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1 Structural equations of motion

This chapter contains the derivations of the nonlinear equations of motion based on the kinematic formulation
of articulated substructures to form the entire turbine structure.

1.1 Lagrange equations of articulated substructures

The Lagrangian of a structure L = T − V is given by its total kinetic energy T and the total potential energy V
of the conservative forces acting on the structure, e.g. gravity and elastic forces. Using Lagrange’s equations,
the nonlinear equations of motion can be derived as

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
+

∂D

∂q̇i
= Qi for i = 1, . . . , ND (1.1)

where D is the Rayleigh dissipation function used to model the internal energy dissipation, and Qi is the gen­
eralized force for the generalized coordinate qi due to non­conservative forces handled in the next sections.

The Lagrangian is a function of the displacements, velocities, and time

L = T (t,q, q̇)− V (t,q) (1.2)

where the potential energy of the conservative forces are independent of velocities. Using (1.2) and the chain
rule, the first term of (1.1) can be expanded as

ND∑
j=1

∂2T

∂q̇i∂q̇j
q̈j +

ND∑
j=1

∂2T

∂q̇i∂qj
q̇j +

∂

∂t

(
∂T

∂q̇i

)
− ∂T

∂qi
+

∂D

∂q̇i
+

∂V

∂qi
= Qi (1.3)

for i = 1, 2, . . . , ND. Here, the first term constitutes the acceleration dependent forces, whereas the other terms
are only dependent on the time t and the state­variables, the displacements q and velocities q̇. We will now
take a closer look at the first four inertia force terms given by the kinetic energy.

The total kinetic energy is the integral of the kinetic energy of each particle over the entire volume V of the
structure:

T =

∫
V

1
2 ρ ṙT ṙ dV (1.4)

where ()T denotes to the transpose of a matrix or a vector (single columned matrix), and ṙ is the velocity vector
of the particle given as the time derivative of its position vector r = r(t,q) that may be explicit time­dependent
e.g. for sub­structures that are rotating with a prescribed average speed. The velocity vector can be expanded
to

ṙ = dr
dt

=

ND∑
j=1

∂r
∂qj

q̇j +
∂r
∂t

(1.5)

from which these properties of the position and velocity vectors can be shown

∂ṙ
∂q̇i

=
∂r
∂qi

and ∂2ṙ
∂q̇i∂qj

=
∂r

∂qi∂qj
=

∂2ṙ
∂qi∂q̇j

(1.6)

Substituting (1.4) into (1.3) and using the properties of (1.5) and (1.6), the nonlinear equations of motion can
be written as

ND∑
j=1

mij q̈j +

ND∑
j=1

gij q̇j + Fc,i +

ND∑
j=1

ND∑
k=1

hijk q̇j q̇k +
∂V

∂qi
+

∂D

∂q̇i
= Qi (1.7)
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where the summation coefficients and the acceleration force Fc,i can be derived solely from the partial time
and displacement derivatives of the position vector as

mij =

∫
V
ρ

(
∂rT
∂qi

∂r
∂qj

)
dV (1.8a)

gij =

∫
V
2ρ

(
∂rT
∂qi

∂2r
∂t∂qj

)
dV (1.8b)

hijk =

∫
V
ρ

(
∂rT
∂qi

∂2r
∂qj∂qk

)
dV (1.8c)

Fc,i =

∫
V
ρ

(
∂rT
∂qi

∂2r
∂t2

)
dV (1.8d)

These coefficients and the generalized force are only functions of time t and the displacements q(t). The
first term of (1.7) describes the fundamental inertia force due to accelerations q̈ with a symmetric mass matrix
mij = mji. The second term describes the gyroscopic forces from substructures where the position vector has
a explicit dependency of time ∂r/∂t ̸= 0, for example if the kinematic formulation is based on a drivetrain that
rotates at a given average speed and the drivetrain dynamics is described by variations around this speed. The
third term describes the centrifugal forces on substructures rotating with a prescribed speed, or the forces due
to other explicitly defined accelerations such as earthquakes or the moving base when this structural model is
modular coupled to another dynamic model of a foundation or floater. The fourth term can describe the similar
Coriolis and acceleration forces as the second and third terms. For example let the generalized coordinate qk
be the absolute rotation angle of the drivetrain then this kinematic formulation can be changed to one with a
prescribed averaged rotational speed by the substitution qk = Ωt + δqk, where Ω is the prescribed average
speed and δqk is the new generalized coordinate. The part term hijk q̇k = hijkΩ will have a component equal to
the coefficient gij in case of a prescribed constant speed bearing for j ̸= k, and the entire term hijk q̇j q̇k = hijkΩ

2

for j = k will have a component equal to the acceleration force Fc,i.

In case of a prescribed rotation of the rotor, the acceleration forces Fc,i given by (1.8d) are centrifugal forces that
stiffen the blades. To include this centrifugal stiffness in the calculation of frequencies or in the iteration steps
of a time integration, we can compute the centrifugal stiffness matrix as the Jacobian of this vector function as

kc,ij =

∫
V
ρ

(
∂2rT
∂qi∂qj

∂2r
∂t2

+
∂rT
∂qi

∂3r
∂t2∂qj

)
dV (1.9)

which is not a symmetric matrix due to the second term.

The fifth term of (1.7) describes the conservative forces such as gravity and elastic forces which can be defined
by the potential energy V . The force function given by the derivative of the scalar potential energy function
depends on the kinematic formulation and the applied theory for elasticity. The sixth term of (1.7) describes
the purely dissipative forces from structural damping mechanisms (e.g. material and friction), which we will
model using a modal damping method described in Section... . The last term of (1.7) describes generalized
non­conservative forces acting on the structure which are discussed in Chapter... .

1.1.1 Generic topology of structure

The turbine structure is divided into a number of articulated substructures where one substructure may be
connected to one or more substructures through its connection points. Let b be the index of a substructure
then we herein assume that it is connected to substructure b− 1 which is connected to substructure b− 2 and
so on until substructure 0. In practice, this numbering will not be continuous (e.g. the blades will each have
their own number but connected to the same hub which can have one number), but we can always create an
intermediate index list for each substructure in which the numbering is continuous.

The position vector rb of a particle on substructure number b is written as

rb (t,q;x, y, z) =S0B0

(
r0 + R0ST

0 S1B1

(
r1 + R1ST

1 S2B2 (r2
+ R2ST

2 S3B3

(
r3 + · · ·+ Rb−1ST

b−1SbBb r1,b (qb;x, y, z) (1.10)

where t is time, x, y and z are the coordinates of the particle in the moving substructure frame and q is the DOF
vector. Note that qb is a vector containing the subset of q with the DOFs of the substructure b. The matrices Sb
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are the constant rotation matrix for the coordinate systems of the substructure b described in the ground fixed
inertia frame, Bb are the rotation matrix for a possible bearing in the base1 of substructure b, and Rb are the
rotation matrix at the connection point on substructure b to which the next substructure b+1 is connected. The
vectors rb describe the positions of these connection points in the coordinates of substructure b, and the vector
r1,b is internal deformation vector function describing the position of all particles in the entire substructure b in
its local frame of reference. This internal deformation is given by the DOFs qb. The vector rb and the matrices
Bb and Rb are functions of the DOFs qb. For prescribed bearings, e.g. constant rotation speed, the matrix Bb

may also an explicit function of time t. Without prescribed bearings, there are no explicit functions of time in the
position vectors for any substructure, whereby the gyroscopic matrix and centrifugal force vector vanish. For
a free bearing with a DOF describing the rotation of the drivetrain, the gyroscopic and centrifugal inertia forces
are included in the nonlinear Coriolis term of (1.7) given by the coefficients in (1.8c).

The position vector (1.10) can be rewritten in condensed form as

rb (t,q;x, y, z) =
b−1∑
k=0

(
k−1∏
l=0

Ol

)
SkBkrk +

(
b−1∏
l=0

Ol

)
SbBb r1,b (qb;x, y, z) (1.11)

whereOl = SlBlRlST
l is the rotation matrix of substructure l described in the ground­fixed frame, including both

the deformations of the substructure and the rotations of the bearing at its base. For the following derivations,
the position vector (1.11) is written in the further condensed form as

rb (t,q;x, y, z) = r0,b (t,q) + R0,b (t,q) r1,b (qb;x, y, z) (1.12)

where the translations and rotations of the substructure base are described by

r0,b =
b−1∑
k=0

R0,krk = r0,b−1 + R0,b−1rb−1 and R0,b =

(
b−1∏
l=0

Ol

)
SbBb = R0,b−1Rb−1ST

b−1SbBb (1.13)

where rk is the local position vector in the frame of substructure k to which substructure k + 1 is connected;
this vector is independent of time because there are no bearings involved. We use the index “1” for the local
substructure deformation given by r1,b and “0” for the deformation and orientation of its base given by r0,b and
R0,b. Note that these position vector and orientation matrix are functions of DOFs of substructures supporting
the substructure b, but not of DOFs of other substructures or substructure b itself.

In the subsequent derivations, we will need the time derivatives:

ṙ0,b =
b−1∑
k=0

Ṙ0,krk (1.14a)

Ṙ0,b =

b−1∑
k=0

(
k−1∏
l=0

Ol

)
SkḂkRkST

k

(
b−1∏

l=k+1

Ol

)
SbBb +

(
b−1∏
l=0

Ol

)
SbḂb (1.14b)

r̈0,b =
b−1∑
k=0

R̈0,krk (1.14c)

R̈0,b =

b−1∑
k=0

(
k−1∑
m=0

(
m−1∏
l=0

Ol

)
SmḂmRmST

m

(
k−1∏

l=m+1

Ol

))
SkḂkRkST

k

(
b−1∏

l=k+1

Ol

)
SbBb

+

b−1∑
k=0

(
k−1∏
l=0

Ol

)
SkḂkRkST

k

(
b−1∑

m=k+1

(
m−1∏
l=k+1

Ol

)
SmḂmRmST

m

(
b−1∏

l=m+1

Ol

))
SbBb

+

b−1∑
k=0

(
k−1∏
l=0

Ol

)
SkB̈kRkST

k

(
b−1∏

l=k+1

Ol

)
SbBb (1.14d)

+

b−1∑
k=0

2

(
k−1∏
l=0

Ol

)
SkḂkRkST

k

(
b−1∏

l=k+1

Ol

)
SbḂb +

(
b−1∏
l=0

Ol

)
SbB̈b

1The base is the point on the substructure where it is connected to another substructure, which not necessarily is the first node of e.g.
a beam­like substructure.
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where we have used that the bearing matrices Bk represent the only explicit time dependency. Note that
some bearings have a constant angle or are function of a free bearing DOF, whereby Ḃk = B̈k = 0. In most
applications, there will only be a single bearing with an explicit time dependency in terms of a constant speed
of Ω. Let this single bearing be for substructure number k then the time derivatives (1.14) reduce to

ṙ0,b =
b−1∑
l=k

Ṙ0,lrl (1.15a)

Ṙ0,b =Ω

(
k−1∏
l=0

Ol

)
SkBkNkRkST

k

(
b−1∏

l=k+1

Ol

)
SbBb = ΩR0,kNkRT

0,kR0,b (1.15b)

r̈0,b =
b−1∑
l=k

R̈0,lrl (1.15c)

R̈0,b =Ω2

(
k−1∏
l=0

Ol

)
SkBkN2

kRkST
k

(
b−1∏

l=k+1

Ol

)
SbBb = Ω2R0,kN2

kRT
0,kR0,b (1.15d)

where Nk is the skew symmetric matrix (E.3) defined by the unit­vectors of the bearing axis. In this case, the
following products that occur in the subsequent derivations can be written as

rT0,bṙ0,b = (1.16a)

RT
0,bṙ0,b = ΩRT

0,bR0,kNkRT
0,k

b−1∑
l=k

R0,lrl = Ω
(
RT

0,kR0,b

)T NkRT
0,k (r0,b − r0,k) (1.16b)

RT
0,bṘ0,b = Ω

(
RT

0,kR0,b

)T Nk RT
0,kR0,b (1.16c)

rT0,br̈0,b = (1.16d)

RT
0,br̈0,b = Ω2RT

0,bR0,kN2
kRT

0,k

b−1∑
l=k

R0,lrl = Ω2
(
RT

0,kR0,b

)T N2
kRT

0,k (r0,b − r0,k) (1.16e)

RT
0,bR̈0,b = Ω2

(
RT

0,kR0,b

)T N2
k RT

0,kR0,b (1.16f)

which are time independent scalers, vectors and matrices because

RT
0,kR0,b = BT

k ST
k

(
0∏

l=k−1

OT
l

)(
b−1∏
l=0

Ol

)
SbBb = BT

k ST
k

(
b−1∏
l=k

Ol

)
SbBb = RkST

k

(
b−1∏

l=k+1

Ol

)
SbBb (1.17)

if b ≥ k

We also need the DOF derivatives:

r0,b,qi =
b−1∑
k=0

(R0,k,qirk + R0,krk,qi) (1.18a)

R0,b,qi = (1.18b)
r0,b,qi,qj = (1.18c)
R0,b,qi,qj = (1.18d)

1.1.2 Inertia forces on and from a substructure

The inertia forces from a substructure is “felt” by all substructures supporting it, i.e., there may only be entries
in rows and columns of the mass, gyroscopic, and centrifugal stiffness matrices for DOFs of the supporting
substructures that appear in the vector and matrix functions r0,b and R0,b. We subdivide the mass, gyroscopic,
and centrifugal stiffness matrices into 2x2 block matrices, e.g. the mass matrix as

M =

[
M00 M01

M10 M11

]
(1.19)
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where the diagonal matricesM00 andM11 are the mass matrix contributions for the DOFs of the supporting sub­
structures and the DOFs of the substructure, respectively, and M10 and M01 are the mass matrix contributions
that coupled these DOFs. Remember that M10 = M01T because the mass matrix is symmetric; the gyroscopic
and centrifugal stiffness matrices are not symmetric.

