 10.2307/2371268

199 cited on p. 465Eldred, M., Webster, C., and Constantine, P., “Evaluation of non-
intrusive approaches for wiener–askey generalized polynomial
chaos,” Proceedings of the 49th AIAA Structures, Structural Dynamics,
and Materials Conference. American Institute of Aeronautics and
Astronautics, April 2008.
doi: 10.2514/6.2008-1892

200 cited on p. 466Adams, B.M., Bohnhoff,W. J., Dalbey, K. R., Ebeida,M. S., Eddy, J. P.,
Eldred, M. S., Hooper, R. W., Hough, P. D., Hu, K. T., Jakeman, J. D.,
Khalil, M., Maupin, K. A., Monschke, J. A., Ridgway, E. M., Rushdi,
A. A., Seidl, D. T., Stephens, J. A., Swiler, L. P., and Winokur, J. G.,
“Dakota, a multilevel parallel object-oriented framework for design
optimization, parameter estimation, uncertainty quantification,
and sensitivity analysis: Version 6.14 user’s manual,” May 2021.
url: https://dakota.sandia.gov/content/manuals.

201 cited on p. 466Feinberg, J. and Langtangen, H. P., “Chaospy: An open source tool
for designing methods of uncertainty quantification,” Journal of
Computational Science, Vol. 11, November 2015, pp. 46–57.
doi: 10.1016/j.jocs.2015.08.008

202 cited on pp. 481, 498Jasa, J. P., Hwang, J. T., and Martins, J. R. R. A., “Open-source
coupled aerostructural optimization using Python,” Structural and
Multidisciplinary Optimization, Vol. 57, No. 4, April 2018, pp. 1815–
1827.
doi: 10.1007/s00158-018-1912-8

https://dx.doi.org/10.1137/130932132
https://dx.doi.org/10.1137/130932132
https://doi.org/10.1137/130932132
https://http://math.mit.edu/~stevenj/trapezoidal.pdf
https://http://math.mit.edu/~stevenj/trapezoidal.pdf
http://math.mit.edu/~stevenj/trapezoidal.pdf
https://dx.doi.org/10.3103/S1066369X10030084
https://dx.doi.org/10.3103/S1066369X10030084
https://doi.org/10.3103/S1066369X10030084
https://dx.doi.org/10.2307/2371268
https://doi.org/10.2307/2371268
https://dx.doi.org/10.2514/6.2008-1892
https://dx.doi.org/10.2514/6.2008-1892
https://dx.doi.org/10.2514/6.2008-1892
https://doi.org/10.2514/6.2008-1892
https://https://dakota.sandia.gov/content/manuals
https://https://dakota.sandia.gov/content/manuals
https://https://dakota.sandia.gov/content/manuals
https://dakota.sandia.gov/content/manuals
https://dx.doi.org/10.1016/j.jocs.2015.08.008
https://dx.doi.org/10.1016/j.jocs.2015.08.008
https://doi.org/10.1016/j.jocs.2015.08.008
https://dx.doi.org/10.1007/s00158-018-1912-8
https://dx.doi.org/10.1007/s00158-018-1912-8
https://doi.org/10.1007/s00158-018-1912-8

Bibliography 611

203 cited on p. 486Cuthill, E. and McKee, J., “Reducing the bandwidth of sparse
symmetric matrices,” Proceedings of the 1969 24th National Confer-
ence. New York, NY: Association for Computing Machinery, 1969,
pp. 157–172.
doi: 10.1145/800195.805928

204 cited on p. 486Amestoy, P. R., Davis, T. A., and Duff, I. S., “An approximate
minimum degree ordering algorithm,” SIAM Journal on Matrix
Analysis and Applications, Vol. 17, No. 4, 1996, pp. 886–905.
doi: 10.1137/S0895479894278952

205 cited on p. 486Lambe, A. B. and Martins, J. R. R. A., “Extensions to the design
structure matrix for the description of multidisciplinary design,
analysis, and optimization processes,” Structural and Multidiscipli-
nary Optimization, Vol. 46, August 2012, pp. 273–284.
doi: 10.1007/s00158-012-0763-y

206 cited on p. 490Irons, B. M. and Tuck, R. C., “A version of the Aitken accelerator
for computer iteration,” International Journal for Numerical Methods
in Engineering, Vol. 1, No. 3, 1969, pp. 275–277.
doi: 10.1002/nme.1620010306

207 cited on pp. 490, 504Kenway, G. K. W., Kennedy, G. J., and Martins, J. R. R. A., “Scalable
parallel approach for high-fidelity steady-state aeroelastic analysis
and derivative computations,” AIAA Journal, Vol. 52, No. 5, May
2014, pp. 935–951.
doi: 10.2514/1.J052255

208 cited on p. 490Chauhan, S. S., Hwang, J. T., andMartins, J. R. R. A., “An automated
selection algorithm for nonlinear solvers in MDO,” Structural and
MultidisciplinaryOptimization, Vol. 58, No. 2, June 2018, pp. 349–377.
doi: 10.1007/s00158-018-2004-5

209 cited on p. 504Kenway, G. K. W. and Martins, J. R. R. A., “Multipoint high-fidelity
aerostructural optimization of a transport aircraft configuration,”
Journal of Aircraft, Vol. 51, No. 1, January 2014, pp. 144–160.
doi: 10.2514/1.C032150

210 cited on p. 512Hwang, J. T., Lee, D. Y., Cutler, J. W., and Martins, J. R. R. A.,
“Large-scale multidisciplinary optimization of a small satellite’s
design and operation,” Journal of Spacecraft and Rockets, Vol. 51, No.
5, September 2014, pp. 1648–1663.
doi: 10.2514/1.A32751

211 cited on p. 517Biegler, L. T., Ghattas, O., Heinkenschloss, M., and Bloemen Waan-
ders, B. van, Eds., Large-Scale PDE-Constrained Optimization. Berlin:
Springer, 2003.

https://dx.doi.org/10.1145/800195.805928
https://dx.doi.org/10.1145/800195.805928
https://doi.org/10.1145/800195.805928
https://dx.doi.org/10.1137/S0895479894278952
https://dx.doi.org/10.1137/S0895479894278952
https://doi.org/10.1137/S0895479894278952
https://dx.doi.org/10.1007/s00158-012-0763-y
https://dx.doi.org/10.1007/s00158-012-0763-y
https://dx.doi.org/10.1007/s00158-012-0763-y
https://doi.org/10.1007/s00158-012-0763-y
https://dx.doi.org/10.1002/nme.1620010306
https://dx.doi.org/10.1002/nme.1620010306
https://doi.org/10.1002/nme.1620010306
https://dx.doi.org/10.2514/1.J052255
https://dx.doi.org/10.2514/1.J052255
https://dx.doi.org/10.2514/1.J052255
https://doi.org/10.2514/1.J052255
https://dx.doi.org/10.1007/s00158-018-2004-5
https://dx.doi.org/10.1007/s00158-018-2004-5
https://doi.org/10.1007/s00158-018-2004-5
https://dx.doi.org/10.2514/1.C032150
https://dx.doi.org/10.2514/1.C032150
https://doi.org/10.2514/1.C032150
https://dx.doi.org/10.2514/1.A32751
https://dx.doi.org/10.2514/1.A32751
https://doi.org/10.2514/1.A32751
https://https://www.google.ca/books/edition/Large_Scale_PDE_Constrained_Optimization/O4YKBwAAQBAJ

Bibliography 612

212 cited on pp. 521, 522Braun, R. D. and Kroo, I. M., “Development and application of
the collaborative optimization architecture in a multidisciplinary
design environment,”Multidisciplinary Design Optimization: State of
the Art, Alexandrov, N. and Hussaini, M. Y., Eds. Philadelphia, PA:
SIAM, 1997, pp. 98–116.
doi: 10.5555/888020

213 cited on p. 524Kim, H. M., Rideout, D. G., Papalambros, P. Y., and Stein, J. L.,
“Analytical target cascading in automotive vehicle design,” Journal
of Mechanical Design, Vol. 125, No. 3, September 2003, pp. 481–490.
doi: 10.1115/1.1586308

214 cited on p. 524Tosserams, S., Etman, L. F. P., Papalambros, P. Y., and Rooda,
J. E., “An augmented Lagrangian relaxation for analytical target
cascading using the alternating direction method of multipliers,”
Structural and Multidisciplinary Optimization, Vol. 31, No. 3, March
2006, pp. 176–189.
doi: 10.1007/s00158-005-0579-0

