Merge remote-tracking branch 'origin/master'

This commit is contained in:
aGYZ 2025-08-04 08:03:10 +08:00
commit cd9f9753f8
25 changed files with 1887 additions and 1640 deletions

View File

@ -32,5 +32,5 @@ curl -X PUT "http://localhost:50003/proxies/%F0%9F%9A%80%E4%BB%A3%E7%90%86%E7%BA
https://aistudio.google.com/apikey

View File

@ -1,2 +1,3 @@
a1306391841@gmail.com a1306391841@gmail.com
yizeguo1211@gmail.com yizeguo1211@gmail.com
gyize8456@gmail.com

View File

@ -0,0 +1,45 @@
# 正向提示词
![[Pasted image 20250803144349.png]]
![[截屏2025-08-03 14.44.08.png]]
![[截屏2025-08-03 14.44.26.png]]
![[截屏2025-08-03 14.44.54.png]]
![[截屏2025-08-03 14.45.12.png]]
![[截屏2025-08-03 14.45.30.png]]
# 负向提示词
1 Ibad hands,missing fingers,fused fingers:1.61051), (too many fingers:1.61051) (worst quality, low quality:1.4), (depth of field, blurry:1.2), (greyscale, monochrome:1.1),3D face,cropped,lowres,text, (nsfw:1.3), (worst quality:2), (low quality:2), (normal quality:2), normal quality, ((grayscale)),skin spots,acnes,skin blemishes, age spot, (ugly:1.331), (duplicate:1.331),(morbid:1.21), (mutilated:1.21), (tranny:1.331),mutated hands, (poorly drawn hands:1.5),blurry, (bad anatomy:1.21), (bad proportions:1.331),extra limbs, (disfigured:1.331), (missing arms:1.331), (extra legs:1.331), (,(unclear eyes:1.331), lowers,extra digit,bad hands,missing fingers, (((extra arms and legs))),
![[截屏2025-08-03 15.32.53.png]]
![[截屏2025-08-03 15.33.49.png]]
![[截屏2025-08-03 15.36.17.png]]
# 宽 高
![[截屏2025-08-03 15.42.14.png]]
64倍数设置尺寸
512 768 1024 1536等
# lora
![[截屏2025-08-03 15.47.01.png]]
# 二次元模型
万象熔炉
counterfeit
yesmix
meinamix
cuteyukimix

View File

Before

Width:  |  Height:  |  Size: 259 KiB

After

Width:  |  Height:  |  Size: 259 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 484 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 484 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 304 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 350 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 386 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 371 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 509 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 607 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 458 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 389 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 594 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 664 KiB