Similar, we subdivide the nonlinear three­dimensional gyroscopic matrix into two 2x2 block matrices:

H0
i =

[
H000 H001

H010 H011

]
and H1

i =

[
H100 H101

H110 H111

]
(1.20)

where H0
i contains the nonlinear gyroscopic matrix elements for DOF qi on a supporting substructure, and H1

i

contains the elements for DOF qi on the substructure itself. Thus, the element h000
ijk describe the coefficient of

the gyroscopic force from velocities q̇j and q̇k of one or two different supporting substructures on the DOF qi of
the same or different supporting substructure.

In the following, the substructure­index b are omitted for brevity.

Mass matrix

Inserting (1.12) into (1.8a), expanding and sorting the terms into the 2x2 block matrix form yield the mass matrix
elements

m00
ij =

∫
V
ρ
(
rT0,qir0,qj +

(
rT0,qiR0,qj + rT0,qjR0,qi

)
r1 + rT1 RT

0,qiR0,qj r1
)
dV (1.21a)

m01
ij = m10

ji =

∫
V
ρ
(
rT0,qiR0r1,qj + rT0,qjR0r1,qi + rT1 RT

0,qiR0r1,qj + rT1 RT
0,qjR0r1,qi

)
dV (1.21b)

m11
ij =

∫
V
ρ
(
rT1,qir1,qj

)
dV (1.21c)

where we have used the notation (),qi ≡ ∂/∂qi for the first derivatives with respect to DOF qi. It is possible to
isolate the integration over the entire substructure volume to the local deformation vector and its derivatives by
using the formula (E.7) for the matrix dot product ≡ A : B. The mass matrix elements can thereby be written
as

m00
ij =rT0,qir0,qj

∫
V
ρdV +

(
rT0,qiR0,qj + rT0,qjR0,qi

)∫
V
ρ r1dV +

(
RT

0,qiR0,qj

)
:

∫
V
ρ r1rT1 dV (1.22a)

m01
ij = m10

ji =rT0,qiR0

∫
V
ρ r1,qjdV + rT0,qjR0

∫
V
ρ r1,qidV (1.22b)

+
(
RT

0,qiR0

)
:

∫
V
ρ r1,qj rT1 dV +

(
RT

0,qjR0

)
:

∫
V
ρ r1,qirT1 dV

m11
ij =

∫
V
ρ
(
rT1,qir1,qj

)
dV (1.22c)

where the blue colored integrals of these expressions can computed in the code object of the substructure,
independent of its base motion. Some of these integrals over the volume of the substructure have physical
meanings as ∫

V
ρdV =M

∫
V
ρ r1dV =M

xcg

ycg
zcg

 = Mrcg (1.23)

∫
V
ρ r1rT1 dV =

 ixx ixy ixz
ixy iyy iyz
ixz iyz izz

 = Ibase

where M is the total mass of the substructure, rcg = {xcg, ycg, zcg}T is the center of gravity of the substructure
measured from its base in the ground­fixed inertia frame, and Ibase is a matrix related to the rotational inertia of
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the substructure about its base given by the integrals defined as

iαβ =

∫
V
ρ r1,αr1,βdV (1.24)

where the subscripts (α, β) ∈ {x, y, z} denote the coordinate component of the position vector. These integrals
can be used to compute the moments and products of inertia [1] for the substructure about its base defined in
the ground­fixed frame as

Ixx = iyy + izz , Iyy = ixx + izz , Izz = ixx + iyy ,

Ixy = Iyx = −ixy , Ixz = Izx = −ixz , and Iyz = Izy = −iyz (1.25)

The remaining integrals over the substructure volume of (1.22) involve the derivatives of the local position vector
with respect to the DOFs of the substructure. One is the derivative of the center of gravity position:∫

V
ρ r1,qidV = Mrcg,qi (1.26)

Another volume integral is the “asymmetric half” of the derivative of the symmetric inertia matrix

Ibase,qi =
∫
V
ρ r1,qirT1 dV +

∫
V
ρ r1rT1,qidV =

∫
V
ρ r1,qirT1 dV +

(∫
V
ρ r1,qirT1 dV

)T

= Abase,i + AT
base,i (1.27)

where the notation Abase,i ≡
∫
Vρ r1,qir

T
1 dV is introduced for this volume integral. Finally, the last integral in

(1.22c) defined the entries of the local mass matrix of the substructure M11 independent of the base motion.

Gyroscopic matrix

Inserting (1.12) into (1.8b), expanding and sorting the terms into the 2x2 block matrix form yield the gyroscopic
matrix elements

g00ij =2

∫
V
ρ
(
rT0,qi ṙ0,qj + rT0,qiṘ0,qj r1 + ṙT0,qjR0,qir1 + rT1 RT

0,qiṘ0,qj r1
)
dV (1.28a)

g01ij =2

∫
V
ρ
(
ṙT0,qjR0r1,qi + rT0,qiṘ0r1,qj + rT1 RT

0,qiṘ0r1,qj + rT1 ṘT
0,qjR0r1,qi

)
dV (1.28b)

g11ij =2

∫
V
ρrT1,qiR

T
0 Ṙ0r1,qjdV (1.28c)

and g10ij is simply given by switching the indices i and j in the expression (1.28b) for g01ij . We isolate the
integration over the entire substructure volume to the local deformation vector and its derivatives by using
(E.7), whereby the gyroscopic matrix elements are written as

g00ij =2MrT0,qi ṙ0,qj + 2
(
rT0,qiṘ0,qj + ṙT0,qjR0,qi

)
Mrcg + 2

(
RT

0,qiṘ0,qj

)
: Ibase (1.29a)

g01ij =2ṙT0,qjR0Mrcg,qi + 2rT0,qiṘ0Mrcg,qj + 2
(
RT

0,qiṘ0

)
: Abase,j + 2

(
ṘT

0,qjR0

)
: Abase,i (1.29b)

g11ij =2
(
RT

0 Ṙ0

)
: Abase,1,ij (1.29c)

where Abase,1,ij ≡
∫
Vρ r1,qj r

T
1,qidV is introduced for the volume integral over the substructure of the matrix

defined by the first derivatives of the local deformation vector with respect to the local DOFs.

9
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Nonlinear gyroscopic matrix

Inserting (1.12) into (1.8c), expanding and sorting the terms into the two 2x2 block matrix forms (1.20) yield the
nonlinear gyroscopic matrix elements

h000
ijk =

∫
V
ρ
(
rT0,qir0,qj ,qk + rT0,qiR0,qj ,qkr1 + rT0,qjqkR0,qir1 + rT1 RT

0,qiR0,qj ,qkr1
)
dV (1.30a)

h001
ijk =

∫
V
ρ
(
rT0,qiR0,qj r1,qk + rT1 RT

0,qiR0,qj r1,qk
)
dV (1.30b)

h010
ijk =

∫
V
ρ
(
rT0,qiR0,qkr1,qj + rT1 RT

0,qiR0,qkr1,qj
)
dV (1.30c)

h011
ijk =

∫
V
ρ
(
rT0,qiR0r1,qj ,qk + rT1 RT

0,qiR0r1,qj ,qk
)
dV (1.30d)

h100
ijk =

∫
V
ρ
(
rT0,qjqkR0r1,qi + rT1 RT

0,qj ,qk
R0r1,qi

)
dV (1.30e)

h101
ijk =

∫
V
ρ rT1,qiR

T
0 R0,qj r1,qkdV (1.30f)

h110
ijk =

∫
V
ρ rT1,qiR

T
0 R0,qkr1,qjdV (1.30g)

h111
ijk =

∫
V
ρ rT1,qir1,qj ,qkdV (1.30h)

where we have used the notation (),qi,qj ≡ ∂2/∂qi∂qj for the second derivatives with respect to DOFs qi and
qj . Again, the integration over the entire substructure volume is isolated to the local deformation vector and its
derivatives by using (E.7), whereby the nonlinear gyroscopic matrix elements are written as

h000
ijk =MrT0,qir0,qj ,qk +

(
rT0,qiR0,qj ,qk + rT0,qj ,qkR0,qi

)
Mrcg +

(
RT

0,qiR0,qj ,qk

)
: Ibase (1.31a)

h001
ijk =rT0,qiR0,qjMrcg,qk +

(
RT

0,qiR0,qj

)
: Abase,k (1.31b)

h010
ijk =rT0,qiR0,qkMrcg,qj +

(
RT

0,qiR0,qk

)
: Abase,j (1.31c)

h011
ijk =rT0,qiR0Mrcg,qj ,qk +

(
RT

0,qiR0

)
: Abase,2,jk (1.31d)

h100
ijk =rT0,qj ,qkR0Mrcg,qi +

(
RT

0,qj ,qk
R0

)
: Abase,i (1.31e)

h101
ijk =

(
RT

0 R0,qj

)
: Abase,1,ik (1.31f)

h110
ijk =

(
RT

0 R0,qk

)
: Abase,1,ij (1.31g)

h111
ijk =

∫
V
ρ rT1,qir1,qj ,qkdV (1.31h)

where Abase,2,ij ≡
∫
Vρ r1,qi,qj r

T
1 dV is introduced for the volume integral over the substructure of the matrix

defined by the local deformation vector and its second derivatives with respect to the local DOFs.

Centrifugal force vector

Inserting (1.12) into (1.8d) and expanding lead to these acceleration (centrifugal) forces on the supporting DOFs
and the local substructure DOFs:

F 0
c,i =

∫
V
ρ
(
rT0,qi r̈0 + r̈T0 R0,qir1 + rT0,qiR̈0r1 + rT1 RT

0,qiR̈0r1
)
dV (1.32a)

F 1
c,i =

∫
V
ρ
(
r̈T0 R0r1,qi + rT1 R̈T

0 R0r1,qi
)
dV (1.32b)

which can be rewritten as

F 0
c,i =MrT0,qi r̈0 +

(
r̈T0 R0,qi + rT0,qiR̈0

)
Mrcg +

(
RT

0,qiR̈0

)
: Ibase (1.33a)

F 1
c,i =r̈T0 R0Mrcg,qi +

(
R̈T

0 R0

)
: Abase,i (1.33b)

using (E.7) and the volume integral notations introduced above.