215 cited on p. 524Talgorn, B. and Kokkolaras, M., “Compact implementation of non-
hierarchical analytical target cascading for coordinating distributed
multidisciplinary design optimization problems,” Structural and
Multidisciplinary Optimization, Vol. 56, No. 6, 2017, pp. 1597–1602
doi: 10.1007/s00158-017-1726-0

216 cited on p. 527Sobieszczanski–Sobieski, J., Altus, T. D., Phillips, M., and Sandusky,
R., “Bilevel integrated system synthesis for concurrent and dis-
tributed processing,” AIAA Journal, Vol. 41, No. 10, 2003, pp. 1996–
2003.
doi: 10.2514/2.1889

217 cited on p. 533Tedford, N. P. andMartins, J. R. R. A., “Benchmarkingmultidiscipli-
nary design optimization algorithms,”Optimization and Engineering,
Vol. 11, No. 1, February 2010, pp. 159–183.
doi: 10.1007/s11081-009-9082-6

218 cited on p. 534Golovidov, O., Kodiyalam, S., Marineau, P., Wang, L., and Rohl,
P., “Flexible implementation of approximation concepts in an
MDO framework,” Proceedings of the 7th AIAA/USAF/NASA/ISSMO
Symposium onMultidisciplinary Analysis and Optimization. American
Institute of Aeronautics and Astronautics, 1998.
doi: 10.2514/6.1998-4959

219 cited on p. 534Balabanov, V., Charpentier, C., Ghosh, D. K., Quinn, G., Vander-
plaats, G., andVenter, G., “Visualdoc: A software system for general
purpose integration and design optimization,” Proceedings of the 9th
AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimiza-

https://dx.doi.org/10.5555/888020
https://dx.doi.org/10.5555/888020
https://dx.doi.org/10.5555/888020
https://doi.org/10.5555/888020
https://dx.doi.org/10.1115/1.1586308
https://doi.org/10.1115/1.1586308
https://dx.doi.org/10.1007/s00158-005-0579-0
https://dx.doi.org/10.1007/s00158-005-0579-0
https://doi.org/10.1007/s00158-005-0579-0
https://dx.doi.org/10.1007/s00158-017-1726-0
https://dx.doi.org/10.1007/s00158-017-1726-0
https://dx.doi.org/10.1007/s00158-017-1726-0
https://doi.org/10.1007/s00158-017-1726-0
https://dx.doi.org/10.2514/2.1889
https://dx.doi.org/10.2514/2.1889
https://doi.org/10.2514/2.1889
https://dx.doi.org/10.1007/s11081-009-9082-6
https://dx.doi.org/10.1007/s11081-009-9082-6
https://doi.org/10.1007/s11081-009-9082-6
https://dx.doi.org/10.2514/6.1998-4959
https://dx.doi.org/10.2514/6.1998-4959
https://doi.org/10.2514/6.1998-4959
https://dx.doi.org/10.2514/6.2002-5513
https://dx.doi.org/10.2514/6.2002-5513

Bibliography 613

tion. American Institute of Aeronautics and Astronautics, 2002.
doi: 10.2514/6.2002-5513

220 cited on pp. 559, 569Trefethen, L. N. and Bau III, D., Numerical Linear Algebra. Philadel-
phia, PA: SIAM, 1997.
isbn: 0898713617

221 cited on p. 570Saad, Y. and Schultz, M. H., “GMRES: A generalized minimal
residual algorithm for solvingnonsymmetric linear systems,”SIAM
Journal on Scientific and Statistical Computing, Vol. 7, No. 3, 1986,
pp. 856–869.
doi: 10.1137/0907058

222 cited on p. 571Broyden, C. G., “A class of methods for solving nonlinear simul-
taneous equations,” Mathematics of Computation, Vol. 19, No. 92,
October 1965, pp. 577–593.
doi: 10.1090/S0025-5718-1965-0198670-6

223 cited on p. 579Rosenbrock, H. H., “An automatic method for finding the greatest
or least value of a function,” The Computer Journal, Vol. 3, No. 3,
January 1960, pp. 175–184, issn: 0010-4620.
doi: 10.1093/comjnl/3.3.175

224 cited on p. 586Barnes, G. K., “A comparative study of nonlinear optimization
codes,” Master’s thesis, University of Texas at Austin, 1967.

225 cited on p. 588Venkayya, V., “Design of optimum structures,” Computers & Struc-
tures, Vol. 1, No. 1–2, August 1971, pp. 265–309, issn: 0045-7949.
doi: 10.1016/0045-7949(71)90013-7

https://doi.org/10.2514/6.2002-5513
https://books.google.com/books?vid=ISBN0898713617
http://books.google.com/books?vid=ISBN0898713617
https://dx.doi.org/10.1137/0907058
https://dx.doi.org/10.1137/0907058
https://doi.org/10.1137/0907058
https://dx.doi.org/10.1090/S0025-5718-1965-0198670-6
https://dx.doi.org/10.1090/S0025-5718-1965-0198670-6
https://doi.org/10.1090/S0025-5718-1965-0198670-6
https://dx.doi.org/10.1093/comjnl/3.3.175
https://dx.doi.org/10.1093/comjnl/3.3.175
https://doi.org/10.1093/comjnl/3.3.175
https://dx.doi.org/10.1016/0045-7949(71)90013-7
https://doi.org/10.1016/0045-7949(71)90013-7

Index
absolute value function

complex-step method, 236
smoothing, 145

accuracy, 49
activation functions, 410

rectified linear unit (ReLU),
410

sigmoid, 410
active constraints, 165, 190
active-set method, 190
acyclic graph, 486
adjoint method, 39, 40, 255

AD partial derivatives, 260
constraint aggregation, 211,

260
coupled, 504
equations, 256
structural problem, 259
variables, 243, 256
vector, 256
verification, 262

aerodynamic shape optimiza-
tion, 20, 40, 283, 444

aerostructural
analysis, 477
model, 481

affine function, 424, 435
aggregation functions

?-norm, 213
induced exponential, 213
induced power, 214
Kreisselmeier–Steinhauser

(KS), 212
aircraft fuel tank problem, 218

airfoil optimization, 444
Aitken acceleration, 490, 491,

498
algorithmicdifferentiation (AD),

41, 225, 237, 497
adjoint variables, 243
checkpointing, 247
computational cost, 246
computational graph, 242
connection to complex-step

method, 249
coupled systems, 502
directional derivative, 242
forwardmode, 238, 239, 502
forward vs. reverse, 246
matrix operations, 251
operator overloading, 247,

248, 250
partial derivatives, 260
reverse mode, 43, 239, 243,

412, 502
scaling, 246
seed, 243, 246
shortcuts, 251
software, 250
source code transformation,

247, 250
taping, 249
verification, 262

analysis, 3, 6, 70
analytic

function, 232
methods, see implicit ana-

lytic methods

615

Index 616

analytical target cascading (ATC),
524

anchor points, 360
approximate Hessian, 124, 572
approximate minimum degree

(AMD) ordering, 486
Armĳo condition, see sufficient

decrease condition
artificial intelligence (AI), 39, 43
artificial minimum, 282
asymmetric subspace optimiza-

tion (ASO), 529
asymptotic error constant, 63
augmentedLagrangianmethod,

176, 181, 198, 315
automatic differentiation, see al-

gorithmic differentia-
tion (AD)

back substitution, 245, 561
backpropagation, 43, see also al-

gorithmic differentia-
tion (AD)

backtracking, 99, 100, 185
backward difference, 228
banana function, seeRosenbrock

function
Barnes problem, 447, 586
barriermethods, see interiorpenalty

methods
basis functions, 384, 385, 398,

462
Gaussian, 399
radial, see radial basis func-

tion (RBF)
bean function, 98, 113, 119, 122,

130, 133, 291, 314, 319,
580

Bellman
equation, 38, 342
principle of optimality, 342

benchmarking, 320

gradient-based algorithms,
133, 135

gradient-free algorithms, 284
MDO architectures, 533
stochastic algorithms, 286

BFGS method, 38, 126, 129, 550,
572, 574, 576

damped, 200
derivation, 126
Hessian reset, 129
limitedmemory, seeL-BFGS

method
SQP, 199
update, 128

bilevel integrated system syn-
thesis (BLISS), 527

binary
decoding, 308
encoding, 308
representation, 308
variables, 327, 331

binding-direction method, 191
biological reproduction, 307
bisection, 108, 110
black-box model, 18, 227, 232,