View File

@ -0,0 +1,196 @@
---
epoch: 1753754856981
modelKey: gemini-2.5-pro|google
tags:
- copilot-conversation
---
**user**:
$$
\sum_{j=1}^{N_{D}}m_{i j}\ddot{q}_{j}+\sum_{j=1}^{N_{D}}g_{i j}\dot{q}_{j}+F_{c,i}+\sum_{j=1}^{N_{D}}\sum_{k=1}^{N_{D}}h_{i j k}\dot{q}_{j}\dot{q}_{k}+\frac{\partial V}{\partial q_{i}}+\frac{\partial D}{\partial\dot{q}_{i}}=Q_{i}\tag{1.7}
$$
如何由
Substituting (1.4) into (1.3) and using the properties of (1.5) and (1.6), the nonlinear equations of motion can be written as
推导得到
[Timestamp: 2025/07/29 10:07:36]
**ai**: 您好,为了从您提到的 “将 (1.4) 代入 (1.3) 并使用 (1.5) 和 (1.6) 的性质” 来推导方程 (1.7),我需要知道方程 (1.3), (1.4), (1.5), 和 (1.6) 的具体形式。
不过,我可以根据方程 (1.7) 的结构为您提供一个一般性的推导思路。这个方程是典型的拉格朗日力学Lagrangian Mechanics在有约束和非保守力情况下的运动方程形式。
**一般推导步骤**
通常,这类方程的推导始于**拉格朗日方程**。
1. **起点:拉格朗日方程 (可能是您的方程 1.3)**
标准的第二类拉格朗日方程形式为:
$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) - \frac{\partial L}{\partial q_{i}} = Q_{i}^{nc}$
其中,$L = T - V$ 是拉格朗日量,$T$ 是系统的动能,$V$ 是系统的势能。$q_i$ 是广义坐标,$\dot{q}_i$ 是广义速度。$Q_{i}^{nc}$ 是作用在 $q_i$ 上的非保守广义力。
2. **动能表达式 (可能是您的方程 1.4)**
对于一个多体系统,动能 $T$ 通常是广义速度的二次型函数:
$T = \frac{1}{2}\sum_{j=1}^{N_{D}}\sum_{k=1}^{N_{D}}m_{jk}(q)\dot{q}_{j}\dot{q}_{k}$
这里的 $m_{jk}(q)$ 是对称的质量矩阵(或惯性张量),其元素通常是广义坐标 $q$ 的函数。
3. **代入拉格朗日方程**
我们将 $L = T - V$ 代入拉格朗日方程。
* 首先计算 $\frac{\partial L}{\partial \dot{q}_{i}}$:
$\frac{\partial L}{\partial \dot{q}_{i}} = \frac{\partial T}{\partial \dot{q}_{i}} = \frac{\partial}{\partial \dot{q}_{i}}\left(\frac{1}{2}\sum_{j,k}m_{jk}\dot{q}_{j}\dot{q}_{k}\right) = \sum_{j=1}^{N_{D}}m_{ij}\dot{q}_{j}$
* 然后对时间求全导数 $\frac{d}{dt}$:
$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) = \frac{d}{dt}\left(\sum_{j}m_{ij}\dot{q}_{j}\right) = \sum_{j}m_{ij}\ddot{q}_{j} + \sum_{j}\frac{dm_{ij}}{dt}\dot{q}_{j}$
因为 $m_{ij}$ 是 $q$ 的函数,所以 $\frac{dm_{ij}}{dt} = \sum_{k}\frac{\partial m_{ij}}{\partial q_{k}}\dot{q}_{k}$。代入上式得到:
$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) = \sum_{j}m_{ij}\ddot{q}_{j} + \sum_{j,k}\frac{\partial m_{ij}}{\partial q_{k}}\dot{q}_{j}\dot{q}_{k}$
* 接着计算 $\frac{\partial L}{\partial q_{i}}$:
$\frac{\partial L}{\partial q_{i}} = \frac{\partial T}{\partial q_{i}} - \frac{\partial V}{\partial q_{i}} = \frac{1}{2}\sum_{j,k}\frac{\partial m_{jk}}{\partial q_{i}}\dot{q}_{j}\dot{q}_{k} - \frac{\partial V}{\partial q_{i}}$
4. **整理方程**
将以上各项代入拉格朗日方程:
$\left(\sum_{j}m_{ij}\ddot{q}_{j} + \sum_{j,k}\frac{\partial m_{ij}}{\partial q_{k}}\dot{q}_{j}\dot{q}_{k}\right) - \left(\frac{1}{2}\sum_{j,k}\frac{\partial m_{jk}}{\partial q_{i}}\dot{q}_{j}\dot{q}_{k} - \frac{\partial V}{\partial q_{i}}\right) = Q_{i}^{nc}$
整理后得到:
$\sum_{j}m_{ij}\ddot{q}_{j} + \sum_{j,k}\left(\frac{\partial m_{ij}}{\partial q_{k}} - \frac{1}{2}\frac{\partial m_{jk}}{\partial q_{i}}\right)\dot{q}_{j}\dot{q}_{k} + \frac{\partial V}{\partial q_{i}} = Q_{i}^{nc}$
5. **引入 Christoffel 符号 (可能是您的方程 1.5 和 1.6)**
为了得到您给出的方程 (1.7) 的形式,通常会引入与**克氏符号 (Christoffel symbols)** 相关的项。与科里奥利力Coriolis force和离心力centrifugal force相关的项可以表示为
$\sum_{j,k}h_{ijk}\dot{q}_{j}\dot{q}_{k}$
其中 $h_{ijk}$ (有时也写作 $\Gamma_{ijk}$) 是与质量矩阵导数相关的克氏符号,定义为:
$h_{ijk} = \frac{1}{2}\left(\frac{\partial m_{ij}}{\partial q_{k}} + \frac{\partial m_{ik}}{\partial q_{j}} - \frac{\partial m_{jk}}{\partial q_{i}}\right)$
通过这个定义,可以将上面整理出的方程中的二次速度项进行重写。这部分通常就是利用您提到的 (1.5) 和 (1.6) 的性质来完成的,它们可能定义了 $h_{ijk}$ 和 $g_{ij}$。
6. **包含其他力**
方程 (1.7) 中的其他项代表了不同的力:
* $F_{c,i}$: 可能是约束力Constraint Force
* $\frac{\partial D}{\partial\dot{q}_{i}}$: 来自瑞利耗散函数Rayleigh dissipation function$D$ 的耗散力。
* $Q_i$: 外部施加的广义力。
这些力都属于非保守广义力 $Q_{i}^{nc}$ 的一部分。
**总结**
您的方程 (1.7) 是一个非常通用的动力学方程。其推导的核心是将系统的动能表达式 (1.4) 代入拉格朗日方程 (1.3),然后利用质量矩阵导数的性质 (1.5) 和 (1.6) 来定义和简化科里奥利/离心力项 ($h_{ijk}$) 和可能的陀螺力项 ($g_{ij}$),最后将所有保守力(势能力)和非保守力(耗散力、约束力、外力)整合在一起。
如果您能提供方程 (1.3) 到 (1.6) 的内容,我可以为您展示一个完整且具体的推导过程。
[Timestamp: 2025/07/29 10:08:11]
**user**: $$
\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial{\dot{q}}_{j}}{\ddot{q}}_{j}+\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial q_{j}}{\dot{q}}_{j}+\frac{\partial}{\partial t}\bigg(\frac{\partial T}{\partial{\dot{q}}_{i}}\bigg)-\frac{\partial T}{\partial q_{i}}+\frac{\partial D}{\partial{\dot{q}}_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i}\tag{1.3}
$$
$$