10



Theory manual for CASEStab

Centrifugal stiffness matrix

Inserting (1.12) into (1.9), expanding and sorting the terms into the 2x2 block matrix form (1.19) yield the
centrifugal stiffness matrix elements

k00c,ij =

∫
V
ρ
(
rT0,qiqj r̈0 + rT0,qi r̈0,qj + rT0,qi,qj R̈0r1 + r̈T0 R0,qi,qj r1 + r̈T0,qjR0,qir1 + rT0,qiR̈0,qj r1+

+ rT1 RT
0,qiR̈0,qj r1 + rT1 RT

0,qi,qj R̈0r1
)
dV (1.34a)

k01c,ij =

∫
V
ρ
(
r̈T0 R0,qj r1,qi + r̈T0,qjR0r1,qi + rT0,qiR̈0r1,qj + r̈T0 R0,qir1,qj

+ rT1 R̈T
0 R0,qj r1,qi + rT1 R̈T

0,qjR0r1,qi + rT1 R̈T
0 R0,qir1,qj + rT1 RT

0,qiR̈0r1,qj
)
dV (1.34b)

k11c,ij =

∫
V
ρ
(
r̈T0 R0r1,qi,qj + rT1,qiR

T
0 R̈0r1,qj + rT1 R̈T

0 R0r1,qi,qj
)
dV (1.34c)

which can be rewritten as

k00c,ij =M
(
rT0,qi,qj r̈0 + rT0,qi r̈0,qj

)
+
(
rT0,qi,qj R̈0 + r̈T0 R0,qi,qj + r̈T0,qjR0,qi + rT0,qiR̈0,qj

)
Mrcg

+
(
RT

0,qiR̈0,qj + RT
0,qi,qj R̈0

)
: Ibase (1.35a)

k01c,ij =
(
r̈T0,qjR0 + r̈T0 R0,qj

)
Mrcg,qi +

(
rT0,qiR̈0 + r̈T0 R0,qi

)
Mrcg,qj

+
(
R̈T

0 R0,qj + R̈T
0,qjR0

)
: Abase,i +

(
R̈T

0 R0,qi + RT
0,qiR̈0

)
: Abase,j (1.35b)

k11c,ij =r̈T0 R0Mrcg,qi,qj +
(
RT

0 R̈0

)
: Abase,1,ij +

(
R̈T

0 R0

)
: Abase,2,ij (1.35c)

using (E.7) and the volume integral notations introduced above.

Generic implementation of inertia forces from a substructure

For the implementation of the above inertia force components, each substructure object must provide a function
computing all scalers, vectors and matrices marked in blue in Equations (1.22), (1.29), (1.31), (1.33) and (1.35).
Some have physical meaning, e.g. the total mass of the substructureM , the current center of gravity rcg and its
DOF derivatives to the first and second order (rcg,qi and rcg,qiqj ), and the current matrix of rotational moments of
inertia components Ibase as given by (1.23). The remaining scalars can be reduced to these two unique volume
integrals over the substructure that are the entries of the local mass and nonlinear gyroscopic matrices:

m11
ij =

∫
V
ρ rT1,qir1,qjdV and h111

ijk =

∫
V
ρ rT1,qir1,qjqkdV (1.36)

for all i, j, k ∈ db where db is the DOF index vector for the substructure b. The remaining matrices can be
reduced to these three unique volume integrals over the substructure:

Abase,i ≡
∫
V
ρ r1,qirT1 dV , Abase,1,ij ≡

∫
V
ρ r1,qj rT1,qidV and Abase,2,ij ≡

∫
V
ρ r1,qi,qj rT1 dV (1.37)

for all i, j ∈ db. Note that the following symmetry rules apply: Abase,2,ji = Abase,2,ij and Abase,1,ji = AT
base,1,ij .

All scalars, vectors, andmatrices for each substructuremust be computed in every time step for all combinations
of substructure DOFs. The combinations leads to a large number of computations, e.g. the nonlinear gyroscopic
elements combines over three DOF indices, with symmetry for two of them, resulting in

(
N3

b +N2
b

)
/2 scalar

values (where Nb is the number of DOFs in structure b) to be computed for the nonlinear gyroscopic matrix.
The computations of (1.23), (1.36), (1.37), and the derivatives of rcg in the object function of the substructure
must therefore be optimized for speed.

Each substructure object must also provide a function computing its contributions to the positions and orienta­
tions of any connection points to subsequent substructures.

11
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1.1.3 Gravitational forces on and from a substructure

1.1.4 Linear elastic forces inside a substructure

The flexible substructures will have internal forces that can be modeled as linear elastic forces. These forces
can be included in the Lagrange equation through their potential energy Ve,b = Ve,b(qb) which is only a function
of the substructure DOFs. Thus, the internal forces and the associated tangent stiffness matrix do not lead to
coupling to the other substructures as the inertia forces.

1.1.5 Linear purely dissipative forces inside a substructure

The dissipation of vibrational energy in a substructure ...

1.1.6 Generalized forces from external forces and moments

... aerodynamic forces ...

1.2 Substructure models

The following model types can be used to model substructures:

• Rigid body

• Flexible co­rotational finite beam element body

• Flexible linear Craig­Bampton super­element body

The following sections contain

1.2.1 Rigid body substructure

The position vector of particles on the rigid body is purely a function of the local spacial coordinates

r1,b =

 x
y
z

 (1.38)

where (x, y, z) ∈ V

1.2.2 Co­rotational beam substructure

The nonlinear co­rotational finite beam element methodology used for this type of substructures is described
in details in Appendix A. The methodology is similar to Crisfield [2] and Krenk [3] except that the nonlinear
geometric formulation is explicit, i.e., the element coordinate systems and the local small rotations of the nodes
are given as explicit nonlinear functions of the global nodal DOFs. The elastic deformation and compliance of
the element is adapted from the equilibrium element proposed by Krenk and Couturier [4].

A co­rotational beam substructure consists of finite beam elements with two end­nodes having six DOFs: three
translations and three rotations (using Rodrigues parameters) in the substructure coordinate system. The DOF
vector of the substructure

12



Theory manual for CASEStab

Inertia forces

The volume integral over a co­rotational beam substructure can be computed as the sum of integrals over the
volume Vn of element n, here generically written as∫

V
( ) dV =

Ne,b∑
n=1

∫
Vn

( ) dVn =

Ne,b∑
n=1

(
ln
2

∫ 1

−1

∫
A
( ) dAdζ

)
(1.39)

where each volume integral over the element of initial length ln are split into an area integral over each cross­
section and a line integral over the non­dimensional element coordinate ζ from the mid­point to the end nodes
at ζ = ±1.

The position vector of particles on element number n is

r1,b,n = rmid,b,n (qb,n) + Eb,n (qb,n)vb,n (qb,n;x, y, ζ) (1.40)

where rmid,b,n is a vector from the substructure base to the mid­point of the element linearly dependent on the
displacement DOFs of element nodes, Eb,n is the element coordinate system dependent on all twelve nodal
DOFs qb,n of element n, and the cross­sectional displacement vector is given by

vb,n =

 x
y

1
2 lnζ

+

ux,n(ζ)
uy,n(ζ)
uz,n(ζ)

+

 0 −θz,n(ζ) θy,n(ζ)
θz,n(ζ) 0 −θx,n(ζ)
−θy,n(ζ) θx,n(ζ) 0

x
y
0

 (1.41)

where x, y are the coordinates of the cross­section and the cross­sectional translations and (small) rotations
are given by the shape function polynomials

ux,n

uy,n

uz,n

θx,n
θy,n
θz,n


=

P+3∑
p=0

Nn,p g (qb,n) ζ
p =

P+3∑
p=0

[
N̄n,p

Ñn,p

]
g (qb,n) ζ

p (1.42)

whereNn,p are the 6x7 coefficient matrices of the local shape functions, P is the polynomial order of the element
properties (e.g. for prismatic elements P = 0), and g is the nonlinear 7x1 vector function of the twelve nodal
DOFs. In the following, we split the local shape function coefficient matrix into two, one 3x7 matrix for the
displacements N̄n,p and another 3x7 matrix for the rotations Ñn,p.

This form of the cross­sectional displacement vector is inconvenient for the isolation of the spacial variables
x, y, ζ. We therefore rewrite it as

vb,n =

 x
y

1
2 lnζ

+

P+3∑
p=0

ux,n,p

uy,n,p

uz,n,p

 ζp +

P+3∑
p=0

 0
θz,n,p
−θy,n,p

x+

−θz,n,p
0

θx,n,p

 y

 ζp (1.43)

where the polynomial coefficients of the cross­sectional displacements and rotations are given by ux,n,p

uy,n,p

uz,n,p

 = N̄n,p g (qb,n) and

 θx,n,p
θy,n,p
θz,n,p

 = Ñn,pg (qb,n) (1.44)

that depend on the nodal DOFs of the element.

Using (1.43) with (1.42), the position vector for element n on substructure b (1.40) can be rewritten as

r1,b,n =

P+3∑
p=0

(ro,b,n,p + x rx,b,n,p + y ry,b,n,p) ζp (1.45)

where the sub­vectors are

ro,b,n,p (qb,n) =Eb,n (qb,n) N̄n,p g (qb,n) + δ0p rmid,b,n (qb,n) + δ1p
ln
2
e3,b,n (qb,n) (1.46a)

rx,b,n,p (qb,n) =Eb,n (qb,n) Px Ñn,p g (qb,n) + δ0p e1,b,n (qb,n) (1.46b)

ry,b,n,p (qb,n) =Eb,n (qb,n) Py Ñn,p g (qb,n) + δ0p e2,b,n (qb,n) (1.46c)
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where δij is Kronecker’s delta which is 1 for i = j, and otherwise 0. MatricesPx andPy are constant permutation
matrices:

Px =

 0 0 0
0 0 1
0 −1 0

 and Py =

 0 0 −1
0 0 0
1 0 0

 (1.47)

Note that Px and Py are equal to the matrix N in Eq. (E.3) related to the angular derivative of a rotation matrix
with a constant unit­vectors in the x­ and y­directions, respectively.

In the following, the element­index n and the substructure­index b are omitted for brevity.

Integration over the cross­sectional area spanned by x and y of the element coordinate system are defined by
the mass per unit­lengthm, the center of gravity coordinates xcg and ycg, and the moments of inertia about the
x­ and y­axes and their cross­coupling. These cross­sectional properties are given by polynomials to the order
of P along the element lengthwise coordinate ζ ∈ [−1, 1] as∫

A
ρ dA =

P∑
r=0

am,r ζ
r ,

∫
A
ρx dA =

P∑
r=0

amxcg,r ζ
r ,

∫
A
ρy dA =

P∑
r=0

amycg,r ζ
r ,

∫
A
ρx2 dA =

P∑
r=0

aIxx,r ζ
r ,

∫
A
ρy2 dA =

P∑
r=0

aIyy,r ζ
r ,

∫
A
ρxy dA =

P∑
r=0

aIxy,r ζ
r (1.48)

where the polynomial coefficients are generated from the model input in a pre­simulation processing step. The
coefficients amxcg,r and amycg,r represent a polynomial fit to the product of the mass per unit­length m and the
individual center of gravity coordinates xcg and ycg in the element coordinate system.

Integration over an element with the local position vector (1.45) and using (1.48), the mass of the element can
be computed as

M =
l

2

P∑
r=0

c(r)am,r (1.49)

where the coefficient function is given by

c (r) =
(−1)

r
+ 1

1 + r
=

{
2/(1 + r) r even

0 r odd (1.50)

The element center of gravity position times the element mass and the nodal derivatives can be computed as

M rcg =
l

2

P+3∑
p=0

(
P∑

r=0

c(p+ r)
(
am,r ro,p + amxcg,r rx,p + amycg,r ry,p

))
(1.51a)

M rcg,qi =
l

2

P+3∑
p=0

(
P∑

r=0

c(p+ r)
(
am,r ro,p,qi + amxcg,r rx,p,qi + amycg,r ry,p,qi

))
(1.51b)

M rcg,qi,qj =
l

2

P+3∑
p=0

(
P∑

r=0

c(p+ r)
(
am,r ro,p,qi,qj + amxcg,r rx,p,qi,qj + amycg,r ry,p,qi,qj

))
(1.51c)

where c(p+ r) is given by (1.49). The scalars and matrices of (1.36) and (1.37) have the generic form

l

2

P+3∑
p=0

(
P∑

r=0

(
P+3∑
q=0

c (q + r + p) G {ar,uo,q,ux,q,uy,q,wo,p,wx,p,wy,p}

))

where the generic operator is defined as

G {a,uo,ux,uy,wo,wx,wy} =am uT
o wo + amxcg

(
uT
o wx + uT

xwo

)
+ amycg

(
uT
o wy + uT

ywo

)
+ aixx

uT
xwx + aixy

(
uT
xwy + uT

ywx

)
+ aiyy

uT
ywy (1.52)

where a = [am, amxcg , amycg
, aixx , aixy , aiyy ] is a list with the polynomial coefficients of the material properties