281, 484, 501, 519
derivatives, 225
solver, 507

blocking constraint, 194
Boltzmann distribution, 347
bound constraints, 7, 154, 155,

319
artificial, 156

brachistochroneproblem, 35, 152,
583

bracketing, 103
branch-and-boundmethod, 285,

330, 333
integer variables, 336
relaxation, 331

breadth-first tree search, 333
Broyden’s method, 69, 496, 571

Index 617

bugs, 58

calculus of variations, 34–36
callback functions, 15
Cauchy–Riemannequations, 233
ceiling, 320
central difference, 228, 230
central limit theorem, 389
chain rule, 237, 238, 541

forward, 239
multivariable, 542
reverse, 243

characteristic equation, 554
checkerboard pattern, 320
checkpointing, 247
Cholesky factorization, 61, 561
chromosome, 307, 311

encoding, 308
classification

convex problems, 425
gradient-free algorithms, 284
MDO architectures, 534
optimization algorithms, 21
optimization problems, 17
problem, 432
stationary points, 92

Clenshaw–Curtis quadrature, 457
collaborative optimization (CO),

521
collocation points, 466
column space, 547
combinatorial optimization, 36,

37, see also discrete op-
timization

complementary slackness con-
dition, 168, 190

complex-step method, 42, 225,
232, 233, 502

absolute value function, 236
accuracy, 234
connection to AD, 249
implementation, 235

step size, 234
testing, 237
trigonometric functions, 237

component, 269, 475, 478, 480,
487, 488

explicit, 480, 503, 509
group, 483, 487
implicit, 480, 503
multiple, 225

composite function, 541
computational cost, 50, 63, 374

AD, 237, 247
adjoint method, 257
analysis, 60
budget, 93, 315
complex step, 232, 233
derivatives, 223
direct method, 256
direct vs. adjoint, 257
finite difference, 228
forward AD, 240
linear solvers, 62
optimization, 22, 48, 283
reverse AD, 244
solvers, 12, 61, 253

computational differentiation,
see algorithmic differ-
entiation (AD)

computational fluid dynamics
(CFD), 40, 283, 444, 531

computational graph, 242, 246
computer code, see source code
conceptual design, 3
concurrent subspace optimiza-

tion (CSSO), 532
condition number, 560, 570
cone programming, 425
confidence interval, 404
conjugacy, 116, 117, 565
conjugate gradientmethod, 115,

117, 565
Fletcher–Reeves formula, 117

Index 618

linear, 115, 565, 568
nonlinear, 117, 119
Polak–Ribière formula, 118
reset, 118, 119

consistency constraints, 515, 521,
525

constrainedoptimization, 36, 153
graphical solution, 154
problem statement, 154

constraint qualification, 169, 523
constraints, 12, 314

active, 13, 165, 190
aggregation, 204, 211, 260
blocking, 194
bound, 7, 154
consistency, 515, 521, 525
equality, 12, 154
equality versus inequality,

154, 194
functions, 12
handling, 153
inactive, 13, 165, 190
inequality, 12, 154
infeasible, 13
Jacobian, 188
reformulation, 197
scaling, 181
working set, 190

continuity, 18
continuousparameterization, 330
contour

perpendicular, 81
tangent, 157

control law, 429
convergence, 315

criterion, 237
failure, 48, 96, 138, 274
order of, 64, 66
plot, 66
quadratic, 121
rate, 63, see rate of conver-

gence, 287

residuals, 66
tolerance, 96, 138, 225

convex
function, 20, 424
hull, 302, 303
optimization, 20, 41, 423
problem, 389

convexity, 20, 27
coordinate

descent, 476
search, 39, 115, 116
search algorithm, 292

correlation, 400, 558
matrix, 406

coupled
adjoint, 506
Broyden method, 499
derivatives, 509
model, 478
Newton’s method, 499
solver, 500
system, 484, 488

couplingvariables, 478, 482, 484,
486, 487, 489, 492, 506,
515

covariance, 401, 449, 450, 558
matrix, 450

cross validation, 395, 397, 412
:-fold, 397
leave-one-out, 397
simple, 396

crossover, 307, 311, 313
linear, 313
point, 311
single-point, 311

crowded tournament selection,
368

crowding distance, 366
cubature, 457
cubic interpolation, 109, 145
cuboid, 366

Index 619

cumulativedistribution function
(CDF), 379, 441, 556

curse ofdimensionality, 374, 376,
458

curvature, 22, 85, 112, 119
approximation, 123
condition, 126, 573
directional, 86, 124
maximum, 87
principal directions, 86, 116

curve fit, 373
Cuthill–McKee ordering, 486
CVX, 432

damped BFGS update, 200
data

dependencies, 486
fitting, 385
model, 384
transfer, 343, 486, 487

debugging, 59
decaying sinusoid, 404
decision variables, see design

variables, 327
decomposition, see factorization
deep neural networks, 43, 409
dense matrix, 559
dependence

implicit, 253
dependency structure matrix,

seedesign structurema-
trix (DSM)

depth-first tree search, 332
derivative-free optimization (DFO),

24, 285
derivatives, 223

accuracy, 138, 275
backwardpropagation, 245
black box, 225
computational cost, 275
coupled, 41, 501, 503, 509
definition, 228

directional, 82, 98, 229, 242
ease of implementation, 275
eigenvalues, 252
eigenvectors, 252
explicit, 266
first-order, 223
implicit, 266
implicit analytic methods,

252
matrix, 552
matrix operations, 251, 252
methods, 225, 275
mixed partial, 85
partial, 80, 239, 254, 260,

266, 504, 542
physical interpretation, 82
post-optimality, 530, 532
propagation, 238, 239, 242,

243, 253
relative, 82
scalability, 275
scaling, 274
second-order, 85
singular value decomposi-

tion, 252
sparse, 262, 264
total, 239, 254, 542
verification, 242, 274
weighted function, 246

descent direction, 98, 165
design

constraints, 12
cycle, 3
optimal vs. conventional,

4, 5
optimization, 3
phases, 2
process, 2
sensitivities, seederivatives
space visualization, 10, 12,

14
specifications, 3

Index 620

design structure matrix (DSM),
485, 504

design variables, 6, 253, 479
binary, 327, 331
bounds, 154, 155, 319
continuous, 7, 17
converting integer to binary,

331
discrete, 8, 17, 27, 283, 312,

327
integer, 312, 327, 336
mixed, 17
parameterization, 9, 330
scalability, 22, 283
scaling, 114, 137
shared, 476
units, 114

detailed design, 3
determinant, 551
deterministic function, 20
DFP method, 38, 126, 573, 576

update, 573
diagonal matrix, 550
Dido’s problem, 33
differential, 174, 254, 266, 543
differentiation, see also deriva-

tives
algorithmic, see algorithmic

differentiation (AD)
chain rule, see chain rule
numerical, 227
symbolic, see symbolic dif-

ferentiation
DIRECT algorithm, 42, 285, 298

=-dimensional, 304, 305
one-dimensional, 301

direct linear solver, 560
direct method, 255

coupled, 503
structural problem, 259
verification, 262

direct quadrature, 448, 452

directed graph, 486
weighted, 338

directional
curvature, 86, 124
derivative, 82, 98, 229, 242

disciplinary subproblem, 519,
521

discipline, 475, 480
disciplined convexoptimization,

424, 430
software, 432

discontinuity, 7, 19, 231, 282,
320, 321

smoothing, 145
discrete optimization, 26, 36,

327
dynamicprogramming, 339
dynamic rounding, 329
genetic algorithm, 351
greedy algorithms, 337
rounding, 329
simulated annealing, 347

discrete variables, 27, 283, 312,
327

avoiding, 328
discretization, 48, 50, 63

error, 49, 57
methods, 52

divergence, 64
diversity, 43, 310, 312
dominance, 198, 357

depth, 365
dominated point, 358
dot product, 545

2-norm, 549
test, 262

double-precision
floating-point format, 54
number, 55

dual number, 248
dynamic

polling, 294

Index 621

programming, 26, 38, 339,
344

rounding, 329
system, 429

efficient global optimization (EGO),
286, 415, 416

eigenvalues, 86, 90, 252, 552, 553
eigenvectors, 86, 116, 252, 553,

566
elitism, 316, 368
engineering design, 2, 45, 475,

476
enhanced collaborative optimiza-

tion (ECO), 532
equality constraints, 12
equality of mixed partials, 85
error, 58, 225

absolute, 54
constant, see asymptotic er-

ror constant
discretization, 49, 57
iterative solver tolerance, 57
modeling, 48
numerical, 48, 49, 53
programming, 58
propagation, 55
relative, 54
roundoff, 49, 54, 57, 58, 561
truncation, 57, 228

