vault backup: 2025-07-29 09:53:47
This commit is contained in:
parent
74c7bbf43f
commit
b6507358fd
@ -99,19 +99,21 @@ $$
|
||||
for $i=1,2,\dots,N_{D}$ . Here, the first term constitutes the acceleration dependent forces, whereas the other terms are only dependent on the time $t$ and the statevariables, the displacements $\mathbf{q}$ and velocities $\dot{\mathbf{q}}$ . We will now take a closer look at the first four inertia force terms given by the kinetic energy.
|
||||
|
||||
The total kinetic energy is the integral of the kinetic energy of each particle over the entire volume $\mathcal{V}$ of the structure:
|
||||
对于 $i=1,2,\dots,N_{D}$。其中,第一项构成与加速度相关的力,而其他项仅取决于时间 $t$ 和状态变量,即位移 $\mathbf{q}$ 和速度 $\dot{\mathbf{q}}$。我们现在将仔细研究由动能给出的前四项惯性力。
|
||||
|
||||
总动能是结构在整个体积 $\mathcal{V}$ 上每个粒子的动能积分:
|
||||
$$
|
||||
T=\int_{\mathcal{V}}\frac{1}{2}\;\rho\;\dot{\mathbf{r}}^{T}\dot{\mathbf{r}}\;d\mathcal{V}
|
||||
$$
|
||||
|
||||
where $()^{T}$ denotes to the transpose of a matrix or a vector (single columned matrix), and r˙ is the velocity vector of the particle given as the time derivative of its position vector $\boldsymbol{\mathsf{r}}=\boldsymbol{\mathsf{r}}(t,\mathbf{q})$ that may be explicit timedependent e.g. for substructures that are rotating with a prescribed average speed. The velocity vector can be expanded to
|
||||
|
||||
where $()^{T}$ denotes to the transpose of a matrix or a vector (single columned matrix), and r˙ is the velocity vector of the particle given as the time derivative of its position vector $\boldsymbol{\mathsf{r}}=\boldsymbol{\mathsf{r}}(t,\mathbf{q})$ that may be explicit time dependent e.g. for substructures that are rotating with a prescribed average speed. The velocity vector can be expanded to
|
||||
其中 $()^{T}$ 表示矩阵或向量(单列矩阵)的转置,$\dot{\mathbf{r}}$ 是粒子的速度向量,表示为其位置向量 $\boldsymbol{\mathsf{r}}=\boldsymbol{\mathsf{r}}(t,\mathbf{q})$ 的时间导数,该位置向量可能显式地依赖于时间,例如对于以给定平均速度旋转的子结构。速度向量可以展开为
|
||||
$$
|
||||
\dot{\pmb{r}}=\frac{d\pmb{r}}{d t}=\sum_{j=1}^{N_{D}}\frac{\partial\pmb{r}}{\partial q_{j}}\dot{q}_{j}+\frac{\partial\pmb{r}}{\partial t}
|
||||
$$
|
||||
|
||||
from which these properties of the position and velocity vectors can be shown
|
||||
|
||||
从中可以证明位置和速度向量的这些特性
|
||||
$$
|
||||
{\frac{\partial{\dot{\mathbf{r}}}}{\partial{\dot{q}}_{i}}}={\frac{\partial\mathbf{r}}{\partial q_{i}}}\quad{\mathsf{a n d}}\quad{\frac{\partial^{2}{\dot{\mathbf{r}}}}{\partial{\dot{q}}_{i}\partial q_{j}}}={\frac{\partial\mathbf{r}}{\partial q_{i}\partial q_{j}}}={\frac{\partial^{2}{\dot{\mathbf{r}}}}{\partial q_{i}\partial{\dot{q}}_{j}}}
|
||||
$$
|
||||
|
Loading…
x
Reference in New Issue
Block a user