(such that ar contains the r’th order coefficients), and the vectors uo, ux, uy, wo, wx, and wy are 3x1 column
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vectors or 1x3 row vectors for scalar or matrix evaluations, respectively. The local mass matrix contribution
from an element (the entries of the element mass matrix) is

m11
ij =

l

2

P+3∑
p=0

(
P∑

r=0

(
P+3∑
q=0

c (q + r + p) G
{
ar, ro,q,qi , rx,q,qi , ry,q,qi , ro,p,qj , rx,p,qj , ry,p,qj

}))
(1.53)

and its contribution to the local nonlinear gyroscopic matrix (the nonlinear element gyroscopic matrix) is

h111
ijk =

l

2

P+3∑
p=0

(
P∑

r=0

(
P+3∑
q=0

c (q + r + p) G
{
ar, ro,q,qi , rx,q,qi , ry,q,qi , ro,p,qj ,qk , rx,p,qj ,qk , ry,p,qj ,qk

}))
(1.54)

The contribution of an element to the matrix related to the rotational inertia of the substructure about its base is

Ibase =
l

2

P+3∑
p=0

(
P∑

r=0

(
P+3∑
q=0

c (q + r + p) G
{
ar, rTo,q, rTx,q, rTy,q, rTo,p, rTx,p, rTy,p

}))
(1.55)

Finally, the matrices needed for the computation of the remaining inertia forces from an element are

Abase,i =
l

2

P+3∑
p=0

(
P∑

r=0

(
P+3∑
q=0

c (q + r + p) G
{
ar, rTo,p,qi , r

T
x,p,qi , r

T
y,p,qi , r

T
o,q, rTx,q, rTy,q

}))
(1.56a)

Abase,1,ij =
l

2

P+3∑
p=0

(
P∑

r=0

(
P+3∑
q=0

c (q + r + p) G
{
ar, rTo,p,qj , r

T
x,p,qj , r

T
y,p,qj , r

T
o,q,qi , r

T
x,q,qi , r

T
y,q,qi

}))
(1.56b)

Abase,2,ij =
l

2

P+3∑
p=0

(
P∑

r=0

(
P+3∑
q=0

c (q + r + p) G
{
ar, rTo,p,qi,qj , r

T
x,p,qi,qj , r

T
y,p,qi,qj , r

T
o,q, rTx,q, rTy,q

}))
(1.56c)

The generic form of these contributions to the inertia forces from a single element can be implemented in a
single object function that only need the polynomial coefficient sub­vectors (1.46) and their first nodal derivatives

ro,b,n,p,qi =Eb,n,qi N̄n,p g+ Eb,n N̄n,p g,qi + δ0p rmid,b,n,qi + δ1p
ln
2
e3,b,n,qi (1.57a)

rx,b,n,p,qi =Eb,n,qi Px Ñn,p g+ Eb,n Px Ñn,p g,qi + δ0p e1,b,n,qi (1.57b)

ry,b,n,p,qi =Eb,n,qi Py Ñn,p g+ Eb,n Py Ñn,p g,qi + δ0p e2,b,n,qi (1.57c)

and second nodal derivatives

ro,b,n,p,qi,qj = Eb,n,qi,qj N̄n,p g+ Eb,n,qj N̄n,p g,qi

+ Eb,n,qi N̄n,p g,qj + Eb,n N̄n,p g,qi,qj + δ1p
ln
2
e3,b,n,qi,qj (1.58a)

rx,b,n,p,qi,qj = Eb,n,qi,qj Px Ñn,p g+ Eb,n,qj Px Ñn,p g,qi

+ Eb,n,qi Px Ñn,p g,qj + Eb,n Px Ñn,p g,qi,qj + δ0p e1,b,n,qi,qj (1.58b)

ry,b,n,p,qi,qj = Eb,n,qi,qj Py Ñn,p g+ Eb,n,qj Py Ñn,p g,qi

+ Eb,n,qi Py Ñn,p g,qj + Eb,n Py Ñn,p g,qi,qj + δ0p e2,b,n,qi,qj (1.58c)

where the element­index n and substructure­index b are included again. Note that the coefficient sub­vectors
(1.46) and its first and second derivatives (1.57) and (1.58) must be evaluated at the current nodal DOFs qb,n

of the element. The 3x3 element coordinate system Eb,n, the 7x1 vector function g, and their derivatives are
derived as explicit functions of the nodal DOFs in Appendix A. The mid­element position vector is simply a
linear function of the 2x3 displacements of the end­nodes (A.2).

The substructure object must return the following scalar, vectors, and matrices:
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M Total mass of the substructure which is constant.
rcg =

∑Ne,b

n=1 rcg,n The 3x1 position vector for the center of gravity of the substructure where the
contributions from each element are given by (1.51a).

rcg,qi =
∑Ne,b

n=1 rcg,n,qi The first nodal derivatives of the 3x1 position vector for the center of gravity
of the substructure where the contributions from each element are given by
(1.51b). Maximum two elements will contribute to each DOF derivative.

rcg,qi,qj =
∑Ne,b

n=1 rcg,n,qi,qj The second nodal derivatives of the 3x1 position vector for the center of gravity
of the substructure where the contributions from each element are given by
(1.51c). Maximum two elements will contribute to each DOF derivative.

M11 The local mass matrix of the co­rotational substructure built up by collecting all
12x12 element mass matrices (1.53) on its diagonal.

H111 The local nonlinear gyroscopic matrix of the co­rotational substructure built up
by collecting all 12x12x12 element nonlinear gyroscopic matrices (1.54) on
its diagonal. This local matrix is three­dimensional where the twelve nodal
velocities at the ends of each element cause gyroscopic forces on the twelve
DOF equations of the same element.

Ibase =
∑Ne,b

n=1 Ibase,n The 3x3 rotational inertia matrix where the contributions from each element
are given by (1.55).

Gravity forces

Elastic stiffness forces

Structural damping forces

1.2.3 Linear super­element substructure
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2 Rotor aerodynamics

First in this chapter, a generic formulation is derived for the generalized aerodynamic forces from a blade onto
the DOFs of the individual substructures of the structural model. It is important to note that the aerodynamic
blade can consist of several substructures, e.g. if the blade has a pitch bearing half way down the blade,
also called partial pitch. Second, the aerodynamic forces in a blade cross­section are derived from a generic
formulation of the local relative flow in the velocity triangles and the explicit reformulation of the unsteady airfoil
aerodynamic model developed in [5]. Finally, the aerodynamic sub­model of the far wake induction used in
CASEStab is described based on the dynamic inflow model with localized induction developed for HAWC2 [6].

2.1 Generalized aerodynamic forces on and from a blade

The contribution to the non­conservative generalized force on coordinate qi from the aerodynamic pressure P
on the surface S of blade number β (not to be confused with the substructure index b) can be written as

Qi,β =

∫
S

∂rTp,β
∂qi

Pβ dS (2.1)

where rp,β is a position vector of the partial force vector PβdS in the inertial frame. The aerodynamic surface
pressure vector Pβ depend on time t, the displacements q and velocities q̇ of the turbine structure (added
mass effects are neglected in CASEStab), and the deterministic and stochastic input w(t) from the wind field.
In the unsteady Blade Element Momentum (BEM) formulation, the aerodynamic forces in the cross­section are
described by the predefined curve integrations of the surface pressure around the cross­section along each
blade, and the unsteady aerodynamic effects of shed and trailed vorticity, dynamic stall effects, and far wake
effects on the induced velocities are handled by different engineering models with aerodynamic state­variables
collected in the vector xa (cf. Sections 2.2.2 and 2.4).
With reference to Figure 2.1, let vc = {x, y, 0}T be the local position vector of the surface of the cross­section
described in the chord coordinate system (CCS), where the first axis has the direction of the chord (positive to­
wards leading edge), the second axis is perpendicular to the chord (positive towards suction side), and the third
axis is the normal to the plane of the airfoil for which the surface pressure (later the aerodynamic coefficients)
is defined. The integration over the entire blade (2.1) can then be rewritten as

Qi,β=

∫ L

0

∮
C

∂rp,β (x, y, s, t,q)T

∂qi
Pβ (x, y, s, t,q, q̇,xa,w) dx dy ds (2.2)

where C is the curve around the cross­section, L is the total curve­length of the blade, and s is the spanwise
curve coordinate. The position vector of the (non­deformable) cross­section can then be written as

rp,β (x, y, s, t,q) = rac,β (s, t,q) + Ec,β (s, t,q)vc (2.3)

where rac,β is the position vector of the aerodynamic center and Ec,β is the orientation matrix of the CCS in the
inertia frame, which are both functions of the spanwise coordinate, time and structural displacements q. The
orientation of the CCS is defined such that the blade surface normal vector lies in the plane spanned by e1,c,β
and e2,c,β . Thus, the aerodynamic surface pressure vector can be written as

Pβ = pβ(x, y, s, t,q, q̇,xa,w)Ec,β (s, t,q)nc (s, x, y) (2.4)

where pβ is the scalar value of the surface pressure around the cross­section, and nc = {nx,c, ny,c, 0}T is
the surface normal vector described in the CCS where the third coordinate is zero. Using (2.3) and (2.4), the
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chord

aerodynamic center

Figure 2.1: Schematics of a blade cross­section with the CCS Ec,β with its origin at the aerodynamic center
in the quarter chord point. The orientation of this coordinate system is defined such that the surface normal
vector lies in the plane spanned by first two unit­vectors e1,c,β and e1,c,β .

generalized aerodynamic force (2.2) can be written as

Qi,β =

∫ L

0

∮
C

pβ

(
∂rTac,β
∂qi

Ec,βnc + vTc
∂ET

c,β

∂qi
Ec,βnc

)
dx dy ds (2.5)

where the first term relates to the translation of the aerodynamic center and the second term relates to the
rotation of the CCS due to the generalized structural coordinate qi.

Looking at the inner curve integral for the first term, we note that it can be rewritten as

∂rTac,β
∂qi

Ec,β

∮
C

pβnc dx dy =
∂rTac,β
∂qi

Ec,β

 fx,β
fy,β
0

 (2.6)

where the local aerodynamic forces in the CCS are defined as

fx,β =

∮
C

pβnx,c dx dy and fy,β =

∮
C

pβny,c dx dy (2.7)

which are functions of lift and drag forces and the geometric angle of attack, as described in Section 2.2.

Looking at the inner curve integral for the second term of (2.5), we note that the product of the transposed
derivative of the orientation matrix with the orientation matrix itself is a skew­symmetric matrix

∂ET
c,β

∂qi
Ec,β =

 0 ω3,β,i −ω2,β,i

−ω3,β,i 0 ω1,β,i

ω2,β,i −ω1,β,i 0

 (2.8)

where ωj,β,i (j = 1, 2, 3) are the components of the pseudo vector that describes the local rotation of the CCS
due to the generalized coordinate qi. Using this property, the inner curve integral for the second term of (2.5)
can be written as ∮

C

pβvTc
∂ET

c,β

∂qi
Ec,βnc dx dy =

∮
C

pβω3,β,i (xny,c − y nx,c) dx dy = ω3,β,iMβ (2.9)
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where Mβ is recognized as the aerodynamic moment about ec,β,3 in the aerodynamic center defined as

Mβ =

∮
C

pβ (xny,c − y nx,c) dx dy (2.10)

Note that only the third component of the pseudo rotation vector ωβ,i,3 = ∂eT1,c,β/∂qi e2,c,β from variation of the
structural coordinate qi is needed, as it describes the rotation of the cross­section about the same axis as the
aerodynamic moment.

Hence, the generalized force on the structural coordinate qi due to aerodynamic forces and moment distribu­
tions on the blade number β can be computed from integration along its span as

Qi,β =

∫ L

0

(
∂rTac,β
∂qi

Ec,βfc,β +
∂eT1,c,β
∂qi

e2,c,β Mβ

)
ds (2.11)

where the local aerodynamic force vector fc,β = {fx,β , fy,β , 0}T and moment in the blade cross­section are
derived from velocity triangles described in the following section.