Euclidean
norm, 549
space, 545

Euler–Lagrange equation, 36
evolution, 307
evolutionary algorithms, 39, 42,

286, 363
GA, 306
PSO, 316

exact penaltydecomposition (EPD),
532

exhaustive search, 298, 328, 329

exit conditions, 93
expected

improvement, 415
value, 412, 416, 441, 442

expected value, seemean
experimental data, 374
experiments, 5
explicit

component, 480, 503, 509
equation, 266
function, 50, 482
model, 51

exploitation, 319, 414
exploration, 286, 319, 415
exponential

convergence, 457
distribution, 557
function, 212

expression swell, 227
exterior penalty, 176
extrapolation, 313

factorization
Cholesky, 561
LU, 560

Farkas’ lemma, 36, 166
Faure sequence, 384
feasibility tolerance, 201, 208
feasible

descent direction, 166
direction, 159
region, 12
space, 185

feedback, 491
Fibonacci sequence, 340
file input and output, 225, 479,

487
filter methods, 198, 315
finite-differencederivatives, 225,

227, 253, 274, 281, 502,
512

accuracy, 230

Index 622

backward difference, 228
central difference, 228, 230
coupled, 502
forwarddifference, 228, 230
higher-order, 229
implementation, 231
optimal step size, 230
step, 228
step-size dilemma, 229, 230
step-size study, 230

finite-difference discretization,
52

finite-element
discretization, 50, 52, 588
structural model, 531

finite-precision arithmetic, 54,
56, 93, 229, 309

finite-volume discretization, 52
first-order

derivatives, 223
perturbation methods, 448,

449
fitness, 286, 309, 310
fixed-point iteration, 62, 226, 487,

534, 562
Fletcher–Reeves formula, 117
floating-point format, 54
food shopping problem, 426
forward difference, 228, 230
forward propagation, 448

direct quadrature, 452
first-orderperturbation, 449
Monte Carlo, 459
polynomial chaos, 462

forward substitution, 242, 486
four fundamental subspaces, 547
Frobenius norm, 550
full factorial sampling, 375
full-space hierarchical

Newton’s method, 493
full-space optimization, see si-

multaneous analysis and

design (SAND)
function

blending, 145
constraint, 12
explicit, 482
implicit, 483
of interest, 224, 253
objective, 9
smoothness, 282

functional form, 484, 487, 505
Jacobian, 507

Gauss–Hermite quadrature, 455–
457, 468

Gauss–Konrod quadrature, 457
Gauss–Legendrequadrature, 455
Gauss–Newton algorithm, 391
Gauss–Seidel method

linear, 563
nonlinear block, 489, 491,

498, 499, 511
Gaussian

basis, 399
distribution, seenormalprob-

ability distribution
elimination, 560
kernel, 401
multivariatedistribution, 401
process, see kriging, 416
quadrature, 453

gene, 307
generalization error, 397
generalized minimum residual

(GMRES) method, 569
generalizedpattern search (GPS),

285, 292, 295, 296
genetic algorithm (GA), 39, 306,

308, 363, 376
binary-encoded, 307, 308,

351
constraints, 314
crossover, 311

Index 623

discrete optimization, 351
multiobjective, 363, 367
mutation, 311
real-encoded, 307, 312
selection, 309

geometric programming (GP),
41, 425, 434

software, 437
Gibbsdistribution, seeBoltzmann

distribution
global

optimization, 42
optimum, 19, 20, 24, 146,

287, 299, 322, 423
search, 23, 146, 282, 284,

286, 322
globalization strategy, 69, 95,

492
governing equations, 50, 61, 70,

252, 254, 479
GPkit, 437
gradient, 79, 80, 121

normalization, 111
scaling, 137

gradient-based algorithms, 22,
28, 79, 376, 412

comparison, 133, 135
constrained, 153
efficiency, 223
unconstrained, 79, 97

gradient-descentmethod, see steepest-
descent method

gradient-enhanced kriging, 405
predictor, 405

gradient-free algorithms, 22, 28,
281

graph, 486
acyclic, 486
coloring, 262–265, 504, 508
cyclic, 486
directed, 486
weighted directed, 338

graph form programming, 425
graphical solution, 14
greedy algorithms, 337
grocery store shopping, 339

H-section beam problem, 217
Hadamard product, 167
half-space, 157, 159, 165

intersection, 165
Halton sequence, 382

scrambled, 383
Hammersley sequence, 383, 407
Hamming cliff, 312
Hartmann function, 580
Hermite polynomials, 456, 467
Hessian, 85, 110, 115, 121, 144

approximation, 110, 123, 124,
127, 572

directional curvature, 86
eigenvalues, 86
eigenvectors, 86, 116
Gauss–Newton algorithm,

392
initial approximation, 124
interpretation, 86
inverse approximation, 128,

573, 574
inverse update, 573
Lagrangian, 161, 162, 191
positive-definite, 121, 126
positive-semidefinite, 90
symmetry, 85
update, 124, 572
vector product, 86

heuristics, 24, 115, 287
hierarchical solvers, 41, 499, 503
hierarchy, 481, 483, 501
higher-order moments, 450
histogram, 377, 452
history of optimization, 33
hit-and-run algorithms, 286
human expertise, 4

Index 624

hybrid adjoint, 260
hypercube, 304
hyperplane, 157

intersection, 159
tangent, 157, 159, 165

hyperrectangle, 304
potentially optimal, 304
trisection, 304

hypersurface, 11, 254

identity matrix, 206, 550
scaled, 132

ill-conditioning, 56, 351, 560,
589

aggregation function, 212
collaborative optimization

(CO), 523
interpolation, 110
least squares, 387
line search, 107
Newton’s method, 69
penalty function, 176, 182,

187
imaginary step, 232
implicit

component, 480, 503
dependence, 253
equation, 50, 266, 544
filtering, 285, 322
function, 50, 71, 253, 483
model, 51

implicit analytic methods, 225,
252

adjoint, 211, 255, 260
coupled, 503
direct, 255
direct vs. adjoint, 257
forward mode, 255
reverse mode, 256
structural problem, 259
verification, 262

inactive constraints, 165, 190

indefinite matrix, 552
individual discipline feasible (IDF),

515
induced functions, 213
inequality

constraints, 12, 154
quadratic penalty, 180

inertia, 316
inexact penalty decomposition

(IPD), 532
infeasibility, 198
infeasible

directions, 165
region, 13

infill, 375, 414
initial design, 3, 8, 79
inner product, 454, 545

weighted, 455
input and output conversion,

481
inputs, 6, 225, 374, 448, 482, 483
integer

overflow, 54
programming, see discrete

optimization
variables, 327, 336

integer variables, 312
interior penalty methods, 184
interior-point methods, 39, 41,

153, 187, 204
line search, 206
withquasi-Newtonapprox-

imation, 208
interpolation, 108, 384

cubic, 109, 145
ill-conditioning, 110
non-smooth, 145
quadratic, 108, 109

intuition, 3, 10, 12, 29
invasiveweedoptimization, 286
inverse

barrier, 184

Index 625

cumulativedistribution, 379
inversion sampling, 379
investment portfolio selection,

343
isosurface, 11, 80, 83

tangent, 157
iterations

major, 96
minor, 96

iterative
linear solvers, 560
solvers, 57, 62, 63, 226, 237

Jacobi method
linear, 563
nonlinear block, 487–489,

499
Jacobian, 69, 121, 155, 224, 228,

232, 244, 246, 254, 495,
571

compressed, 263
constraints, 188
coupled, 504
diagonal, 263
inverse, 572
nullspace, 165
size, 155, 257
sparse, 261–264, 504, 508
square, 261
structure, 504, 507
transpose, 504