T=\int_{\mathcal{V}}\frac{1}{2}\;\rho\;\dot{\mathbf{r}}^{T}\dot{\mathbf{r}}\;d\mathcal{V}\tag{1.4}
$$
$$
\dot{\pmb{r}}=\frac{d\pmb{r}}{d t}=\sum_{j=1}^{N_{D}}\frac{\partial\pmb{r}}{\partial q_{j}}\dot{q}_{j}+\frac{\partial\pmb{r}}{\partial t}\tag{1.5}
$$
$$
{\frac{\partial{\dot{\mathbf{r}}}}{\partial{\dot{q}}_{i}}}={\frac{\partial\mathbf{r}}{\partial q_{i}}}\quad{\mathsf{a n d}}\quad{\frac{\partial^{2}{\dot{\mathbf{r}}}}{\partial{\dot{q}}_{i}\partial q_{j}}}={\frac{\partial\mathbf{r}}{\partial q_{i}\partial q_{j}}}={\frac{\partial^{2}{\dot{\mathbf{r}}}}{\partial q_{i}\partial{\dot{q}}_{j}}}\tag{1.6}
$$
[Timestamp: 2025/07/29 10:09:06]
**ai**: 好的,感谢您提供这些方程。这是一个非常经典的从分析力学基本原理推导多体系统动力学方程的过程。下面我将为您展示详细的推导步骤。
**目标**
我们的目标是从方程 (1.3) 出发,利用 (1.4), (1.5), (1.6) 的定义,最终得到方程 (1.7) 的形式:
$$
\sum_{j=1}^{N_{D}}m_{i j}\ddot{q}_{j}+\sum_{j=1}^{N_{D}}g_{i j}\dot{q}_{j}+F_{c,i}+\sum_{j=1}^{N_{D}}\sum_{k=1}^{N_{D}}h_{i j k}\dot{q}_{j}\dot{q}_{k}+\frac{\partial V}{\partial q_{i}}+\frac{\partial D}{\partial\dot{q}_{i}}=Q_{i}\tag{1.7}
$$
**核心思路**
核心在于计算方程 (1.3) 中与动能 $T$ 相关的项。一个更简洁的方法是回到拉格朗日方程的原始形式 $\frac{d}{dt}(\frac{\partial T}{\partial \dot{q}_i}) - \frac{\partial T}{\partial q_i}$,并对其进行求值。方程 (1.3) 只是这个表达式按链式法则展开后的形式。
**步骤 1: 简化拉格朗日方程的动能部分**
我们先计算两个关键的偏导数:
1. $\frac{\partial T}{\partial \dot{q}_i} = \frac{\partial}{\partial \dot{q}_i} \left( \int_{\mathcal{V}}\frac{1}{2}\;\rho\;\dot{\mathbf{r}}^{T}\dot{\mathbf{r}}\;d\mathcal{V} \right) = \int_{\mathcal{V}} \rho \;\dot{\mathbf{r}}^{T} \frac{\partial \dot{\mathbf{r}}}{\partial \dot{q}_i} \;d\mathcal{V}$
根据方程 (1.6),我们有 ${\frac{\partial{\dot{\mathbf{r}}}}{\partial{\dot{q}}_{i}}}={\frac{\partial\mathbf{r}}{\partial q_{i}}}$。代入上式:
$$
\frac{\partial T}{\partial \dot{q}_i} = \int_{\mathcal{V}} \rho \;\dot{\mathbf{r}}^{T} \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V}
$$
2. $\frac{\partial T}{\partial q_i} = \frac{\partial}{\partial q_i} \left( \int_{\mathcal{V}}\frac{1}{2}\;\rho\;\dot{\mathbf{r}}^{T}\dot{\mathbf{r}}\;d\mathcal{V} \right) = \int_{\mathcal{V}} \rho \;\dot{\mathbf{r}}^{T} \frac{\partial \dot{\mathbf{r}}}{\partial q_i} \;d\mathcal{V}$
现在,我们计算 $\frac{\partial T}{\partial \dot{q}_i}$ 对时间的全导数:
$$
\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) = \frac{d}{dt}\left( \int_{\mathcal{V}} \rho \;\dot{\mathbf{r}}^{T} \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V} \right) = \int_{\mathcal{V}} \rho \left( \ddot{\mathbf{r}}^{T} \frac{\partial \mathbf{r}}{\partial q_i} + \dot{\mathbf{r}}^{T} \frac{d}{dt}\left(\frac{\partial \mathbf{r}}{\partial q_i}\right) \right) \;d\mathcal{V}
$$
利用导数交换次序的性质 $\frac{d}{dt}\left(\frac{\partial \mathbf{r}}{\partial q_i}\right) = \frac{\partial}{\partial q_i}\left(\frac{d\mathbf{r}}{dt}\right) = \frac{\partial \dot{\mathbf{r}}}{\partial q_i}$,我们得到:
$$
\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) = \int_{\mathcal{V}} \rho \left( \ddot{\mathbf{r}}^{T} \frac{\partial \mathbf{r}}{\partial q_i} + \dot{\mathbf{r}}^{T} \frac{\partial \dot{\mathbf{r}}}{\partial q_i} \right) \;d\mathcal{V}
$$
将以上结果组合成拉格朗日算子:
$$
\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) - \frac{\partial T}{\partial q_i} = \int_{\mathcal{V}} \rho \left( \ddot{\mathbf{r}}^{T} \frac{\partial \mathbf{r}}{\partial q_i} + \dot{\mathbf{r}}^{T} \frac{\partial \dot{\mathbf{r}}}{\partial q_i} \right) \;d\mathcal{V} - \int_{\mathcal{V}} \rho \;\dot{\mathbf{r}}^{T} \frac{\partial \dot{\mathbf{r}}}{\partial q_i} \;d\mathcal{V}
$$
可以看到,后面两项完全相同,相互抵消。于是我们得到了一个极为简洁的结果:
$$
\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) - \frac{\partial T}{\partial q_i} = \int_{\mathcal{V}} \rho \;\ddot{\mathbf{r}}^{T} \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V}
$$
这个结果等价于方程 (1.3) 中所有与 $T$ 相关的项的总和。
**步骤 2: 计算广义加速度 $\ddot{\mathbf{r}}$**
现在我们需要将笛卡尔加速度 $\ddot{\mathbf{r}}$ 用广义坐标 $q_j$ 及其导数来表示。我们从方程 (1.5) 开始,并对其求时间导数:
$$
\dot{\mathbf{r}}=\sum_{j=1}^{N_{D}}\frac{\partial\mathbf{r}}{\partial q_{j}}\dot{q}_{j}+\frac{\partial\mathbf{r}}{\partial t}
$$
$$
\ddot{\mathbf{r}} = \frac{d\dot{\mathbf{r}}}{dt} = \frac{d}{dt} \left( \sum_{j=1}^{N_{D}}\frac{\partial\mathbf{r}}{\partial q_{j}}\dot{q}_{j}+\frac{\partial\mathbf{r}}{\partial t} \right)
$$
使用乘法法则和链式法则展开:
$$