2.1.1 Generalized aerodynamic forces on and from a substructure of the blade

The aerodynamic blade number β may consist of Nβ substructures with the numbers b = bβ , . . . , bβ + Bβ −
1, where bβ is the number of the first substructure of the blade. The total contribution from blade β to the
generalized forces is therefore computed as the sum

Qi,β =

bβ+Bβ−1∑
b=bβ

Qi,β,b (2.12)

where Qi,β,b is the generalized aerodynamic force on and from the substructure b of the blade β. To derive
generic expressions for this force, we will write the position of aerodynamic center in a form similar to the
structural kinematics Eq. (1.12):

rac,β (t,q;x, y, s) = r0,b (t,q) + R0,b (t,q) rac,1,β,b (qb;x, y, s) (2.13)

where the translations r0,b and rotations R0,b of the base of the substructure b are given by (1.13), and rac,1,β,b
is the local position vector of the aerodynamic center of blade β in the frame of substructure b. Similar, the CCS
orientation matrix can be written as

Ec,β = R0,b (t,q) Ec,1,β,b (qb) (2.14)

where Ec,1,β,b = [e1,c,1,β,b e2,c,1,β,b e3,c,1,β,b] is the CCS matrix in the frame of substructure b. Using (2.13)
and (2.14) and isolating integrals defined in the substructure frame (marked in blue similar to the substructure
components in Section 1.1) using the matrix dot product (E.7), the generalized force (2.11) on and from the
aerodynamic force distribution over the substructure b can be written as

Qi,β,b =r0,b,qiR0,b

∫ Lb

0

f1,β,b ds+
(
RT

0,b,qiR0,b

)
:

∫ Lb

0

(
f1,β,brTac,1,β,b + e2,c,1,β,beT1,c,1,β,bMβ

)
ds

+

∫ Lb

0

(
rTac,1,β,b,qi f1,β,b + eT1,c,1,β,b,qie2,c,1,β,b Mβ

)
ds (2.15)

where Lb is the curve­length of blade part on substructure b, the notation ∂/∂qi = (),qi denotes the DOF
derivatives, and we have introduced the cross­sectional force vector described in the substructure frame as

f1,β,b = Ec,1,β,bfc,β (2.16)

Similar, we also introduce a “force vector” in the substructure frame for the subsequent derivations as

m1,β,b = e2,c,1,β,bMβ (2.17)

whereby the virtual work of the aerodynamic moment on a DOF qi on the substructure eT1,c,1,β,b,qie2,c,1,β,b Mβ

can be written as eT1,c,1,β,b,qim1,β,b, similar to the virtual work of a force.
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The first line of (2.15) are the generalized forces on DOFs translating or rotating the base of the substructure b,
and the second line are generalized forces on the DOFs of the substructure itself. Using the superscript “0” for
forces on DOFs moving the substructure base and “1” for forces on substructure DOFs, we split the generalized
aerodynamic force into these two categories and rewrite them in the following form:

Q0
i,β,b =r0,b,qiR0,bfβ,b +

(
RT

0,b,qiR0,b

)
: Mβ,b (2.18a)

Q1
i,β,b =

∫ Lb

0

(
rTac,1,β,b,qi f1,β,b + eT1,c,1,β,b,qim1,β,b

)
ds (2.18b)

where we have introduced the total aerodynamic forces on the blade fβ,b and a 3×3 matrix containing the total
aerodynamic moments Mβ,b defined as

fβ,b =
∫ Lb

0

f1,β,b ds and Mβ,b =

∫ Lb

0

(
f1,β,brTac,1,β,b +m1,β,beT1,c,1,β,b

)
ds (2.19)

To show the physical meaning of this total aerodynamic moment matrix, we note that RT
0,b,qi

R0,b in (2.18a) is a
skew­symmetric matrix with the generic form:

∂RT

∂qi
R =

 0 δθz −δθy
−δθz 0 δθx
δθy −δθx 0


describing the variational rotations δθx, δθy, and δθx of the substructure base about the three axes in the off­
diagonal elements (follows from Equations (E.1) and (E.5)). If we let r = {x, y, z}T and f = {fx, fy, fz}T be
some position and force vectors and derive the moment matrix about the origin of the position vector as

M = frT
 xfx yfx zfx

xfy yfy zfy
xfz yfz zfz


The matrix dot product part of the generalized force on a rotational DOF qi has therefore the generic form(

∂RT

∂qi
R
)

: M = δθx (yfz − zfy) + δθy (zfx − xfz) + δθz (xfy − yfx)

which shows the physical meaning of the second term in (2.18a) as virtual work of the six moment components
of the moment matrix (note that its diagonal are not representing moments and therefore obsolete).

2.2 Aerodynamic forces and moment at a cross­section

This section contains the derivation of the velocity triangles used to compute the aerodynamic forces and
moment at an airfoil cross­section along the blade. The local aerodynamic forces defined in the CCS of the
cross­section can be computed from the lift and drag forces as

fx,β = Lβ sinαβ −Dβ cosαβ and fy,β = Lβ cosαβ +Dβ sinαβ (2.20)

where Lβ and Dβ are the lift and drag forces, and αβ = arctan (vy/(−vx)) is the geometrical angle of attack
given by the 2D relative flow vector {vx, vy}T in the (x, y)­plane of the CCS along blade β. The aerodynamic
forces and moment about the aerodynamic center are defined as

Lβ =
1

2
ρcβU

2
βC

dyn
L,β (2.21a)

Dβ =
1

2
ρcβU

2
βC

dyn
D,β (2.21b)

Mβ =
1

2
ρc2βU

2
βC

dyn
M,β (2.21c)

where ρ is the air density, cβ is the local chord length, Uβ =
√

v2x + v2y is the local relative flow speed in the plane

of the airfoil, and the unsteady aerodynamic coefficients are denoted Cdyn
L,β , C

dyn
D,β , and Cdyn

M,β of the unsteady
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aerodynamics model (cf. Section 2.2.2). Using these definitions of lift and drag and geometric angle of attack,
the aerodynamic forces in the (x, y)­plane of the CCS can be rewritten as

fx,β =
1

2
ρcβUβ

(
vy C

dyn
L,β + vx C

dyn
D,β

)
and fy,β =

1

2
ρcβUβ

(
−vx C

dyn
L,β + vy C

dyn
D,β

)
(2.22)

where the projected 2D relative flow vector {vx, vy}T is derived in the next section on the velocity triangles.
Note that the lift and drag forces are perpendicular and parallel to the relative flow vector and do not rotate with
the airfoil; a rotation of the cross­section due to torsion will only change magnitude of the forces, which only
indirectly may change their direction through the dynamic inflow effect on the induced velocities.

2.2.1 Velocity triangles

The wind field and induced velocity vectors in the ground­fixed inertia frame at a point p on the blade are denoted
w and vi, and the total relative velocity vector in this frame can be written as

vp,rel,β = w+ vi − vp,β (2.23)

where the wind field vector w = w (t, rp,β) depends on time and the position of the point rp,β = rp,β (t,q;x, y, s)
and the induced velocity vector vi = vi (s, t,q, q̇,xa,w) depends on the spanwise position, time (in case of a
prescribed rotor speed), and all model state variables. The velocity vector vp,β = drp,β/dt is the velocity of the
point in the inertia frame due to the structural motion of the blade, which we will derive below. The wind field
models are described in Appendix D and the wake induction model is described in Section 2.4.

The relative velocity vector in the CCS can be derived as

vc,p,rel,β = ET
c,β (w+ vi − vp,β) (2.24)

where Ec,β is the orientation matrix of the CCS in the ground­fixed frame. The x­ and y­components of this
relative velocity vector are given by

vx,c,p,rel,β = eT1,c,β (w+ vi − vp,β) and vy,c,p,rel,β = eT2,c,β (w+ vi − vp,β) (2.25)

where e1,c,β and e2,c,β are the x­ and y­unit­vectors of the CCS in the ground­fixed frame.

Figure 2.2 illustrates the two velocity triangles at two different inplane locations of the CCS needed for the
computation of the aerodynamic forces and moment in CASEStab. The velocity triangle at the torsional point
(TP) is used to compute the magnitude Uβ and direction relative to the chord αβ of the relative flow vector. The
TP is the point where the translations of the cross­section is defined in the kinematic model of the substructure
(the origin of the reference frame in case of the co­rotational beammodel), i.e., a rotation of the cross­section will
not lead to any translations of this point. In contrast to αβ , the geometric angle of attack α3/4,β used to compute
the circulatory lift must be based on the velocity triangle set up for the collocation point at the three­quarter
chord point [7], which will include downwash due to rate of torsional blade deformation.

The relative flow speed and the two geometric angles of attack are computed as

Uβ =
√

v2x,c,TP,rel,β + v2y,c,TP,rel,β , αβ = arctan vy,c,TP,rel,β

−vx,c,TP,rel,β
and α3/4,β = arctan vy,c,CP,rel,β

−vx,c,CP,rel,β
(2.26)

where the relative flow velocities are defined at p = TP and p = CP using (2.25).

Relative flow vector on a substructure of the blade

The blade deformation may be described by the individual deformation and base motion of several substruc­
tures. We write the position of a blade point p in a form similar to the structural kinematics Eq. (1.12):

rp,β,b (t,q;x, y, s) = r0,b (t,q) + R0,b (t,q) rp,1,β,b (qb;x, y, s) (2.27)

where the translations r0,b and rotations R0,b of the substructure number b are given by (1.13) and they may
depend explicit on time t in case of prescribed rotor speeds. The local position vector in the substructure
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AC

TP

CP

Figure 2.2: Velocity triangle at the torsional point (TP) used for computing the relative flow speed Uβ and
the geometric angle of attack αβ that defines the orientations of the lift Lβ and drag Dβ forces acting at the
aerodynamic center (AC). Another velocity triangle is defined at the collocation point (CP) to compute the
geometric angle of attack α3/4,β including downwash from torsional rate in the circulatory lift modeling.

frame rp,1,β,b is a function of the DOFs on the blade qb, the cross­sectional coordinates x, y, and the spanwise
coordinate s on the substructure. We assume, as in the structural kinematics, that the deflection of the blade
has no explicit dependency of time. The velocity vector can be derived in the ground­fixed inertia frame as

vp,β,b =
drp,β,b
dt

= ṙ0,b +
ND∑
i=1

r0,b,qi q̇i + Ṙ0,brp,1,β,b +
(

ND∑
i=1

R0,b,qi q̇i

)
rp,1,β,b + R0,b

(
ND∑
i=1

rp,1,β,b,qi q̇i

)
(2.28)

and we write the CCS orientation matrix in ground­fixed frame as

Ec,β = R0,b (t,q) Ec,1,β,b (qb) (2.29)

where Ec,1,β,b = [e1,c,1,β,b e2,c,1,β,b e3,c,1,β,b] is the CCS matrix in the substructure frame. Thus, the x­ and
y­components of the relative velocity vector in the CCS can be computed as

vx,c,p,rel,β,b = eT1,c,1,β,b RT
0,bw+ eT1,c,1,β,b RT

0,b vi − eT1,c,1,β,b RT
0,b ṙ0,b − eT1,c,1,β,b

(
ND∑
i=1

RT
0,b r0,b,qi q̇i

)
(2.30a)

−
(
RT

0,b Ṙ0,b

)
:
(
rp,1,β,beT1,c,1,β,b

)
−

(
ND∑
i=1

RT
0,b R0,b,qi q̇i

)
:
(
rp,1,β,beT1,c,1,β,b

)
− eT1,c,1,β,b

(
ND∑
i=1

rp,1,β,b,qi q̇i

)

vy,c,p,rel,β,b = eT2,c,1,β,b RT
0,bw+ eT2,c,1,β,b RT

0,b vi − eT2,c,1,β,b RT
0,b ṙ0,b − eT2,c,1,β,b

(
ND∑
i=1

RT
0,b r0,b,qi q̇i

)
(2.30b)

−
(
RT

0,b Ṙ0,b

)
:
(
rp,1,β,beT2,c,1,β,b

)
−

(
ND∑
i=1

RT
0,b R0,b,qi q̇i

)
:
(
rp,1,β,beT2,c,1,β,b

)
− eT2,c,1,β,b

(
ND∑
i=1

rp,1,β,b,qi q̇i

)
where we have blue marked the vectors that are defined in the substructure frame and used the matrix dot
product (E.7) to isolate these components of the local 2D flow vector. Note that only the last term in these local
velocity components describe the contribution from the deformation velocities of the substructure b on blade β.

2.2.2 Unsteady aerodynamic model

The dynamic model of the unsteady airfoil aerodynamics is very similar to the Beddoes­Leishman type model
described in [5], except that the attached flow lift curve is not presumed to be linear but follows the user­defined
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lift curve until the angles of attack where flow separation initiates, and except that the part of the unsteadiness
on the moment coefficient is omitted.

Stationary steady­state airfoil aerodynamics

For computation of the aerodynamic power and the stationary steady­state deflection of the blades in a uniform
wind field and no gravity or tower shadow, the aerodynamic coefficients can be obtained from the user­defined
airfoil polar (denoted by superscript st) as

Cdyn
L,β = Cst

L,β (αβ) (2.31a)

Cdyn
D,β = Cst

D,β (αβ) (2.31b)

Cdyn
M,β = Cst

M,β (αβ) (2.31c)

where αβ is the geometric angle of attack given by Equation (2.26). Note that in the stationary steady­state the
two geometric angles of attack in (2.26) is identical.