Jones function, 146, 297, 306,
320, 580

discontinuous, 320

Kepler’s equation, 35, 76, 226
kernel, 400
KKT conditions, 37, 168, 187,

282, 523, 574
knapsack problem, 339, 343

dynamicprogramming, 346
tabulation, 345

Kreisselmeier–Steinhauser (KS)
function, 212

kriging, 37, 42, 286, 399, 400, 416
gradient-enhanced, 405
kernel, 400, 405
ordinary, 400
predictor, 403
regression-based, 408

Krylov subspace methods, 62,
69, 499, 562, 569

kurtosis, 450, 556

L-BFGS method, 131, 132
Lagrange multipliers, 36, 182,

188, 198, 528
adjoint interpretation, 257
equality constraints, 160
inequality constraints, 167
interior-point method, 207
meaning of, 173

Lagrangian
function, 161, 187, 205
mechanics, 36

Latinhypercube sampling (LHS),
146, 377, 379, 380, 460

law of large numbers, 459
law of reflection, 34
law of refraction, 34
leading principal

minor, 551
submatrix, 551

learning rate, 413
least squares, 36, 386

constrained, 428
linear, 386
nonlinear, 391
regularized, 388

left nullspace, 548
legacy codes, 226
Legendre polynomial, 454
Levenberg–Marquardt algorithm,

391

Index 626

likelihood function, 390
concentrated, 402

line search, 38, 94, 96, 116
algorithm, 97
backtracking, 99, 100
bracketing, 103, 104
comparison with trust re-

gion, 95, 144
exact, 98, 102, 117
ill-conditioning, 107
interior-pointmethods, 206
interpolation, 108
Newton’s method, 121
overview, 95
pinpointing, 103, 106
plot, 108, 123, 136
quasi-Newtonmethod, 124
SQP, 188, 197
step length, 99
sufficient decrease, 99
unit step, 136

linear
conjugate gradient, 568
convergence, 64
direct solvers, 560
function, 424
independence constraint qual-

ification, see constraint
qualification

iterative solvers, 560
least squares, 424
mixed-integerprogramming,

330, 331
programming (LP), 19, 37,

331, 425
regression, 385
solvers, 559
system, 559

linear-quadratic regulator (LQR),
429

Lipschitz
constant, 299

continuity, 299
local

constraints, 520
design variables, 520
optimum, 19, 287
search, 23, 79, 284

log likelihood function, 390
logarithmic

barrier, 185
scale, 66

logical operators, 236
lognormal distribution, 557
loops, 138, 226, 238

unrolling, 238
low-discrepancy sequence, 380,

460
lower

convex hull, 302, 303
triangular matrix, 242, 273,

486, 560
LU factorization, 61, 497, 560

machine learning, 2, 5, 43
deep neural networks, 409
hidden layers, 408
input layer, 408
maximum likelihood, 389
minibatch, 412
neural networks, 408
output layer, 408
support vectormachine, 433

machine precision, 55, 312
machine zero, seemachine pre-

cision
major iterations, 96
manifold, 254
manufacturing, 447
Markov

chain, 339, 344
variable-order, 339

process, 339
mating pool, 309

Index 627

matrix
bandwidth, 486
block diagonal, 497
column space, 547
condition number, 560, 570
dense, 559
derivatives, 552
determinant, 551
diagonal, 550
factorization, 62, 560
Hadamard product, 167
identity, 206, 550
ill-conditioned, 560
indefinite, 552
inverse, 62, 551, 559
inverse product, 251
Jacobian, 224
leadingprincipalminor, 551
lower triangular, 242, 273,

486, 560
multiplication, 544
negative-definite, 552
norm, 550
nullspace, 156, 160, 548
positive-definite, 90, 551
positive-semidefinite, 90, 552
rank, 156, 547
reordering, 486, 491
row space, 547
scaled identity, 132
size notation, 544
sparse, 486, 559
splitting, 562
stiffness, 589
symmetric, 551
symmetric positive-definite,

561, 565
transpose, 485, 550
upper triangular, 246, 274,

560
vector product, 546
well-conditioned, 560

MAUD, see modular analysis
andunifiedderivatives
(MAUD)

maximization as minimization,
10

maximum
curvature, 87
likelihood, 389, 402
log likelihood, 402
point, 88, 93
step, 100

MDO architectures, 40, 475, 533
ASO, 529
ATC, 524
BLISS, 527
BLISS-2000, 532
CO, 521
CSSO, 532
distributed, 519, 533
ECO, 532
EPD, 532
IDF, 515
IPD, 532
MAUD, 533
MDF, 511, 531
MDOIS, 532
monolithic, 510, 533
QSD, 532
SAND, 517, 519

MDO frameworks, 534
MDOof independent subspaces

(MDOIS), 532
mean value, 554, 555
memoization, 340
merit function, 198
mesh refinement, 57
mesh-adaptivedirect search (MADS),

285
metamodel, see surrogate mod-

els
method of lines, 53
minibatch, 412

Index 628

minimum, 93
global vs. local, 19
strong, 90
weak, 19

minor iterations, 96
mixed-integerprogramming, 327

linear, 331
model, 6, 475, 487

data-driven, 384
explicit, 51
implicit, 51
inputs and outputs, 483
multidisciplinary, 479
optimization considerations,

70
physics-based, 384
statistical, 400, 401

modeling error, 48
modular analysis and unified

derivatives (MAUD), 498,
499, 501, 503, 508, 512,
533

modularity, 479, 481
monolithic solver, 499
monomial, 434
Monte Carlo simulation, 376,

448, 452, 459, 473
multidisciplinary

model, 479
multidisciplinary analysis (MDA),

486, 488, 502, 511, 534
multidisciplinary design feasi-

ble (MDF), 511, 513,
531

multidisciplinary design opti-
mization (MDO), 2, 28,
40, 475

multidisciplinary model, 39
multifidelity models, 374
multilevel coordinate search (MCS),

285

multimodality, 19, 20, 23, 79,
138, 146, 282, 350

multiobjective optimization, 10,
18, 28, 198, 283, 355,
443

NBI method, 360
epsilon constraint method,

360
weighted-summethod, 358
evolutionary algorithms, 363
GA, 363
objectives versus constraints,

155
problem statement, 357

multiphysics, 475
multiple local minima, see mul-

timodality
multipoint optimization, 444
multistart, 146, 282, 321, 375,

376
multivariate Gaussian distribu-

tion, 401
mutation, 307, 311

#2 matrix, see design structure
matrix (DSM)

natural selection, 307, 310
negative-definite matrix, 552
neighboring design, 348
Nelder–Meadalgorithm, 39, 285,

287, 290, 314, 351
convergence, 289
operations, 288
simplex, 287, 288

neural networks, 43, 408
deep, see deep neural net-

works
depth, 409
feedforward, 408
node, 408
recurrent, 408
weights, 411

Index 629

Newton’s method, 23, 35, 139,
187, 391, 559

computational cost, 136
convergence rate, 68
coupled, 492
full-space hierarchical, 493
globalization, 69, 492
ill-conditioning, 69
issues, 121
linear system, 69, 121
minimization, 119
monolithic, 492
preconditioning, 69
reduced-spacehierarchical,

494, 496
root finding, 62
scale invariance, 121, 145
solver, 66
step, 69, 121

Newton–Cotes formulas, 453
Newton–Krylov method, 69
Niederreiter sequence, 384
noisy

data, 388
function, 24, 93, 231, 423
model, 28, 374

NOMAD, 298
nondominated

point, 358
set algorithm, 364
sorting, 365

nonlinear
block methods, 488
least squares, 391
simplex algorithm, seeNelder–

Mead algorithm
nonsingular matrix, 559
normal probability distribution,

314, 378, 389, 400, 450,
473, 556

uncorrelated, 468
norms, 548

∞-norm, 93, 140, 549
?-norm, 213, 549
1-norm, 176, 549
2-norm, 140, 545, 549
Frobenius, 550
matrix, 550
visualization, 549
weighted, 549
weighted Frobenius, 574

NP-complete, see polynomial-
time complete

NSGA-II, 308, 364
nullspace, 156, 160, 548

Jacobian, 165
left, 548

numerical
conditioning, see ill-conditioning
errors, 48, 49, 53, 479
integration, see quadrature
models, seemodel
noise, 28, 48, 58, 94, 138,

225, 231, 282, 321, 388
optimization, 45
stability, 56

objective function, 9, 79
multiple, 283, see multiob-

jective optimization
scaling, 114, 137
selecting, 9, 11
separable, 357
units, 114

offspring, 307
one-shot optimization, 72
OpenAeroStruct, 498, 508
OpenMDAO, 498, 501, 508, 512
operations research, 2, 19, 41, 45
operator overloading, 237, 247,