\ddot{\mathbf{r}} = \sum_{j=1}^{N_{D}} \left( \frac{d}{dt}\left(\frac{\partial\mathbf{r}}{\partial q_{j}}\right) \dot{q}_{j} + \frac{\partial\mathbf{r}}{\partial q_{j}}\ddot{q}_{j} \right) + \frac{d}{dt}\left(\frac{\partial\mathbf{r}}{\partial t}\right)
$$
再次对全导数项使用链式法则:
* $\frac{d}{dt}\left(\frac{\partial\mathbf{r}}{\partial q_{j}}\right) = \sum_{k=1}^{N_D} \frac{\partial^2\mathbf{r}}{\partial q_k \partial q_j}\dot{q}_k + \frac{\partial^2\mathbf{r}}{\partial t \partial q_j}$
* $\frac{d}{dt}\left(\frac{\partial\mathbf{r}}{\partial t}\right) = \sum_{k=1}^{N_D} \frac{\partial^2\mathbf{r}}{\partial q_k \partial t}\dot{q}_k + \frac{\partial^2\mathbf{r}}{\partial t^2}$
将它们代回 $\ddot{\mathbf{r}}$ 的表达式中:
$$
\ddot{\mathbf{r}} = \sum_{j=1}^{N_{D}} \frac{\partial\mathbf{r}}{\partial q_{j}}\ddot{q}_{j} + \sum_{j=1}^{N_{D}} \left( \sum_{k=1}^{N_D} \frac{\partial^2\mathbf{r}}{\partial q_k \partial q_j}\dot{q}_k + \frac{\partial^2\mathbf{r}}{\partial t \partial q_j} \right) \dot{q}_{j} + \left( \sum_{k=1}^{N_D} \frac{\partial^2\mathbf{r}}{\partial q_k \partial t}\dot{q}_k + \frac{\partial^2\mathbf{r}}{\partial t^2} \right)
$$
整理并合并同类项:
$$
\ddot{\mathbf{r}} = \sum_{j=1}^{N_{D}} \frac{\partial\mathbf{r}}{\partial q_{j}}\ddot{q}_{j} + \sum_{j=1}^{N_{D}}\sum_{k=1}^{N_{D}} \frac{\partial^2\mathbf{r}}{\partial q_j \partial q_k}\dot{q}_j \dot{q}_k + 2\sum_{j=1}^{N_{D}} \frac{\partial^2\mathbf{r}}{\partial t \partial q_j}\dot{q}_j + \frac{\partial^2\mathbf{r}}{\partial t^2}
$$
**步骤 3: 组合并识别各项**
现在,我们将步骤 2 中得到的 $\ddot{\mathbf{r}}$ 代入步骤 1 的简化结果中:
$$
\int_{\mathcal{V}} \rho \left( \sum_{j} \frac{\partial\mathbf{r}^{T}}{\partial q_{j}}\ddot{q}_{j} + \sum_{j,k} \frac{\partial^2\mathbf{r}^{T}}{\partial q_j \partial q_k}\dot{q}_j \dot{q}_k + 2\sum_{j} \frac{\partial^2\mathbf{r}^{T}}{\partial t \partial q_j}\dot{q}_j + \frac{\partial^2\mathbf{r}^{T}}{\partial t^2} \right) \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V}
$$
将积分分配到每一项,并与方程 (1.7) 的各项进行比对:
1. **惯性项 (Inertia Term):**
$$
\sum_{j=1}^{N_D} \left( \int_{\mathcal{V}} \rho \frac{\partial\mathbf{r}^{T}}{\partial q_{j}} \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V} \right) \ddot{q}_j \implies m_{ij} = \int_{\mathcal{V}} \rho \frac{\partial\mathbf{r}^{T}}{\partial q_{j}} \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V}
$$
这正是广义质量矩阵 $m_{ij}$ 的定义。
2. **科里奥利/离心项 (Coriolis/Centrifugal Term):**
$$
\sum_{j=1}^{N_D}\sum_{k=1}^{N_D} \left( \int_{\mathcal{V}} \rho \frac{\partial^2\mathbf{r}^{T}}{\partial q_j \partial q_k} \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V} \right) \dot{q}_j \dot{q}_k \implies h_{ijk} = \int_{\mathcal{V}} \rho \frac{\partial^2\mathbf{r}^{T}}{\partial q_j \partial q_k} \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V}
$$
这定义了与速度二次方相关的系数 $h_{ijk}$。
3. **陀螺/速度相关项 (Gyroscopic Term):**
$$
\sum_{j=1}^{N_D} \left( 2 \int_{\mathcal{V}} \rho \frac{\partial^2\mathbf{r}^{T}}{\partial t \partial q_j} \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V} \right) \dot{q}_j \implies g_{ij} = 2 \int_{\mathcal{V}} \rho \frac{\partial^2\mathbf{r}^{T}}{\partial t \partial q_j} \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V}
$$
这定义了与速度一次方相关的系数 $g_{ij}$,通常由坐标系的旋转或移动引起。
4. **时变坐标系引起的力项 (Force Term from Time-Varying Coordinates):**
$$
\int_{\mathcal{V}} \rho \frac{\partial^2\mathbf{r}^{T}}{\partial t^2} \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V} \implies F_{c,i} = \int_{\mathcal{V}} \rho \frac{\partial^2\mathbf{r}^{T}}{\partial t^2} \frac{\partial \mathbf{r}}{\partial q_i} \;d\mathcal{V}
$$
这项代表了由于坐标系自身的加速度而产生的惯性力。
**结论**
将以上所有项代回拉格朗日方程,我们得到:
$$
\underbrace{\sum_{j=1}^{N_{D}}m_{i j}\ddot{q}_{j} + \sum_{j=1}^{N_{D}}\sum_{k=1}^{N_{D}}h_{i j k}\dot{q}_{j}\dot{q}_{k} + \sum_{j=1}^{N_{D}}g_{i j}\dot{q}_{j} + F_{c,i}}_{\text{from } \frac{d}{dt}(\frac{\partial T}{\partial \dot{q}_i}) - \frac{\partial T}{\partial q_i}} + \frac{\partial V}{\partial q_{i}} + \frac{\partial D}{\partial\dot{q}_{i}} = Q_{i}
$$
重新排列各项顺序,就得到了与方程 (1.7) 完全一致的形式:
$$
\sum_{j=1}^{N_{D}}m_{i j}\ddot{q}_{j}+\sum_{j=1}^{N_{D}}g_{i j}\dot{q}_{j}+F_{c,i}+\sum_{j=1}^{N_{D}}\sum_{k=1}^{N_{D}}h_{i j k}\dot{q}_{j}\dot{q}_{k}+\frac{\partial V}{\partial q_{i}}+\frac{\partial D}{\partial\dot{q}_{i}}=Q_{i}
$$
推导完成。
[Timestamp: 2025/07/29 10:10:53]