Unsteady airfoil aerodynamics

The unsteady aerodynamic model can be written as [5]

2.3 Aerodynamic discretization of a blade

In CASEStab, the aerodynamic forces and moment are computed atNa aerodynamic calculation points (ACPs)
along the blade curve length and linear interpolation is applied between these sections. This aerodynamic
discretization is defined by the user independent of the structural discretization to ensure that the variations
of aerodynamic forces in the root sections and at the blade tip, as well as variations caused by aerodynamic
devices (e.g. vortex generators) are captured with sufficient accuracy.

The linear interpolation of forces and moment and the integrations over the blade are defined for the blade
curve­coordinate s; however, this curve­coordinate is not well­defined for the ACPs because they will depend
on the blade data resolution defined by the user. Eventually, the integrations over the blade must be sub­divided
into integrations over each substructure b = bβ , . . . , bβ + Bβ − 1 of the blade, and possibly further sub­divided
into integrations over each element of each substructure (e.g. for the co­rotational beam formulation). As this
structural resolution is independent of the aerodynamic resolution, the definition of a curve­coordinate could be
inconsistent. Thus, to link the spanwise positions of theNa ACPs on the blade to positions on the substructure,
we define them by the coordinates za,j (j = 1, 2, . . . , Na) along the axis perpendicular to the flange of the blade,
which is the same of the pitch axis for a conventional blade mounted on a pitch bearing. Note that za,1 = 0 and
the coordinate of the blade tip is smaller than the blade curve­length za,Na < L due to blade pre­bend.

The position vectors, force (2.16) and moment (2.17) vectors, and the first CCS unit­vectors in the integral
kernels of the generalized aerodynamic forces (2.18) and (2.19) are all defined in the substructure frame. We
therefore also compute the force and moment vectors at each ACP in the frame of the substructure to which the
ACP belongs. The computed force and moment vectors are thereby denoted f1,β,b,j andm1,β,b,j , where the first
subscript “1” refers to the fact that the vector is defined in the local substructure frame, the second script is the
blade number β, the third subscript is the substructure number b for the frame of reference, and the fourth and
last subscript is the ACP number j on the blade. Both force or moment vectors used for a linear interpolation
between two ACPs must be described in the same substructure frame. At the edges of a substructure this
interpolation may span over two different frame of references. Thus, the force and moment vectors at such an
edge ACP placed on substructure b − 1 “below” or b + 1 “above” substructure b must be transformed by the
matrix product RT

0,bR0,b−1 or RT
0,bR0,b+1, respectively.

Note that a linear interpolation of the moment vector m1,β,b (2.17) between the ACPs implies an assumption
to the variation of the orientation of the second unit­vector of the CCS between the ACPs. This assumption
may conflict with the a higher order variation of the elastic deformation of some substructure type, e.g. the
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co­rotational beam formulation. However, the error will decrease with the increase of ACPs and the higher
resolution of the distributions, and it can therefore be quantified in a convergence study.

2.4 Wake induction model

We use the Blade Element Momentum (BEM) model of the far wake and dynamic inflow effects developed by
DTU [6]. The fundamental concept of the model is localized induction where the induced velocities and their
state­variables are computed in a stationary polar grid. This polar grid lies in a plane defined by the initial
direction vector of the rotor shaft and the position of the rotor center, see Figure ??.
Relationship between local thrust coefficient and axial induction factor

a (CT ) =

 −k32.5
3 + k22.5

2 − k12.5 +
(
3k32.5

2 − 5k2 + k1
)
(CT + 2.5) CT < −2.5

k3C
3
T + k2C

2
T + k1CT −2.5 ≤ CT ≤ 2.5

k32.5
3 + k22.5

2 + k12.5 +
(
3k32.5

2 + 5k2 + k1
)
(CT − 2.5) CT > 2.5

(2.32)

2.4.1 Stationary steady­state rotor aerodynamics

In case of uniform wind field (without shears, yaw, upflow, or turbulence), exclusion of tower shadow effects,
and no periodic forcing of the blades (no gravity or control actions), the rotor

2.4.2 Periodic steady­state rotor aerodynamics
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3 Aeroelastic equations of motion

The structural motion and the aerodynamic forces described in the previous two chapters are now coupled in
a closed set of aeroelastic equations of motion. The generalized aerodynamic forces on the structural DOFs
are given on a generic form in Equation (2.18) for the integration of the aerodynamic forces and moment
distribution over a single substructure. The relative flow at the airfoil section of a blade depend on the structural
motion as described on generic form in Section 2.2. The aerodynamic forces and moment at the airfoil section
depend on this relative flow, the wind field, the induced velocities, and local dynamic effects of shed vorticity
and dynamic stall. The aerodynamic discretization of the blade into aerodynamic calculation points (ACPs)
and the piecewise linear functions used to describe the distributions of forces and moment are introduced in
Section 2.3. The unsteady airfoil aerodynamic model is described in Section 2.2.2. The wake model of dynamic
inflow (the unsteadiness of the induced velocities) depend on the local thrust and torque coefficients and the
yaw and upflow angles as described in Section 2.4.

The chapter is structured as follows: Section 3.1

3.1 Generalized aerodynamic forces for different substructure types

The total generalized aerodynamic force from a blade on each structural DOF is given in (2.12) by the sum of the
contributions from aerodynamic forces and moment distributions on each substructure b = bβ , . . . , bβ +Bβ − 1
of the Bβ substructures comprising blade number β. These contributions are given by the integrals over each
substructure in Equations (2.18) and (2.19). In this section, we derive expressions for these integrals for the
different types of substructures in CASEStab using piecewise linear functions of the aerodynamic forces and
moment distributions over the substructure. The sectional force and moment vectors at the ACPs are denoted
f1,β,b,j and m1,β,b,j , where the first subscript “1” refers to the fact that the vector has been computed in or
transformed to the frame of the substructure number b being the third subscript, the second subscript β is the
blade number, and the fourth and last subscript is the ACP number j = 1, . . . , Na on the blade.

We define an index vector jb,k for k = 1, . . . , Na,b containing the indices of theNa,b ACPs which sectional forces
and moments define the forces and moment distributions over the substructure b. We collect these forces and
moments needed for the linear interpolation over substructure number b in the following vectors:

fall,1,β,b =



RT
0,bR0,b−1f1,β,b−1,jb,1

f1,β,b,jb,2
f1,β,b,jb,3

...
f1,β,b,jb,Na,b−1

RT
0,bR0,b+1f1,β,b+1,jb,Na,b


and mall,1,β,b =



RT
0,bR0,b−1m1,β,b−1,jb,1

m1,β,b,jb,2

m1,β,b,jb,3
...

m1,β,b,jb,Na,b−1

RT
0,bR0,b+1m1,β,b+1,jb,Na,b


(3.1)

where the first and last vectors defined on adjacent substructures must be transformed into the frame of sub­
structure b by the orientation matrices R0,b−1, R0,b, andR0,b+1 for each involved substructure (1.13). If the blade
is described by a single substructure then jb = 1 and Na,b = Na, and the above vectors reduce to

fall,1,β,b =


f1,β,b,jb,1
f1,β,b,jb,2

...
f1,β,b,jb,Na

 and mall,1,β,b =


m1,β,b,jb,1

m1,β,b,jb,2
...

m1,β,b,jb,Na

 (3.2)

as one special case of (3.1). The other two special cases are when b is the first or last of several substructures
on the blade.
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The outcome of this section are matrices that transform the Na forces and Na moments of the ACPs on the
blade to the total aerodynamic force and moment, as well as the

Note that we omit the subscript β for the blade number in the following sections because we are referring to a
single blade.

3.1.1 Rigid body substructure

To be derived ...

3.1.2 Co­rotational beam substructure

Figure 3.1 shows a 2D illustration of the aerodynamic force distribution over a blade and an element of a
co­rotational beam element substructure of the blade. The blade consists of two substructures b − 1 and b
described by several beam elements with their end nodes are marked by •. The force distribution over the
blade is a piecewise linear function with the Na ACPs (marked by ◦) as break­points. The piecewise linear
function over the element n of substructure b is here defined by four ACPs, written as Na,b,n = 4, i.e., the
force (and moment) distribution over this element is described by two internal break­points and two end­break­
points on the adjacent elements. We define a vector ζb,n,k for k = 1, . . . , Na,b,n containing the non­dimensional
element coordinate of these break­points for each element n. Note that the end­break­points will always lie at
the element nodes (ζ = ±1) or outside the element, i.e., ζb,n,1 ≤ −1 and ζb,n,Na,b,n

≥ 1. In case that these
points lie on the adjacent elements, their element coordinates can be computed as

ζb,n,1 = −1− ln−1

ln

(
1− ζb,n−1,Na,b,n−1−1

)
and ζb,n,Na,b,n

= 1 +
ln+1

ln
(1 + ζb,n+1,2) (3.3)

where ln is the initial lengths of elements n = 1, . . . , Ne,b. Note that special rules apply to the first and last
elements of a substructure, where the adjacent element may lie on an adjacent substructure.

A curve integral over the co­rotational beam substructure b is the sum of integrals over each element n as∫ Lb

0

( ) dσ =

Ne,b∑
n=1

ln
2

∫ 1

−1

( ) dζ =

Ne,b∑
n=1

ln
2

Na,b,n−1∑
m=1

∫ bb,n,m

ab,n,m

( ) dζ

 (3.4)

where each curve integral over the element length is a line integral over the non­dimensional element coordinate
ζ between element its nodes at ζ = ±1. To ensure that the integral kernels will be single polynomials (not
piecewise), the line integral over each element is further sub­divided into line integrals between the nodes and
the Na,b,n − 2 internal break­points on the element. The limits of these sub­divided integrals are

(ab,n,1, bb,n,1) = (−1, ζb,n,2)
(ab,n,2, bb,n,2) = (ζb,n,2, ζb,n,3)

...
(ab,n,Na,b,n−1, bb,n,Na,b,n−1) = (ζb,Na,b,n−1, 1)

(3.5)

Note that in case there are no ACPs on an element, when Na,b,n = 2, only a single integration over the element
is needed (ab,n,1, bb,n,1) = (−1, 1). The piecewise linear distributions of the aerodynamic force and moment
vectors over the element can be written on generic forms as

f1,b,n (ζ) =


∑1

r=0 f1,b,n,0,r ζr ab,n,1 ≤ ζ < bb,n,1∑1
r=0 f1,b,n,1,r ζr ab,n,2 ≤ ζ < bb,n,2

...
...∑1

r=0 f1,b,n,Na,b,n,r ζ
r ab,n,Na,b,n

≤ ζ < bb,n,Na,b,n

(3.6)

and

m1,b,n (ζ) =


∑1

r=0m1,b,n,0,r ζ
r ab,n,1 ≤ ζ < bb,n,1∑1

r=0m1,b,n,1,r ζ
r ab,n,2 ≤ ζ < bb,n,2

...
...∑1

r=0m1,b,n,Na,b,n,r ζ
r ab,n,Na,b,n

≤ ζ < bb,n,Na,b,n

(3.7)
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Figure 3.1: Illustration in 2D of the aerodynamic force distribution over an element of a substructure of a blade.
The blade consists of two substructures b− 1 and b described by co­rotational beam elements with end nodes
(•). The force distribution over the blade is a piecewise linear function with the Na aerodynamic calculation
points (◦) as break points. The force distribution over element number n of substructure b has two internal
break points (Na,b,n = 4) and its end break points on the adjacent elements.

where the coefficient vectors f1,b,n,m,r and m1,b,n,m,r for each integration interval m = 1, . . . , Na,b,n − 1 and
order r = 0, 1 of the linear function can be computed as

f1,b,n,m,0 =
f1,b,jb,n,m

ζb,n,m+1 − f1,b,jb,n,m+1
ζb,n,m

ζb,n,m+1 − ζb,n,m
and f1,b,n,m,1 =

f1,b,jb,n,m+1
− f1,b,jb,n,m

ζb,n,m+1 − ζb,n,m
(3.8)

and

m1,b,n,m,0 =
m1,b,jb,n,m

ζb,n,m+1 −m1,b,jb,n,m+1
ζb,n,m

ζb,n,m+1 − ζb,n,m
and m1,b,n,m,1 =

m1,b,jb,n,m+1
−m1,b,jb,n,m

ζb,n,m+1 − ζb,n,m
(3.9)

where f1,b,j and m1,b,j are the force and moment vectors at j’th ACP described in the frame of substructure b,
and the index vector jb,n,k with k = 1, . . . , Na,b,n contains the indices j of the ACPs involved in the piecewise
linear function over element n on substructure b, cf. Figure 3.1. We rewrite these coefficients as

f1,b,n,m,r = wb,n,m,rf1,b,jb,n,m
+ wb,n,m+1,rf1,b,jb,n,m+1

(3.10a)
m1,b,n,m,r = wb,n,m,rm1,b,jb,n,m

+ wb,n,m+1,rm1,b,jb,n,m+1
(3.10b)
(3.10c)

where r = 0, 1 and the scalar weights are given by the break points

wb,n,m,0 =
ζb,n,m+1

ζb,n,m+1 − ζb,n,m
, wb,n,m+1,0 =

−ζb,n,m
ζb,n,m+1 − ζb,n,m

,

wb,n,m,1 =
−1

ζb,n,m+1 − ζb,n,m
, and wb,n,m+1,1 =

1

ζb,n,m+1 − ζb,n,m
(3.11)
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which are pre­computed in the initialization of the coupling of the substructure with the aerodynamic blade.