248
opportunistic polling, 293
optimal control, 2, 5, 26, 40, 41,

429

Index 630

optimal-stopping problem, 34
optimality, 4, 287

criteria, 22, 24
dynamicprogramming, 342
Farkas’ lemma, 166
first-order equality constrained,

161
first-order inequality con-

strained, 166
KKT conditions, 168
second-order constrained,

162, 169
tolerance, 201, 208
unconstrained, 90, 91

optimization
algorithm selection, 26
difficulties, 136, 138, 274
problem classification, 17
problem formulation, 4, 6,

17
problem reformulation, 5
problem statement, 14
software, 15, 41, 94, 200
under uncertainty (OUU),

28, 441
optimum, seeminimum
order of convergence, 64, 66
ordinary

differential equation (ODE),
52

kriging, 400
orthogonal, 454

columns, 264
polynomials, 454, 463
search directions, 113
vectors, 547

outer product, 545
self, 127, 571, 575

outputs, 6, 18, 225, 374, 482
overdetermined system, 387
overfitting, 395, 396
overflow, 55

integer, 54

parallel computation, 309, 488,
489, 495, 498, 499, 522

parameterization, 9, 330
parents, 307
Pareto

anchor points, 360
front, 358, 368, 443
optimal, 358
optimality, 357
set, 358
utopia point, 361

partial
derivatives, 80, 239, 254,

260, 266, 504, 542
differential equation (PDE),

52, 63
pivoting, 561

particle swarmoptimization (PSO),
42, 316, 318, 376

convergence, 319
initial population, 318
particle positionupdate, 317

partitioning, 479, 480
pattern-search algorithms, see

alsogeneralizedpattern
search (GPS)

PDE-constrained optimization,
517

penalty function, 176, 198
ATC, 524
exterior, 176
interior, 184
methods, 38, 153, 175, 291,

314, 322
parameter, 176, 177, 185,

198
quadratic, 176, 179, 525
relaxation, 525

percent-point function, 379
physics-based model, 37, 384

Index 631

pinpointing, 103
plane, 157
Polak–Ribière formula, 118
polar cone, 166
politics, 477
polling, 293
polyhedral cone, 158, 165
polynomial chaos, 448, 462

intrusive, 470
nonintrusive, 470
software, 466

polynomial-time complete, 328
polynomials, 398

Hermite, 456, 467
Legendre, 454
orthogonal, 454, 463
quadratic, 399

population, 306, 307, 310
initial, 307, 309

portfolio optimization, 38
positive-definite matrix, 90, 127,

551
positive-semidefinitematrix, 90,

552
positive spanning

directions, 292
set, 292

post-optimality
derivatives, 530, 532
sensitivity, 5, 175
studies, 5

posynomial, 434
potentially optimal rectangles,

304
precision, 20, 48, 49, 54, 55, 57,

61, 154, 225, 237, 252,
479, 487, 501

preconditioner, 493, 569
preconditioning, 69, 569
principal curvature directions,

86, 116
principle of least time, 34

principle of minimum energy, 1
probabilitydensity function (PDF),

379, 401, 441, 555, 556
probabilitydistribution, 441, 442

exponential, 557
Gaussian, see normal prob-

ability distribution
lognormal, 557
uniform, 313, 377, 557
Weibull, 557

programming, 59
bugs, 58
errors, 58
language, 15, 42, 44, 49, 54,

236, 237, 250, 387, 487,
502

modular, 59
profiling, 60
testing practices, 60

propagated error, 55
pruning, 331
pseudo-load, 260

QR factorization, 387
quadratic

approximation, 120, 123, 124
convergence, 64, 121
form, 546, 552
function, 115, 139
interpolation, 108, 109
penalty, 176, 179, 180
programming (QP), 188, 386,

425, 427
quadratically constrainedquadratic

programming (QCQP),
140, 429, 430

quadrature, 452, 457
Clenshaw–Curtis, 457
direct, 452
Gauss–Hermite, 455–457, 468
Gauss–Konrod, 457
Gauss–Legendre, 455

Index 632

sparse grid, 458
quantile function, 379
quasi-Monte Carlo method, 460
quasi-Newtonmethods, 38, 121,

123, 124, 572
BFGS, 38, 126, 572, 574, 576
Broyden, 571
condition, 126
curvature condition, 126
DFP, 38, 126, 573, 576
Hessian reset, 129
L-BFGS, 131, 132
SR1, 130, 575, 576
unification, 576

quasi-random sequences, 381
quasi-separable decomposition

(QSD), 532

radial basis function (RBF), 286,
399

radical inverse function, 381
random

sampling, 294, 309, 312, 377,
459

variable, 400, 401, 442, 554
rank, 156, 387, 547
rate of convergence, 63

linear, 64
plot, 65
quadratic, 64
superlinear, 65

real-encoded GA
crossover, 313
initial population, 312
mutation, 313
selection, 312

rectified linear unit (ReLU), 410
recursion, 339
recursive solver, 499
reduced-space

Newton’s method, 499

optimization, seemultidisci-
plinarydesign feasible
(MDF)

regression, 5, 384
linear, 385, 388
nonlinear, 391
testing, 60

regular point, 161, 169
regularization, 393, 399, 433
regularized least squares, 388
relative

derivatives, 82
error, 54
step size, 231

relaxation, 331, 489
factor, 490, 564

reliability metric, 444
reliable design, 441, 447
reordering, 486, 491
residual form, 50, 484
residuals, 50, 51, 121, 225, 253,

266, 479–481, 560
derivatives, 223
norm, 66

response surface model, see sur-
rogate models

restricted-stepmethods, see trust
region

reverse chain rule, 243
reverse Cuthill–McKee (RCM)

ordering, 486
reward, 443
risk, 443
robust design, 441, 442
Rosenbrock function, 579

=-dimensional, 283, 579
two-dimensional, 135, 137,

144, 395, 579
roulette wheel selection, 310
rounding, 329
roundoff error, 49, 54, 57, 58,

230, 561

Index 633

row space, 547

saddle point, 92, 93, 580
safety factor, 513
sampling, 374

full factorial, 375
inversion, 379
plan, 375
random, 294, 309, 312, 377,

459
scalar product, 545
scale invariance, 121, 145
scaled identity matrix, 132
scaling, 69, 93, 94

constraints, 181
design variables, 114, 137
gradient, 137
logarithm, 115
objective function, 114, 137
trust-region method, 145

search direction, 110
conjugate, 116
method comparison, 133,

135
normalization, 118
steepest descent, 110
zigzagging, 112, 113

secant
equation, 125, 574, 575
inverse equation, 573
method, 67, 123, 571

second-order coneprogramming
(SOCP), 41, 425, 429

seed, see algorithmic differenti-
ation (AD)

self influence, 318
semidefiniteprogramming (SDP),

41, 425
sensitivities, see derivatives
separable objectives, 357
sequence

Faure, 384

Fibonacci, 340
Halton, 382
Hammersley, 383, 407
low-discrepancy, 380
Niederreiter, 384
scrambled Halton, 383
Sobol, 384
van der Corput, 381

sequential optimization, 5, 476,
514, 532, 533

sequential quadratic program-
ming (SQP), 38, 41, 153,
187

equality constrained, 187
active set, 190
inequality constrained, 190
line search, 188, 197
meaning, 189
quasi-Newton, 201
system, 188

shape optimization, 35, 40
shareddesignvariables, 476, 520
Sherman–Morrison–Woodbury

formula, 128, 572, 574,
576

shipping, 343
Shubert’s algorithm, 299
side constraints, see bound con-

straints
sigmoid function, 145, 410
signomial programming, 436
simplex, 287
simplex algorithm, 37
simulated annealing, 42, 347,

349
simulation, 3, 70
simultaneous analysis and de-

sign (SAND), 72, 73,
517, 519

singular matrix, 559
skewness, 450, 556
slack variables, 167, 205

Index 634

slanted quadratic function, 579
slope, 80, 84, 98
smooth functions, 153
smoothing discontinuities, 145
smoothness, 18, 24
Sobol sequence, 384
social influence, 317, 318
software, 40, 41

AD, 250
engineering, 44
geometric programming, 437
MDO frameworks, 534
optimization, 15, 200
stochastic gradient descent,