View File

@ -77,7 +77,7 @@ This chapter contains the derivations of the nonlinear equations of motion based
The Lagrangian of a structure ${{L}}=T-V$ is given by its total kinetic energy $T$ and the total potential energy $V$ of the conservative forces acting on the structure, e.g. gravity and elastic forces. Using Lagranges equations, the nonlinear equations of motion can be derived as The Lagrangian of a structure ${{L}}=T-V$ is given by its total kinetic energy $T$ and the total potential energy $V$ of the conservative forces acting on the structure, e.g. gravity and elastic forces. Using Lagranges equations, the nonlinear equations of motion can be derived as
结构的拉格朗日量 ${{L}}=T-V$ 由其总动能 $T$ 和作用在结构上的保守力(例如重力和弹力)的总势能 $V$ 给出。利用拉格朗日方程,可以推导出非线性运动方程,如下所示: 结构的拉格朗日量 ${{L}}=T-V$ 由其总动能 $T$ 和作用在结构上的保守力(例如重力和弹力)的总势能 $V$ 给出。利用拉格朗日方程,可以推导出非线性运动方程,如下所示:
$$ $$
{\frac{d}{d t}}\left({\frac{\partial L}{\partial{\dot{q}}_{i}}}\right)-{\frac{\partial L}{\partial q_{i}}}+{\frac{\partial D}{\partial{\dot{q}}_{i}}}=Q_{i}\;\;{\mathsf{f o r}}\;\;i=1,\ldots,N_{D} {\frac{d}{d t}}\left({\frac{\partial L}{\partial{\dot{q}}_{i}}}\right)-{\frac{\partial L}{\partial q_{i}}}+{\frac{\partial D}{\partial{\dot{q}}_{i}}}=Q_{i}\;\;{\mathsf{f o r}}\;\;i=1,\ldots,N_{D} \tag{1.1}
$$ $$
where $D$ is the Rayleigh dissipation function used to model the internal energy dissipation, and $Q_{i}$ is the gen­eralized force for the generalized coordinate $q_{i}$ due to non­conservative forces handled in the next sections. where $D$ is the Rayleigh dissipation function used to model the internal energy dissipation, and $Q_{i}$ is the gen­eralized force for the generalized coordinate $q_{i}$ due to non­conservative forces handled in the next sections.
@ -87,13 +87,13 @@ The Lagrangian is a function of the displacements, velocities, and time
拉格朗日量是位移、速度和时间的函数。 拉格朗日量是位移、速度和时间的函数。
$$ $$
L=T\left(t,\mathbf{q},{\dot{\mathbf{q}}}\right)-V\left(t,\mathbf{q}\right) L=T\left(t,\mathbf{q},{\dot{\mathbf{q}}}\right)-V\left(t,\mathbf{q}\right)\tag{1.2}
$$ $$
where the potential energy of the conservative forces are independent of velocities. Using (1.2) and the chain rule, the first term of (1.1) can be expanded as where the potential energy of the conservative forces are independent of velocities. Using (1.2) and the chain rule, the first term of (1.1) can be expanded as
其中保守力的势能与速度无关。利用(1.2)和链式法则,(1.1)的第一项可以展开为 其中保守力的势能与速度无关。利用(1.2)和链式法则,(1.1)的第一项可以展开为
$$ $$
\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial{\dot{q}}_{j}}{\ddot{q}}_{j}+\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial q_{j}}{\dot{q}}_{j}+\frac{\partial}{\partial t}\bigg(\frac{\partial T}{\partial{\dot{q}}_{i}}\bigg)-\frac{\partial T}{\partial q_{i}}+\frac{\partial D}{\partial{\dot{q}}_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i} \sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial{\dot{q}}_{j}}{\ddot{q}}_{j}+\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial q_{j}}{\dot{q}}_{j}+\frac{\partial}{\partial t}\bigg(\frac{\partial T}{\partial{\dot{q}}_{i}}\bigg)-\frac{\partial T}{\partial q_{i}}+\frac{\partial D}{\partial{\dot{q}}_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i}\tag{1.3}
$$ $$
for $i=1,2,\dots,N_{D}$ . Here, the first term constitutes the acceleration dependent forces, whereas the other terms are only dependent on the time $t$ and the state­variables, the displacements $\mathbf{q}$ and velocities $\dot{\mathbf{q}}$ . We will now take a closer look at the first four inertia force terms given by the kinetic energy. for $i=1,2,\dots,N_{D}$ . Here, the first term constitutes the acceleration dependent forces, whereas the other terms are only dependent on the time $t$ and the state­variables, the displacements $\mathbf{q}$ and velocities $\dot{\mathbf{q}}$ . We will now take a closer look at the first four inertia force terms given by the kinetic energy.
@ -103,29 +103,29 @@ The total kinetic energy is the integral of the kinetic energy of each particle
总动能是结构在整个体积 $\mathcal{V}$ 上每个粒子的动能积分: 总动能是结构在整个体积 $\mathcal{V}$ 上每个粒子的动能积分:
$$ $$
T=\int_{\mathcal{V}}\frac{1}{2}\;\rho\;\dot{\mathbf{r}}^{T}\dot{\mathbf{r}}\;d\mathcal{V} T=\int_{\mathcal{V}}\frac{1}{2}\;\rho\;\dot{\mathbf{r}}^{T}\dot{\mathbf{r}}\;d\mathcal{V}\tag{1.4}
$$ $$