For the integrations of generalized aerodynamic forces in (2.18) and (2.19), we also need the position vector
of the aerodynamic center (AC) in the substructure frame rac,1,b and its first DOF derivative rac,1,b,qi . Using the
position vector formulation (1.45), we can write it as functions of the element coordinate of each element n:

rac,1,b,n =

P+3∑
p=0

(ro,b,n,p + xac,b,n(ζ) rx,b,n,p + yac,b,n(ζ) ry,b,n,p) ζp (3.12)

where ro,b,n,p, rx,b,n,p, and ry,b,n,p are the coefficient vectors given by (1.46), and functions xac,b,n(ζ) and
yac,b,n(ζ) describe the varying position of the aerodynamic center in the element coordinate system. In CAS­
EStab, we assume that this variation can be approximated by the piecewise linear function:

xac,b,n(ζ) =


∑1

r=0 cac,x,b,n,1,rζ
r ab,n,1 ≤ ζ < bb,n,1∑1

r=0 cac,x,b,n,2,rζ
r ab,n,2 ≤ ζ < bb,n,2

...
...∑1

r=0 cac,x,b,n,Na,b,n−1,rζ
r ab,n,Na,b,n−1 ≤ ζ ≤ bb,n,Na,b,n−1

yac,b,n(ζ) =


∑1

r=0 cac,y,b,n,0,rζ
r ab,n,1 ≤ ζ < bb,n,1∑1

r=0 cac,y,b,n,1,rζ
r ab,n,2 ≤ ζ < bb,n,2

...
...∑1

r=0 cac,y,b,n,Na,b,n−1,rζ
r ab,n,Na,b,n−1 ≤ ζ ≤ bb,n,Na,b,n−1

(3.13)

where the two coefficients of each linear functions cac,x,b,n,m,r and cac,y,b,n,m,r for m = 1, . . . , Na,b,n − 1 are
constants computed during the initial model assembly as described in Appendix B. Combining (3.12) and
(3.13), the position vector of the aerodynamic center over the element is given by the piecewise polynomial
function

rac,1,b,n =



∑P+4
p=0 rac,1,b,n,1,p ζp ab,n,1 ≤ ζ < bb,n,1∑P+4
p=0 rac,1,b,n,2,p ζp ab,n,2 ≤ ζ < bb,n,2

...
...∑P+4

p=0 rac,1,b,n,Na,b,n−1,p ζ
p ab,n,Na,b,n−1 ≤ ζ ≤ bb,n,Na,b,n−1

(3.14)

where the coefficient vectors rac,1,b,n,m,p for m = 1, . . . , Na,b,n − 1 are derived from (1.46) as

rac,1,b,n,m,p =



ro,b,n,p + cac,x,b,n,m,0rx,b,n,p + cac,y,b,n,m,0ry,b,n,p p = 0

ro,b,n,p + cac,x,b,n,m,0rx,b,n,p + cac,y,b,n,m,0ry,b,n,p
+cac,x,b,n,m,1rx,b,n,p−1 + cac,y,b,n,m,1ry,b,n,p−1 ∀p ∈ [1 : P + 3]

cac,x,b,n,m,1rx,b,n,p−1 + cac,y,b,n,m,1ry,b,n,p−1 p = P + 4

(3.15)

where P is the order of the structural element. Note that the coefficient vectors in (1.46) are functions of the
substructure DOFs and their first and second DOF derivatives are given by (1.57) and (1.58). The first DOF
derivatives of rac,1,b,n are therefore

rac,1,b,n,qi =



∑P+4
p=0 rac,1,b,n,1,p,qi ζp ab,n,1 ≤ ζ < bb,n,1∑P+4
p=0 rac,1,b,n,2,p,qi ζp ab,n,2 ≤ ζ < bb,n,2

...
...∑P+4

p=0 rac,1,b,n,Na,b,n−1,p,qi ζ
p ab,n,Na,b,n−1 ≤ ζ ≤ bb,n,Na,b,n−1

(3.16)

where the first derivatives of the coefficient vectors rac,1,b,n,m,p,qi for m = 1, . . . , Na,b,n − 1 are

rac,1,b,n,m,p,qi =



ro,b,n,p,qi + cac,x,b,n,m,0rx,b,n,p,qi + cac,y,b,n,m,0ry,b,n,p,qi p = 0

ro,b,n,p,qi + cac,x,b,n,m,0rx,b,n,p,qi + cac,y,b,n,m,0ry,b,n,p,qi
+cac,x,b,n,m,1rx,b,n,p−1,qi + cac,y,b,n,m,1ry,b,n,p−1,qi ∀p ∈ [1 : P + 3]

cac,x,b,n,m,1rx,b,n,p−1,qi + cac,y,b,n,m,1ry,b,n,p−1,qi p = P + 4

(3.17)
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where the coefficient vectors are given by (1.57). Although the second DOF derivatives are not needed for the
integrations of generalized aerodynamic forces in (2.18) and (2.19), we will need them later for a linearization
of these generalized forces. The second DOF derivatives of rac,1,b,n are

rac,1,b,n,qi,qj =



∑P+4
p=0 rac,1,b,n,1,p,qi,qj ζp ab,n,1 ≤ ζ < bb,n,1∑P+4
p=0 rac,1,b,n,2,p,qi,qj ζp ab,n,2 ≤ ζ < bb,n,2

...
...∑P+4

p=0 rac,1,b,n,Na,b,n−1,p,qi,qj ζ
p ab,n,Na,b,n−1 ≤ ζ ≤ bb,n,Na,b,n−1

(3.18)

where the coefficient vectors rac,1,b,n,m,p,qi,qj for m = 1, . . . , Na,b,n − 1 are

rac,1,b,n,m,p,qi,qj =



ro,b,n,p,qi,qj + cac,x,b,n,m,0rx,b,n,p,qi,qj + cac,y,b,n,m,0ry,b,n,p,qi,qj p = 0

ro,b,n,p,qi,qj + cac,x,b,n,m,0rx,b,n,p,qi,qj + cac,y,b,n,m,0ry,b,n,p,qi,qj
+cac,x,b,n,m,1rx,b,n,p−1,qi,qj + cac,y,b,n,m,1ry,b,n,p−1,qi,qj ∀p ∈ [1 : P + 3]

cac,x,b,n,m,1rx,b,n,p−1,qi,qj + cac,y,b,n,m,1ry,b,n,p−1,qi,qj p = P + 4

(3.19)

where the second derivatives of the coefficient vectors are given by (1.58).

For the integrations of generalized aerodynamic forces in (2.18) and (2.19), we also need function of the vari­
ation of the first unit­vector e1,c,1,b,n of the chord coordinate system (CCS) over the element number n, and its
DOF derivatives. The variation has two components: a constant component due to the geometrical variation
of the blade shape and a dynamic component due to the small rotational elastic deformations of the element:

e1,c,1,b,n(qb, ζ) =


Eb,n(qb)R1,b,n(qb, ζ)e1,c,e,b,n,1(ζ) ab,n,1 ≤ ζ < bb,n,1
Eb,n(qb)R1,b,n(qb, ζ)e1,c,e,b,n,2(ζ) ab,n,2 ≤ ζ < bb,n,2

...
...

Eb,n(qb)R1,b,n(qb, ζ)e1,c,e,b,n,Na,b,n−1(ζ) ab,n,Na,b,n−1 ≤ ζ ≤ bb,n,Na,b,n−1

(3.20)

whereEb,n is the element coordinate system (ECS)matrix defined in the substructure frame,R1,b,n is the rotation
matrix function for the elastic deformation, and the unit­vector functions e1,c,e,b,n,m(ζ) withm = 1, . . . , Na,b,n−1
describe the geometrical variation of the CCS matrix over the interval ζ ∈ [ab,n,m, bb,n,m] in the frame of the
ECS. Assuming small rotations inside the elements, the elastic rotation matrix can be approximated as

R1,b,n(qb, ζ) =

 1 −θz,n(ζ) θy,n(ζ)
θz,n(ζ) 1 −θx,n(ζ)
−θy,n(ζ) θx,n(ζ) 1

 = I+
P+3∑
p=0

S {θn,p} ζp (3.21)

where the skew symmetric parts (cf. (E.1)) are

S {θn,p} =

 0 −θz,n,p θy,n,p
θz,n,p 0 −θx,n,p
−θy,n,p θx,n,p 0

 (3.22)

using the coefficients for the angles θn,p = {θx,n,p, θy,n,p, θz,n,p}T = Ñn,pg (qb,n) as defined in (1.44).

The geometrical variation of the first unit­vector of the CCS matrix over the interval ζ ∈ [ab,n,m, bb,n,m] in the
frame of the ECS is approximated by a linear interpolation function:

e1,c,e,b,n,m(ζ) = (e1,c,e,b,n,m,a(bm,n − ζ) + e1,c,e,b,n,m,b(ζ − am,n)) /(bm,n − am,n) (3.23)

where e1,c,e,b,n,m,a and e1,c,e,b,n,m,b are the first unit­vectors of the CCS in the ECS frame on the lower and
upper limits of the integration range, respectively. We rewrite this approximation as

e1,c,e,b,n,m(ζ) =

1∑
r=0

e1,c,e,b,n,m,r ζ
r (3.24)

where coefficient vectors are

e1,c,e,b,n,m,0 =
e1,c,e,b,n,m,a bb,n,m − e1,c,e,b,n,m,b ab,n,m

bb,n,m − ab,n,m

e1,c,e,b,n,m,1 =
e1,c,e,b,n,m,b − e1,c,e,b,n,m,a

bb,n,m − ab,n,m
(3.25)
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Note that the approximation (3.23) does not ensure that the length of the first axis vector of CCS in the ECS
frame is unity, but the error will decrease with increased number of ACPs and can therefore be quantified as
part of the aerodynamic discretization error in a convergence study.