414
surrogate modeling, 399

solvers, 50
hierarchical, 41, 499, 501
iterative, 225, 226, 237
linear, 61, 62, 559
monolithic, 499
Newton, 62, 66
nonlinear, 62
overview, 61
recursive, 499

source code, 225, 232, 236, 249
transformation, 247, 248, 250

span, 156, 547
sparse

Jacobian, 261–264
linear systems, 62, 246, 559
matrix, 486

spectral
expansions, see polynomial

chaos
projection, 465

splines, 9
splitting matrix, 563
spring systemproblem, 133, 143,

210, 585
SQP, see sequential quadratic

programming (SQP)

SR1 method, 576
update, 575

stability, 56
standard

deviation, see variance
error, 404

standard deviation, 314
state variables, 50, 70, 225, 253,

478, 487, 492
stationary point, 91, 93, 94, 167
statistical model, 400, 401
steepest-descentmethod, 36, 110,

111
step length, 99, 136
step-size dilemma, 229, 230
stiffness matrix, 50, 253, 259,

481, 589
stochastic

algorithms, 25, 286
collocation, 465
function, 20
gradient descent, 43, 413

strong Wolfe conditions, 102,
106, 124

structural
design problem, 71, 73, 253,

259, 588
model, 49, 253, 482
optimization, 40, 71, 447

structurally orthogonal columns,
263

subspace, 157, 547
subsystem, 499
subtractive cancellation, 56, 230
successive over-relaxation (SOR),

62, 564
sufficient curvature condition,

102
sufficientdecrease condition, 99,

100
sum of squared errors, 411
superlinear convergence, 65

Index 635

supervised learning, 433
support vector machine, 433
surrogatemodeling toolbox (SMT),

399
surrogate models, 25, 28, 37,

285, 294, 373, 375, 532
interpolatory, 384
kriging, 37, 400
linear regression, 385
polynomial, 385
regression, 384

surrogate-assistedoptimization,
373

surrogate-basedoptimization (SBO),
28, 37, 42, 373, 414, 532

swarm, 316
symbolic differentiation, 81, 226,

238, 239, 247
toolbox, 226

symmetric rank 1 (SR1)method,
130, 575

symmetryof secondderivatives,
85

system-level
optimization, 532
representation, 484, 505
solver, 487, 500
subproblem, 519

tabulation, 341, 342, 345
tangent

hyperplane, 157, 159, 165
Jacobian, 224, 240

taping, 249
target variables, 515
Taylor series

approximation, 88, 95, 120,
449

complex step, 232
constraint, 159
finite differences, 227
multivariable, 540

Newton’s method, 68
single variable, 539

Taylor series expansion, 539
ten-bar truss problem, 221, 588
three-bar truss problem, 219
time

dependence, 26
horizon, 341
integration, 63

topology optimization, 40
total

derivatives, 239, 254, 503,
504, 542

differential, see also differ-
ential

potential energy, 133, 585
tournament selection, 310, 315

multiobjective, 367
trade-offs

cost vs. performance, 10
direct vs. adjoint, 257
forward vs. reverse mode

AD, 246
multidisciplinary, 477
performance vs. robust-

ness, 444
risk vs. reward, 355, 443
weight vs. drag, 356

training data, 374, 384, 396, 411
trajectory optimization, 1, 26,

39, 375
transportation problem, 36
traveling salesperson problem,

37, 328, 349
tree

breadth-first search, 333
data structure, 498, 500
depth-first search, 332
pruning, 331

trisection, 304
truncation error, 57, 228, 229,

234

Index 636

trust region, 96, 139, 528
comparisonwith line search,

95, 144
methods, 122, 139, 142–144,

208, 285
overview, 95

type casting, 479

uncertainty, 5, 20, 357, 389, 404,
441, 442, 447, 476

quantification, 443, 444, 448
unconstrained optimization, 79
underdetermined system, 466
underfitting, 396
underflow, 55, 233, 234
unifiedderivatives equation (UDE),

265, 498, 507, 544
AD, 272
adjoint method, 270
derivation, 266
direct method, 270
forward, 267
reverse, 268, 509

uniform distribution, 313, 377,
557

unimodal function, 19, 282
unimodality, 20, 79
unit testing, 60
units, 7
unsupervised learning, 433
upper triangular matrix, 246,

274, 560
utopia point, 361

validation, 5, 49
van der Corput sequence, 381
variable-orderMarkov chain, 339
variables

bounds, 528
coupling, 478, 482, 484, 486,

487, 489, 492, 506, 515
design, 6, 253, 479
input, 374, 448, 482, 483

output, 374, 482
random, 400
state, 253, 478, 487, 492
target, 515

variance, 400, 441, 443, 451, 554,
555

vector, 545
operations, 545
space, 547

verification, 49, 242, 262, 274
visualization, 10

warm start, 152, 562
weak minimum, 19
Weibull distribution, 473, 557
weighted

directed graph, 338
Frobenius norm, 574
function, 246
inner product, 455
norm, 549
sum, 358

wind
farm problem, 27, 40, 330,

358, 444, 445, 472
rose, 445

wine barrel problem, 34, 150
wing design problem, 8, 40, 82,

477, 497, 508, 513, 517,
519, 523, 531, 581

Wolfe conditions, see strongWolfe
conditions

Woodbury matrix identity, see
Sherman–Morrison–Woodbury
formula

working set, 190

XDSM diagram, 475, 486
data dependency lines, 486
iterator, 488
process lines, 488

Index 637

zero-one variables, see binary
variables

zigzagging, 112, 113

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fun-
damental and advanced optimization theory and algorithms. It covers a wide range of numerical
methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary
design optimization, and uncertainty, with instruction on how to determine which algorithm should
be used for a given application. It also provides an overview of models and how to prepare them
for use with numerical optimization, including derivative computation. Over 400 high-quality visu-
alizations and numerous examples facilitate understanding of the theory, and practical tips address
common issues encountered in practical engineering design optimization and how to address them.
Numerous end-of-chapter homework problems, progressing in difficulty, help put knowledge into
practice. Accompanied online by a solutions manual for instructors and source code for problems,
this is ideal for a one- or two-semester graduate course on optimization in aerospace, civil, mechan-
ical, electrical, and chemical engineering departments.

	Contents
	Preface
	Acknowledgements
	1 Introduction
	1.1 Design Optimization Process
	1.2 Optimization Problem Formulation
	1.2.1 Design Variables
	1.2.2 Objective Function
	1.2.3 Constraints
	1.2.4 Optimization Problem Statement

	1.3 Optimization Problem Classification
	1.3.1 Smoothness
	1.3.2 Linearity
	1.3.3 Multimodality and Convexity
	1.3.4 Deterministic versus Stochastic

	1.4 Optimization Algorithms
	1.4.1 Order of Information
	1.4.2 Local versus Global Search
	1.4.3 Mathematical versus Heuristic
	1.4.4 Function Evaluation
	1.4.5 Stochasticity
	1.4.6 Time Dependence

	1.5 Selecting an Optimization Approach
	1.6 Notation
	1.7 Summary
	 Problems

	2 A Short History of Optimization
	2.1 The First Problems: Optimizing Length and Area
	2.2 Optimization Revolution: Derivatives and Calculus
	2.3 The Birth of Optimization Algorithms
	2.4 The Last Decades
	2.5 Toward a Diverse Future
	2.6 Summary

	3 Numerical Models and Solvers
	3.1 Model Development for Analysis versus Optimization
	3.2 Modeling Process and Types of Errors
	3.3 Numerical Models as Residual Equations
	3.4 Discretization of Differential Equations
	3.5 Numerical Errors
	3.5.1 Roundoff Errors
	3.5.2 Truncation Errors
	3.5.3 Iterative Solver Tolerance Error
	3.5.4 Programming Errors

	3.6 Overview of Solvers
	3.7 Rate of Convergence
	3.8 Newton-Based Solvers
	3.9 Models and the Optimization Problem
	3.10 Summary
	 Problems

	4 Unconstrained Gradient-Based Optimization
	4.1 Fundamentals
	4.1.1 Derivatives and Gradients
	4.1.2 Curvature and Hessians
	4.1.3 Taylor Series
	4.1.4 Optimality Conditions

	4.2 Two Overall Approaches to Finding an Optimum
	4.3 Line Search
	4.3.1 Sufficient Decrease and Backtracking
	4.3.2 Strong Wolfe Conditions
	4.3.3 Interpolation for Pinpointing