where $()^{T}$ denotes to the transpose of a matrix or a vector (single columned matrix), and r˙ is the velocity vector of the particle given as the time derivative of its position vector $\boldsymbol{\mathsf{r}}=\boldsymbol{\mathsf{r}}(t,\mathbf{q})$ that may be explicit time­ dependent e.g. for sub­structures that are rotating with a prescribed average speed. The velocity vector can be expanded to where $()^{T}$ denotes to the transpose of a matrix or a vector (single columned matrix), and r˙ is the velocity vector of the particle given as the time derivative of its position vector $\boldsymbol{\mathsf{r}}=\boldsymbol{\mathsf{r}}(t,\mathbf{q})$ that may be explicit time­ dependent e.g. for sub­structures that are rotating with a prescribed average speed. The velocity vector can be expanded to
其中 $()^{T}$ 表示矩阵或向量(单列矩阵)的转置,$\dot{\mathbf{r}}$ 是粒子的速度向量,表示为其位置向量 $\boldsymbol{\mathsf{r}}=\boldsymbol{\mathsf{r}}(t,\mathbf{q})$ 的时间导数,该位置向量可能显式地依赖于时间,例如对于以给定平均速度旋转的子结构。速度向量可以展开为 其中 $()^{T}$ 表示矩阵或向量(单列矩阵)的转置,$\dot{\mathbf{r}}$ 是粒子的速度向量,表示为其位置向量 $\boldsymbol{\mathsf{r}}=\boldsymbol{\mathsf{r}}(t,\mathbf{q})$ 的时间导数,该位置向量可能显式地依赖于时间,例如对于以给定平均速度旋转的子结构。速度向量可以展开为
$$ $$
\dot{\pmb{r}}=\frac{d\pmb{r}}{d t}=\sum_{j=1}^{N_{D}}\frac{\partial\pmb{r}}{\partial q_{j}}\dot{q}_{j}+\frac{\partial\pmb{r}}{\partial t} \dot{\pmb{r}}=\frac{d\pmb{r}}{d t}=\sum_{j=1}^{N_{D}}\frac{\partial\pmb{r}}{\partial q_{j}}\dot{q}_{j}+\frac{\partial\pmb{r}}{\partial t}\tag{1.5}
$$ $$
from which these properties of the position and velocity vectors can be shown from which these properties of the position and velocity vectors can be shown
从中可以证明位置和速度向量的这些特性 从中可以证明位置和速度向量的这些特性
$$ $$
{\frac{\partial{\dot{\mathbf{r}}}}{\partial{\dot{q}}_{i}}}={\frac{\partial\mathbf{r}}{\partial q_{i}}}\quad{\mathsf{a n d}}\quad{\frac{\partial^{2}{\dot{\mathbf{r}}}}{\partial{\dot{q}}_{i}\partial q_{j}}}={\frac{\partial\mathbf{r}}{\partial q_{i}\partial q_{j}}}={\frac{\partial^{2}{\dot{\mathbf{r}}}}{\partial q_{i}\partial{\dot{q}}_{j}}} {\frac{\partial{\dot{\mathbf{r}}}}{\partial{\dot{q}}_{i}}}={\frac{\partial\mathbf{r}}{\partial q_{i}}}\quad{\mathsf{a n d}}\quad{\frac{\partial^{2}{\dot{\mathbf{r}}}}{\partial{\dot{q}}_{i}\partial q_{j}}}={\frac{\partial\mathbf{r}}{\partial q_{i}\partial q_{j}}}={\frac{\partial^{2}{\dot{\mathbf{r}}}}{\partial q_{i}\partial{\dot{q}}_{j}}}\tag{1.6}
$$ $$
Substituting (1.4) into (1.3) and using the properties of (1.5) and (1.6), the nonlinear equations of motion can be written as Substituting (1.4) into (1.3) and using the properties of (1.5) and (1.6), the nonlinear equations of motion can be written as
将 (1.4) 代入 (1.3) 并利用 (1.5) 和 (1.6) 的性质,非线性运动方程可以写为
$$ $$
\sum_{j=1}^{N_{D}}m_{i j}\ddot{q}_{j}+\sum_{j=1}^{N_{D}}g_{i j}\dot{q}_{j}+F_{c,i}+\sum_{j=1}^{N_{D}}\sum_{k=1}^{N_{D}}h_{i j k}\dot{q}_{j}\dot{q}_{k}+\frac{\partial V}{\partial q_{i}}+\frac{\partial D}{\partial\dot{q}_{i}}=Q_{i} \sum_{j=1}^{N_{D}}m_{i j}\ddot{q}_{j}+\sum_{j=1}^{N_{D}}g_{i j}\dot{q}_{j}+F_{c,i}+\sum_{j=1}^{N_{D}}\sum_{k=1}^{N_{D}}h_{i j k}\dot{q}_{j}\dot{q}_{k}+\frac{\partial V}{\partial q_{i}}+\frac{\partial D}{\partial\dot{q}_{i}}=Q_{i}\tag{1.7}
$$ $$
where the summation coefficients and the acceleration force $F_{c,i}$ can be derived solely from the partial time and displacement derivatives of the position vector as where the summation coefficients and the acceleration force $F_{c,i}$ can be derived solely from the partial time and displacement derivatives of the position vector as
其中,求和系数和加速度力 $F_{c,i}$ 仅可从位置向量对时间分量和位移分量的偏导数中导出
$$ $$
\begin{array}{l}{\displaystyle m_{i j}=\int_{\mathcal{V}}\rho\left(\frac{\partial\mathbf{r}^{T}}{\partial q_{i}}\frac{\partial\mathbf{r}}{\partial q_{j}}\right)d\boldsymbol{\nu}}\\ {\displaystyle g_{i j}=\int_{\mathcal{V}}2\rho\left(\frac{\partial\mathbf{r}^{T}}{\partial q_{i}}\frac{\partial^{2}\mathbf{r}}{\partial t\partial q_{j}}\right)d\boldsymbol{\nu}}\\ {\displaystyle h_{i j k}=\int_{\mathcal{V}}\rho\left(\frac{\partial\mathbf{r}^{T}}{\partial q_{i}}\frac{\partial^{2}\mathbf{r}}{\partial q_{j}\partial q_{k}}\right)d\boldsymbol{\nu}}\\ {\displaystyle F_{c,i}=\int_{\mathcal{V}}\rho\left(\frac{\partial\mathbf{r}^{T}}{\partial q_{i}}\frac{\partial^{2}\mathbf{r}}{\partial t^{2}}\right)d\boldsymbol{\nu}}\end{array} \begin{array}{l}{\displaystyle m_{i j}=\int_{\mathcal{V}}\rho\left(\frac{\partial\mathbf{r}^{T}}{\partial q_{i}}\frac{\partial\mathbf{r}}{\partial q_{j}}\right)d\boldsymbol{\nu}}\\ {\displaystyle g_{i j}=\int_{\mathcal{V}}2\rho\left(\frac{\partial\mathbf{r}^{T}}{\partial q_{i}}\frac{\partial^{2}\mathbf{r}}{\partial t\partial q_{j}}\right)d\boldsymbol{\nu}}\\ {\displaystyle h_{i j k}=\int_{\mathcal{V}}\rho\left(\frac{\partial\mathbf{r}^{T}}{\partial q_{i}}\frac{\partial^{2}\mathbf{r}}{\partial q_{j}\partial q_{k}}\right)d\boldsymbol{\nu}}\\ {\displaystyle F_{c,i}=\int_{\mathcal{V}}\rho\left(\frac{\partial\mathbf{r}^{T}}{\partial q_{i}}\frac{\partial^{2}\mathbf{r}}{\partial t^{2}}\right)d\boldsymbol{\nu}}\end{array}
$$ $$