Using (3.21) and (3.25), the variation of the first unit­vector e1,c,1,b,n of the CCS over the element number n
(3.20) can be written as

e1,c,1,b,n(qb, ζ) =



∑P+4
p=0 e1,c,1,b,n,1,p ζp ab,n,1 ≤ ζ < bb,n,1∑P+4
p=0 e1,c,1,b,n,2,p ζp ab,n,2 ≤ ζ < bb,n,2

...
...∑P+4

p=0 e1,c,1,b,n,Na,b,n−1,p ζ
p ab,n,Na,b,n−1 ≤ ζ ≤ bb,n,Na,b,n−1

(3.26)

where

e1,c,1,b,n,m,p =


Eb,n

(
I+ S

{
Ñn,0g

})
e1,c,e,b,n,m,0 p = 0

Eb,n

(
S
{
Ñn,pg

}
e1,c,e,b,n,m,0 + S

{
Ñn,p−1g

}
e1,c,e,b,n,m,1

)
∀p ∈ [1 : P + 3]

Eb,nS
{
Ñn,p−1g

}
e1,c,e,b,n,m,1 p = P + 4

(3.27)

The first derivative of this uni­vector with respect to a DOF qi on the substructure becomes

e1,c,1,b,n,qi(qb, ζ) =



∑P+4
p=0 e1,c,1,b,n,1,p,qi ζp ab,n,1 ≤ ζ < bb,n,1∑P+4
p=0 e1,c,1,b,n,2,p,qi ζp ab,n,2 ≤ ζ < bb,n,2

...
...∑P+4

p=0 e1,c,1,b,n,Na,b,n−1,p,qi ζ
p ab,n,Na,b,n−1 ≤ ζ ≤ bb,n,Na,b,n−1

(3.28)

where

e1,c,1,b,n,m,p,qi =



(
Eb,n,qi

(
I+ S

{
Ñn,0g

})
+ Eb,nS

{
Ñn,0g,qi

})
e1,c,e,b,n,m,0 p = 0

(
Eb,n,qiS

{
Ñn,pg

}
+ Eb,nS

{
Ñn,pg,qi

})
e1,c,e,b,n,m,0

+
(
Eb,n,qiS

{
Ñn,p−1g

}
+ Eb,nS

{
Ñn,p−1g,qi

})
e1,c,e,b,n,m,1 ∀p ∈ [1 : P + 3]

(
Eb,n,qiS

{
Ñn,p−1g

}
+ Eb,nS

{
Ñn,p−1g,qi

})
e1,c,e,b,n,m,1 p = P + 4

(3.29)

The second derivative of this uni­vector with respect to DOFs qi and qj on the substructure becomes

e1,c,1,b,n,qi,qj (qb, ζ) =



∑P+4
p=0 e1,c,1,b,n,1,p,qi,qj ζp ab,n,1 ≤ ζ < bb,n,1∑P+4
p=0 e1,c,1,b,n,2,p,qi,qj ζp ab,n,2 ≤ ζ < bb,n,2

...
...∑P+4

p=0 e1,c,1,b,n,Na,b,n−1,p,qi,qj ζ
p ab,n,Na,b,n−1 ≤ ζ ≤ bb,n,Na,b,n−1

(3.30)

where

e1,c,1,b,n,m,p,qi,qj =



(
Eb,n,qi,qj

(
I+ S

{
Ñn,0g

})
+ Eb,n,qiS

{
Ñn,0g,qj

}
+ Eb,n,qjS

{
Ñn,0g,qi

}
+ Eb,nS

{
Ñn,0g,qi,qj

})
e1,c,e,b,n,m,0 p = 0

(
Eb,n,qi,qjS

{
Ñn,pg

}
+ Eb,n,qiS

{
Ñn,pg,qj

}
+ Eb,n,qjS

{
Ñn,pg,qi

}
+ Eb,nS

{
Ñn,pg,qi,qj

})
e1,c,e,b,n,m,0

+
(
Eb,n,qi,qjS

{
Ñn,p−1g

}
+ Eb,n,qiS

{
Ñn,p−1g,qj

}
+ Eb,n,qjS

{
Ñn,p−1g,qi

}
+ Eb,nS

{
Ñn,p−1g,qi,qj

})
e1,c,e,b,n,m,1 ∀p ∈ [1 : P + 3]

(
Eb,n,qi,qjS

{
Ñn,p−1g

}
+ Eb,n,qiS

{
Ñn,p−1g,qj

}
+ Eb,n,qjS

{
Ñn,p−1g,qi

}
+ Eb,nS

{
Ñn,p−1g,qi,qj

})
e1,c,e,b,n,m,1 p = P + 4

(3.31)
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which is needed for the linearization of the generalized aerodynamic forces.

Using the piecewise linear force andmoment functions (3.6) and (3.7) with their coefficients (3.35), the variations
of the AC position (3.14), and the chordwise unit­vector of the CCS (3.26), we can compute contribution from
element n to the total aerodynamic force vector and moment matrix (2.19) for the substructure b as

fb,n =
ln
2

Na,b,n−1∑
m=1

(
1∑

r=0

br+1
b,n,m− ar+1

b,n,m

r + 1

(
wb,n,m,rf1,b,jb,n,m

+ wb,n,m+1,rf1,b,jb,n,m+1

)) (3.32)

and

Mb,n =
ln
2

(Na,b,n−1∑
m=1

(
P+4∑
p=0

(
1∑

r=0

bp+r+1
b,n,m − ap+r+1

b,n,m

p+ r + 1((
wb,n,m,rf1,b,jb,n,m

+ wb,n,m+1,rf1,b,jb,n,m+1

)
rTac,1,b,n,m,p (3.33)

+
(
wb,n,m,rm1,b,jb,n,m

+ wb,n,m+1,rm1,b,jb,n,m+1

)
eT1,c,1,b,n,m,p

))))

Similar, the contribution from element n to the generalized aerodynamic force on DOF qi of the substructure b
(2.18b) can be written as

Qi,b,n =
ln
2

(Na,b,n−1∑
m=1

(
P+4∑
p=0

(
1∑

r=0

bp+r+1
b,n,m − ap+r+1

b,n,m

p+ r + 1(
rTac,1,b,n,m,p,qi

(
wb,n,m,rf1,b,jb,n,m

+ wb,n,m+1,rf1,b,jb,n,m+1

)
(3.34)

+ eT1,c,1,b,n,m,p,qi

(
wb,n,m,rm1,b,jb,n,m

+ wb,n,m+1,rm1,b,jb,n,m+1

)))))

We now define the element transformation matrices Tf,b,n for the total force, TMf,b,n and TMm,b,n for the total
moment, and TQf,b,n and TQm,b,n for the generalized force as

fb,n = Tf,b,nfall,1,b,n (3.35a)
Mb,n = TMf,b,nfall,1,b,n + TMm,b,nmall,1,b,n (3.35b)

Qall,b,n = TQf,b,nfall,1,b,n + TQm,b,nmall,1,b,n (3.35c)

where fall,1,b,n andmall,1,b,n are vectors of length 3Na,b,n containing all forces and moments affecting the aero­
dynamic force and moment distributions over element n on substructure b, and Qall,b,n is a vector of length 12
containing the generalized forces on the 12 DOFs that describe the deformation of element n.
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A Co­rotational beam element method

This appendix contains the description and derivations of the co­rotational finite beam element method im­
plemented in CASEStab. The methodology is similar to Crisfield [2] and Krenk [3] except that the nonlinear
geometric formulation is explicit, i.e., the element coordinate systems and the local small rotations of the nodes
are given as explicit nonlinear functions of the global nodal DOFs.

A.1 Nonlinear kinematic formulation

The element has two end­nodes with each six DOFs, three translations and three rotations. We can denote
the 12 DOFs of an element as

qn =



qn,1
qn,2
qn,3
qn,4
qn,5
qn,6
qn,7
qn,8
qn,9
qn,10
qn,11
qn,12



(A.1)

where

rmid,n = rmid,0,n +
1

2

 qn,1
qn,2
qn,3

+

 qn,7
qn,8
qn,9


 (A.2)

where rmid,0,n is the initial position of the element mid­point.

A.1.1 Element coordinate system

A.1.2 Elastic stiffness matrix

A.2 Model input for co­rotational beam structures

A.3 Structural HAWC2 input translator

This section contains a description of the HAWC2 translator that enables the loading of the structural data from
HAWC2 models.

In HAWC2, the cross­sectional properties of the st­file are given in the coordinate system
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Initial element state

Deformed element state

Figure A.1:

A.4 Cross­sectional transformation
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Reference system:
1 z [m] Distance to section from base of substructure (blade root flange) along the third (pitch)

axis of the substructure (blade) frame.
2 xref [m] Primary (edge) axis distance from third substructure (pitch) axis to the origin (the

reference point) of the cross­sectional reference frame.
3 yref [m] Secondary (flap) axis distance from third substructure (pitch) axis to the origin (the

reference point) of the cross­sectional reference frame.
4 θref [deg] Angle of inplane rotation of the cross­sectional two­dimensional reference frame.

Each element coordinate system is rotated the element­average of this angle from
an initial orientation where its secondary (flap) axis has a zero primary (edge) axis
component in the substructure (blade) frame.

Mass properties:
5 m [kg/m] Mass per unit­length of the substructure.
6 xcg [m] Distance on primary axis of the reference frame from reference point to mass center

(CG).
7 ycg [m] Distance on secondary axis of the reference frame from reference point to mass

center (CG).
8 rx [m] Radius gyration for rotation about the primary inertia axis with CG as origin.
9 ry [m] Radius gyration for rotation about the secondary inertia axis with CG as origin.
10 θrx [deg] Angular offset of the primary inertia axis from the primary axis of the reference frame.

Stiffness properties (isotropic section = 13 columns or full 6x6 compliance matrix = 21 columns)
Isotropic section:

11 xea [m] Distance on primary axis of the reference frame from reference point to the centroid
of bending (elastic axis).

12 yea [m] Distance on secondary axis of the reference frame from reference point to the centroid
of bending (elastic axis).

13 xsc [m] Distance on primary axis of the reference frame from reference point to the shear
center.

14 ysc [m] Distance on secondary axis of the reference frame from reference point to the shear
center.

15 θbend [deg] Angular offset of the primary bending axis from the primary axis of the reference frame
(structural twist).

16 E [Pa] Average elastic Young’s modulus of the cross­section.
17 G [Pa] Average shear modulus of the cross­section.
18 A [m2] Area of cross­section.
19 Ix [m4] Moment of inertia for bending about the primary bending axis.
20 Iy [m4] Moment of inertia for bending about the secondary bending axis.
21 K [m4] Moment of inertia for torsion.
22 kx [­] Shear correction factor in the direction of the primary reference axis.
23 ky [­] Shear correction factor in the direction of the secondary reference axis.

Full 6x6 compliance matrix:
11­31 C [SI] Upper triangle 21 elements of the symmetric 6x6 compliance matrix row by row

[C11, C12, . . . , C16, C22, . . . , C66] given in the reference frame.
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B Aerodynamic data input and process­
ing

B.1 Input files

1 z [m] Distance to section from base of substructure (blade root flange) along the third (pitch)
axis of the substructure (blade) frame.

2 xref [m] Primary (edge) axis distance from third substructure (pitch) axis to the reference point
of the cross­sectional reference frame.

3 yref [m] Secondary (flap) axis distance from third substructure (pitch) axis to the reference
point of the cross­sectional reference frame.

4­6 ϕx, ϕy, ϕz

[deg]
Pseudo vector of finite rotation of Chord Coordinate System (CCS) from the substruc­
ture (blade) frame. If ϕx = ϕy = 0, then the normal to the airfoil plane is defined by
the tangent of the reference point curve and the inplane axes of the CCS are defined
such that its secondary axis has zero primary axis component in the blade frame
before rotating them about the tangent by ϕz.

7 c [m] Chord length of airfoil or diameter of circle.
8 trel [%] Relative thickness of airfoil (100% = circle).
9 xac [m] Distance on primary axis of the reference frame from reference point to the aerody­

namic center (AC).
10 yac [m] Distance on secondary axis of the reference frame from reference point to the aero­

dynamic center (AC).
11 aac [­] Non­dimensional chordwise position of the AC for visualization of the blade.
12 ipc [­] Number of the airfoil set in HAWC2 type polar data files.
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C Dynamic stall model data

This appendix contains description of the pre­processing of the data for the dynamic stall model based on the
user­defined airfoil polars.
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D Wind field
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E Mathematics

This appendix contains different mathematical formulas and derivations that are used in the theory manual.

E.1 Definitions

Let S{} be a skew­symmetric operator converting a vector to a skew­symmetric matrix defined as

S{ω} =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 −ω1 0

 (E.1)

where ω = {ω1, ω2, ω3}T is any vector. If S is a skew­symmetric matrix and A is a arbitrary square matrix of the
same size then ATSA is also a skew­symmetric matrix.

E.2 Finite Rotations

Any finite rotation can be described by a unit­vector n = {nx, ny, nz}T and an angle ϕ the rotation matrix:

R = I+ N sinϕ+ N2 (1− cosϕ) (E.2)

where

N =

 0 −nz ny

nz 0 −nx

−ny nx 0

 = S{n} (E.3)

is a skew­symmetric matrix. Using the unity of the rotation vector length ∥n∥ = 1, it can be shown that

N3 = −N (E.4)

and using this property, the derivative of the rotation matrix with respect to the angle for a fixed rotation vector
becomes

∂R
∂ϕ

= N cosϕ+ N2 sinϕ = RN (E.5)

and therefore
∂2R
∂ϕ2

= RN2 (E.6)

E.3 Miscellaneous formulas

uTUTVv = Tr
((
UTV

) (
vuT

))
≡
(
UTV

)
:
(
vuT

)
(E.7)
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