	4.4 Search Direction
	4.4.1 Steepest Descent
	4.4.2 Conjugate Gradient
	4.4.3 Newton's Method
	4.4.4 Quasi-Newton Methods
	4.4.5 Limited-Memory Quasi-Newton Methods

	4.5 Trust-Region Methods
	4.5.1 Quadratic Model with Spherical Trust Region
	4.5.2 Trust-Region Sizing Strategy
	4.5.3 Comparison with Line Search Methods

	4.6 Summary
	 Problems

	5 Constrained Gradient-Based Optimization
	5.1 Constrained Problem Formulation
	5.2 Understanding n-Dimensional Space
	5.3 Optimality Conditions
	5.3.1 Equality Constraints
	5.3.2 Inequality Constraints
	5.3.3 Meaning of the Lagrange Multipliers
	5.3.4 Post-Optimality Sensitivities

	5.4 Penalty Methods
	5.4.1 Exterior Penalty Methods
	5.4.2 Interior Penalty Methods

	5.5 Sequential Quadratic Programming
	5.5.1 Equality Constrained SQP
	5.5.2 Inequality Constraints
	5.5.3 Merit Functions and Filters
	5.5.4 Quasi-Newton SQP
	5.5.5 Algorithm Overview

	5.6 Interior-Point Methods
	5.6.1 Modifications to the Basic Algorithm
	5.6.2 SQP Comparisons and Examples

	5.7 Constraint Aggregation
	5.8 Summary
	 Problems

	6 Computing Derivatives
	6.1 Derivatives, Gradients, and Jacobians
	6.2 Overview of Methods for Computing Derivatives
	6.3 Symbolic Differentiation
	6.4 Finite Differences
	6.4.1 Finite-Difference Formulas
	6.4.2 The Step-Size Dilemma
	6.4.3 Practical Implementation

	6.5 Complex Step
	6.5.1 Theory
	6.5.2 Complex-Step Implementation

	6.6 Algorithmic Differentiation
	6.6.1 Variables and Functions as Lines of Code
	6.6.2 Forward-Mode AD
	6.6.3 Reverse-Mode AD
	6.6.4 Forward Mode or Reverse Mode?
	6.6.5 AD Implementation
	6.6.6 AD Shortcuts for Matrix Operations

	6.7 Implicit Analytic Methods—Direct and Adjoint
	6.7.1 Residuals and Functions
	6.7.2 Direct and Adjoint Derivative Equations
	6.7.3 Direct or Adjoint?
	6.7.4 Adjoint Method with AD Partial Derivatives

	6.8 Sparse Jacobians and Graph Coloring
	6.9 Unified Derivatives Equation
	6.9.1 UDE Derivation
	6.9.2 UDE for Mixed Implicit and Explicit Components
	6.9.3 Recovering AD

	6.10 Summary
	 Problems

	7 Gradient-Free Optimization
	7.1 When to Use Gradient-Free Algorithms
	7.2 Classification of Gradient-Free Algorithms
	7.3 Nelder–Mead Algorithm
	7.4 Generalized Pattern Search
	7.5 DIRECT Algorithm
	7.6 Genetic Algorithms
	7.6.1 Binary-Encoded Genetic Algorithms
	7.6.2 Real-Encoded Genetic Algorithms
	7.6.3 Constraint Handling
	7.6.4 Convergence

	7.7 Particle Swarm Optimization
	7.8 Summary
	 Problems

	8 Discrete Optimization
	8.1 Binary, Integer, and Discrete Variables
	8.2 Avoiding Discrete Variables
	8.3 Branch and Bound
	8.3.1 Binary Variables
	8.3.2 Integer Variables

	8.4 Greedy Algorithms
	8.5 Dynamic Programming
	8.6 Simulated Annealing
	8.7 Binary Genetic Algorithms
	8.8 Summary
	 Problems

	9 Multiobjective Optimization
	9.1 Multiple Objectives
	9.2 Pareto Optimality
	9.3 Solution Methods
	9.3.1 Weighted Sum
	9.3.2 Epsilon-Constraint Method
	9.3.3 Normal Boundary Intersection
	9.3.4 Evolutionary Algorithms

	9.4 Summary
	 Problems

	10 Surrogate-Based Optimization
	10.1 When to Use a Surrogate Model
	10.2 Sampling
	10.2.1 Latin Hypercube Sampling
	10.2.2 Low-Discrepancy Sequences

	10.3 Constructing a Surrogate
	10.3.1 Linear Least Squares Regression
	10.3.2 Maximum Likelihood Interpretation
	10.3.3 Nonlinear Least Squares Regression
	10.3.4 Cross Validation
	10.3.5 Common Basis Functions

	10.4 Kriging
	10.5 Deep Neural Networks
	10.6 Optimization and Infill
	10.6.1 Exploitation
	10.6.2 Efficient Global Optimization

	10.7 Summary
	 Problems

	11 Convex Optimization
	11.1 Introduction
	11.2 Linear Programming
	11.3 Quadratic Programming
	11.4 Second-Order Cone Programming
	11.5 Disciplined Convex Optimization
	11.6 Geometric Programming
	11.7 Summary
	 Problems

	12 Optimization Under Uncertainty
	12.1 Robust Design
	12.2 Reliable Design
	12.3 Forward Propagation
	12.3.1 First-Order Perturbation Method
	12.3.2 Direct Quadrature
	12.3.3 Monte Carlo Simulation
	12.3.4 Polynomial Chaos

	12.4 Summary
	 Problems

	13 Multidisciplinary Design Optimization
	13.1 The Need for MDO
	13.2 Coupled Models
	13.2.1 Components
	13.2.2 Models and Coupling Variables
	13.2.3 Residual and Functional Forms
	13.2.4 Coupled System Structure
	13.2.5 Solving Coupled Numerical Models
	13.2.6 Hierarchical Solvers for Coupled Systems

	13.3 Coupled Derivatives Computation
	13.3.1 Finite Differences
	13.3.2 Complex Step and AD
	13.3.3 Implicit Analytic Methods

	13.4 Monolithic MDO Architectures
	13.4.1 Multidisciplinary Feasible
	13.4.2 Individual Discipline Feasible
	13.4.3 Simultaneous Analysis and Design

	13.5 Distributed MDO Architectures
	13.5.1 Collaborative Optimization
	13.5.2 Analytical Target Cascading
	13.5.3 Bilevel Integrated System Synthesis
	13.5.4 Asymmetric Subspace Optimization
	13.5.5 Other Distributed Architectures

	13.6 Summary
	 Problems

	A Mathematics Background
	A.1 Taylor Series Expansion
	A.2 Chain Rule, Total Derivatives, and Differentials
	A.3 Matrix Multiplication
	A.3.1 Vector-Vector Products
	A.3.2 Matrix-Vector Products
	A.3.3 Quadratic Form (Vector-Matrix-Vector Product)

	A.4 Four Fundamental Subspaces in Linear Algebra
	A.5 Vector and Matrix Norms
	A.6 Matrix Types
	A.7 Matrix Derivatives
	A.8 Eigenvalues and Eigenvectors
	A.9 Random Variables

	B Linear Solvers
	B.1 Systems of Linear Equations
	B.2 Conditioning
	B.3 Direct Methods
	B.4 Iterative Methods
	B.4.1 Jacobi, Gauss–Seidel, and SOR
	B.4.2 Conjugate Gradient Method
	B.4.3 Krylov Subspace Methods

	C Quasi-Newton Methods
	C.1 Broyden's Method
	C.2 Additional Quasi-Newton Approximations
	C.2.1 Davidon–Fletcher–Powell Update
	C.2.2 BFGS
	C.2.3 Symmetric Rank 1 Update
	C.2.4 Unification of SR1, DFP, and BFGS

	C.3 Sherman–Morrison–Woodbury Formula

	D Test Problems
	D.1 Unconstrained Problems
	D.1.1 Slanted Quadratic Function
	D.1.2 Rosenbrock Function
	D.1.3 Bean Function
	D.1.4 Jones Function
	D.1.5 Hartmann Function
	D.1.6 Aircraft Wing Design
	D.1.7 Brachistochrone Problem
	D.1.8 Spring System

	D.2 Constrained Problems
	D.2.1 Barnes Problem
	D.2.2 Ten-Bar Truss

	Bibliography
	Index