View File

@ -0,0 +1,87 @@
fast_advance_states()
- ed_updatestates
- SolveOption2a_Inp2BD
- ed_calc_output 更新数据
- BD updatestates
- SolveOption2b_Inp2IfW Ifw根据ED结果更新
- ifw updatestates
- SolveOption2c_Inp2AD_SrvD
- ifw calcoutput
- AD_InputSolve_IfW
- SrvD_InputSolve
- ``! from Ifw``
- WindDir
- HorWindV
- LidSpeed
- MsrPositionsX
- MsrPositionsY
- MsrPositionsZ
-
- ``! from ED``
- YawAngle
- Yaw
- YawRate
- LSS_Spd
- HSS_Spd
- RotSpeed
- RootMxc
- RootMyc
- YawBrTAxp
- YawBrTAyp
- LSSTipPxa
- LSSTipMxa
- LSSTipMya
- LSSTipMza
- LSSTipMys
- LSSTipMzs
- YawBrMyn
- YawBrMzn
- NcIMURAxs
- NcIMURAys
- NcIMURAzs
- RotPwr
- LSShftFxa
- LSShftFys
- LSShftFzs
- SrvD_UpdateStates
- SrvD_CopyInput
- SrvD_Input_ExtrapInterp
- SrvD_UpdateDiscState
- SrvD_Input_ExtrapInterp
- DLL_controller_call
- Torque_UpdateStates
- Pitch_UpdateStates
- Yaw_UpdateStates
- TipBrake_UpdateStates
- ! Blade Nacelle Tower Platform StrucCtrl但是NumSStC = 0 这部分代码跳过
- ! Compute ElecPwr and GenTrq for controller (and DLL needs this saved):
- CalculateTorque
CalcOutputs_And_SolveForInputs
- SolveOption2
- AD_CalcOutput
- SrvD_CalcOutput
- ED_InputSolve ED接收AD SD输入
- BladeLoads.force/moment
- towerloads.force/moment
- GenTrq
- HSSBrTrqC
- BlPitchCom
- YawMom
- StrucCtrl loads 暂时没有
- NacelleLoads.force/moment
- Transfer_SrvD_to_SD_MD
- ! 都在ifw更新后
- SrvD_InputSolve
- ResetRemapFlags

View File

@ -22,3 +22,9 @@ aug_mat矩阵大小600
# 创建lib # 创建lib
- cargo new somelib --lib
- lib.rs
- pub mod somemodule
- 删除somelib文件夹同时在workspace的cargo.toml删除“somelib”

View File

@ -3,10 +3,10 @@
{"id":"8359617e1edc48ba","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情它们是完成OKR的保障。\n\n\n效率状态 green","x":-76,"y":-306,"width":456,"height":347}, {"id":"8359617e1edc48ba","type":"text","text":"状态指标:\n推进OKR的时候也要关注这些事情它们是完成OKR的保障。\n\n\n效率状态 green","x":-76,"y":-306,"width":456,"height":347},
{"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果建模原理、建模方法掌握 9.2/10\n\n关键结果风机多体动力学文献调研情况完成 5.5/10\n关键结果风机模型线性化原理、方法掌握 8/10","x":-76,"y":-693,"width":456,"height":347}, {"id":"a4eaccbbfadaaf17","type":"text","text":"# 目标:多体动力学模块完善\n### 每周盘点一下它们\n\n\n关键结果建模原理、建模方法掌握 9.2/10\n\n关键结果风机多体动力学文献调研情况完成 5.5/10\n关键结果风机模型线性化原理、方法掌握 8/10","x":-76,"y":-693,"width":456,"height":347},
{"id":"d2c5e076ba6cf7d7","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-600,"y":-306,"width":456,"height":347}, {"id":"d2c5e076ba6cf7d7","type":"text","text":"# 推进计划\n未来四周计划推进的重要事情\n\n文献调研启动\n\n建模重新推导\n\n\n","x":-600,"y":-306,"width":456,"height":347},
{"id":"82708a439812fdc7","type":"text","text":"# 7月已完成\n\nP1 工况点稳态变形量求解F=kx\n- 文献调研,初步确定思路 done\n- 推导方程 done\n- 编写组建增广矩阵,求解广义坐标代码 done\n- 测试广义坐标到叶片变形量功能 可以变形气动Cp会改变\n- 连接气动测试,完成。存在一个问题,气动是否要用稳态模型\n- 直接迭代到变形量收敛 思路确定了 完成\n- x.qt x.qdt数据如何从dxdt.qdt拿来/更新,预估校正方法 steady中预估矫正方法去掉了\n\nP1 职称评审系统填写,材料梳理上传 盖章\n\nP1 数值扰动+回归的线性化方法原理探究\n\nP1 dtu casestab开源项目稳态运行状态叶片模态、频率计算方法研究。\n- 形成项目研究报告","x":-220,"y":134,"width":440,"height":560}, {"id":"82708a439812fdc7","type":"text","text":"# 7月已完成\n\nP1 工况点稳态变形量求解F=kx\n- 文献调研,初步确定思路 done\n- 推导方程 done\n- 编写组建增广矩阵,求解广义坐标代码 done\n- 测试广义坐标到叶片变形量功能 可以变形气动Cp会改变\n- 连接气动测试,完成。存在一个问题,气动是否要用稳态模型\n- 直接迭代到变形量收敛 思路确定了 完成\n- x.qt x.qdt数据如何从dxdt.qdt拿来/更新,预估校正方法 steady中预估矫正方法去掉了\n\nP1 职称评审系统填写,材料梳理上传 盖章\n\nP1 数值扰动+回归的线性化方法原理探究\n\nP1 dtu casestab开源项目稳态运行状态叶片模态、频率计算方法研究。\n- 形成项目研究报告\n\nP1 控制信号到多体调研\n- 调研完成\n- 控制项目集成\n\nP1 产出的报告 线性化理论手册编写 完成","x":-220,"y":134,"width":440,"height":560},
{"id":"505acb3e6b119076","type":"text","text":"# 6月已完成\n\n\nP1 结果对比\n- Herowind 带3.5气动与fast3.5对比 相同\n- Herowind 带4.0气动与fast4.0对比 相同\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n- 叶根坐标系转换 \n\t- 叶尖变形量 - 变形向量 dot product 叶根坐标系方向\n\t- 叶片载荷输入量呢 载荷传递在blade mesh.force momentmesh.orientation = coord_sys.n\n\nP1 Bladed交流问题汇总\n\nP1 模型线性化原理 done\n- Bladed 线性化理论手册 仔细阅读\n- multibody blade transform\n- fast线性化理论\n- 梳理Bladed线性化方法框架\n\n\nP1 编写线性化理论手册 done\nP1 上手Bladed \\ fast 线性化功能研究OpenFAST线性化实现原理 done","x":-700,"y":134,"width":440,"height":560}, {"id":"505acb3e6b119076","type":"text","text":"# 6月已完成\n\n\nP1 结果对比\n- Herowind 带3.5气动与fast3.5对比 相同\n- Herowind 带4.0气动与fast4.0对比 相同\n- Herowind 带hrl气动与fast对比 需气动支持15MW\n- 叶根坐标系转换 \n\t- 叶尖变形量 - 变形向量 dot product 叶根坐标系方向\n\t- 叶片载荷输入量呢 载荷传递在blade mesh.force momentmesh.orientation = coord_sys.n\n\nP1 Bladed交流问题汇总\n\nP1 模型线性化原理 done\n- Bladed 线性化理论手册 仔细阅读\n- multibody blade transform\n- fast线性化理论\n- 梳理Bladed线性化方法框架\n\n\nP1 编写线性化理论手册 done\nP1 上手Bladed \\ fast 线性化功能研究OpenFAST线性化实现原理 done","x":-700,"y":134,"width":440,"height":560},
{"id":"30cb7486dc4e224c","type":"text","text":"# 8月已完成\n\n","x":260,"y":134,"width":440,"height":560}, {"id":"30cb7486dc4e224c","type":"text","text":"# 8月已完成\n\n","x":260,"y":134,"width":440,"height":560},
{"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n\t\n- 梳理bladed动力学框架 this week\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n\n\n\n\nP1 控制信号到多体\n\nP1 线性化方法编写\n\n\n\n\nP1 产出的报告 线性化理论手册编写\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-597,"y":-693,"width":453,"height":347} {"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 柔性部件 叶片、塔架主动力惯性力算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n\t\n- 梳理bladed动力学框架 this week\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n\n\nP1 线性化方法编写\n\n\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-597,"y":-693,"width":453,"height":347}
], ],
"edges":[] "edges":[]
} }

Binary file not shown.

View File

@ -4,8 +4,8 @@
{"id":"85cce24e1132f21f","type":"text","text":"# 目标:海龟 短剧 AI项目推进\n### 每周盘点一下它们\n\n\n关键结果海龟系统现在版本测试 9/10\n\n关键结果公众号系统实现5/10\n\n关键结果文献调研智能体搭建 5/10","x":34,"y":-573,"width":456,"height":347}, {"id":"85cce24e1132f21f","type":"text","text":"# 目标:海龟 短剧 AI项目推进\n### 每周盘点一下它们\n\n\n关键结果海龟系统现在版本测试 9/10\n\n关键结果公众号系统实现5/10\n\n关键结果文献调研智能体搭建 5/10","x":34,"y":-573,"width":456,"height":347},
{"id":"52c483d4870680c3","type":"text","text":"# 推进计划\nRag系统、agent系统调研\n新闻 公众号\n小说推广系统 可能容易实现一些\n","x":-490,"y":-186,"width":456,"height":347}, {"id":"52c483d4870680c3","type":"text","text":"# 推进计划\nRag系统、agent系统调研\n新闻 公众号\n小说推广系统 可能容易实现一些\n","x":-490,"y":-186,"width":456,"height":347},
{"id":"0b25ceb1c28f6da1","type":"text","text":"# 六月已完成\n\nP1 海龟系统测试\n- 代理测试5分钟间隔全天监控成功1次\n- 代理池增加,但是没用\n- yiy.one.config会变 检测是否变化,重新修改以及重新加载 done\n- 邮件服务器连接使用代理 done\n","x":-482,"y":240,"width":440,"height":340}, {"id":"0b25ceb1c28f6da1","type":"text","text":"# 六月已完成\n\nP1 海龟系统测试\n- 代理测试5分钟间隔全天监控成功1次\n- 代理池增加,但是没用\n- yiy.one.config会变 检测是否变化,重新修改以及重新加载 done\n- 邮件服务器连接使用代理 done\n","x":-482,"y":240,"width":440,"height":340},
{"id":"b79f3a0f35402ec1","type":"text","text":"# 七月已完成\n\nP1 短剧使用AI生成解说视频功能跑通\n\nP1 短剧使用AI生成解说视频\n- 提示词更新,流程缩减 done\n- 考虑增加解说词长度 完成\n\nP1 交易系统 pass 也要增加冷却时间 done\n\nP1 公众号系统工作流 done\n- 每天的文章改名字\n- 控制一批处理新闻的数量加个loop加一个wait\n- 加个ai控制主题别重复\n\n","x":34,"y":240,"width":440,"height":340}, {"id":"b79f3a0f35402ec1","type":"text","text":"# 七月已完成\n\nP1 短剧使用AI生成解说视频功能跑通\n\nP1 短剧使用AI生成解说视频\n- 提示词更新,流程缩减 done\n- 考虑增加解说词长度 完成\n\nP1 交易系统 pass 也要增加冷却时间 done\n\nP1 公众号系统工作流 done\n- 每天的文章改名字\n- 控制一批处理新闻的数量加个loop加一个wait\n- 加个ai控制主题别重复\n- 做一个封面图,以后就用一个\n\n","x":34,"y":240,"width":440,"height":340},
{"id":"5aac58c184e57887","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 短剧使用AI生成解说视频\n- 使用剪映草稿 手动生成\n- 测试n8n加剪映草稿 能否成功\n\n\nP1 n8n搭建YouTube发布工作流 自动化的火柴人心理学视频、ai切东西\n\nP1 公众号项目\n- 做一个封面图,以后就用一个\n\n\n\n\n","x":-490,"y":-573,"width":450,"height":347} {"id":"5aac58c184e57887","type":"text","text":"# 计划\n这周要做的3~5件重要的事情这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP1 短剧使用AI生成解说视频\n- 使用剪映草稿 手动生成\n- 测试n8n加剪映草稿 能否成功\n\n\nP1 n8n搭建YouTube发布工作流 自动化的火柴人心理学视频、ai切东西\n\nP1 公众号项目\n- 定时发布\n\nP1 suno youtube视频\n- 生成音频\n- 创建人物形象 lora\n- logo\n- 名字\n- 横幅\n- 动画\n\n\n\n","x":-490,"y":-573,"width":450,"height":347}
], ],
"edges":[] "edges":[]
} }