From 9c12c9c17732b1d526837b5ce48a034a6c68ac88 Mon Sep 17 00:00:00 2001 From: yize Date: Wed, 20 Aug 2025 10:12:56 +0800 Subject: [PATCH] vault backup: 2025-08-20 10:12:54 --- .obsidian/plugins/copilot/data.json | 8 +- .../auto/CASEstab_theory_manual.md | 139 ++++++++++++------ 2 files changed, 97 insertions(+), 50 deletions(-) diff --git a/.obsidian/plugins/copilot/data.json b/.obsidian/plugins/copilot/data.json index 6b239b5..8879700 100644 --- a/.obsidian/plugins/copilot/data.json +++ b/.obsidian/plugins/copilot/data.json @@ -144,8 +144,8 @@ "provider": "google", "enabled": true, "isBuiltIn": false, - "baseUrl": "http://60.205.246.14:8000", - "apiKey": "gyz", + "baseUrl": "https://generativelanguage.googleapis.com", + "apiKey": "AIzaSyC9DWwXIbAjfhTTHNwCRAIckuZWRFzqYhA", "isEmbeddingModel": false, "capabilities": [ "reasoning", @@ -153,8 +153,8 @@ "websearch" ], "stream": true, - "enableCors": true, - "displayName": "gemini-2.5-flash" + "displayName": "gemini-2.5-flash-gemini", + "enableCors": true }, { "name": "gemini-2.5-pro", diff --git a/书籍/力学书籍/CASEstab_theory_manual/auto/CASEstab_theory_manual.md b/书籍/力学书籍/CASEstab_theory_manual/auto/CASEstab_theory_manual.md index c60ece6..2e44cfc 100644 --- a/书籍/力学书籍/CASEstab_theory_manual/auto/CASEstab_theory_manual.md +++ b/书籍/力学书籍/CASEstab_theory_manual/auto/CASEstab_theory_manual.md @@ -1246,129 +1246,176 @@ $$ $$ where the first derivatives of the coefficient vectors $\mathbf{r}_{a c,1,b,n,m,p,q_{i}}$ for $m=1,\dots,N_{a,b,n}-1$ are - +其中系数向量 $\mathbf{r}_{a c,1,b,n,m,p,q_{i}}$ 对于 $m=1,\dots,N_{a,b,n}-1$ 的一阶导数为 $$ -\begin{array}{r}{\mathbf{r}_{a c,1,b,n,m,p,q_{i}}=\left\{\begin{array}{l l}{\mathbf{r}_{o,b,n,p,q_{i}}+c_{a c,x,b,n,m,0}\mathbf{r}_{x,b,n,p,q_{i}}+c_{a c,y,b,n,m,0}\mathbf{r}_{y,b,n,p,q_{i}}\qquad\qquad p=0}\\ {\qquad}&{\qquad}\\ {\mathbf{r}_{o,b,n,p,q_{i}}+c_{a c,x,b,n,m,0}\mathbf{r}_{x,b,n,p,q_{i}}+c_{a c,y,b,n,m,0}\mathbf{r}_{y,b,n,p,q_{i}}}\\ {\qquad+c_{a c,x,b,n,m,1}\mathbf{r}_{x,b,n,p-1,q_{i}}+c_{a c,y,b,n,m,1}\mathbf{r}_{y,b,n,p-1,q_{i}}\qquad\forall p\in[1:P+3]}\\ {\qquad}&{\qquad}\\ {c_{a c,x,b,n,m,1}\mathbf{r}_{x,b,n,p-1,q_{i}}+c_{a c,y,b,n,m,1}\mathbf{r}_{y,b,n,p-1,q_{i}}\qquad\qquad p=P+4}\end{array}\right.}\end{array} +\begin{array}{r}{\mathbf{r}_{a c,1,b,n,m,p,q_{i}}=\left\{\begin{array}{l l}{\mathbf{r}_{o,b,n,p,q_{i}}+c_{a c,x,b,n,m,0}\mathbf{r}_{x,b,n,p,q_{i}}+c_{a c,y,b,n,m,0}\mathbf{r}_{y,b,n,p,q_{i}}\qquad\qquad p=0}\\ {\qquad}&{\qquad}\\ {\mathbf{r}_{o,b,n,p,q_{i}}+c_{a c,x,b,n,m,0}\mathbf{r}_{x,b,n,p,q_{i}}+c_{a c,y,b,n,m,0}\mathbf{r}_{y,b,n,p,q_{i}}}\\ {\qquad+c_{a c,x,b,n,m,1}\mathbf{r}_{x,b,n,p-1,q_{i}}+c_{a c,y,b,n,m,1}\mathbf{r}_{y,b,n,p-1,q_{i}}\qquad\forall p\in[1:P+3]}\\ {\qquad}&{\qquad}\\ {c_{a c,x,b,n,m,1}\mathbf{r}_{x,b,n,p-1,q_{i}}+c_{a c,y,b,n,m,1}\mathbf{r}_{y,b,n,p-1,q_{i}}\qquad\qquad p=P+4}\end{array}\right.}\end{array}\tag{3.17} $$ where the coefficient vectors are given by (1.57). Although the second DOF derivatives are not needed for the integrations of generalized aerodynamic forces in (2.18) and (2.19), we will need them later for a linearization of these generalized forces. The second DOF derivatives of $\mathbf{r}_{a c,1,b,n}$ are - +其中系数向量由(1.57)给出。尽管在(2.18)和(2.19)中广义气动力的积分不需要二阶DOF导数,但我们稍后将需要它们来对这些广义力进行线性化。$\mathbf{r}_{a c,1,b,n}$的二阶DOF导数为 $$ -\mathbf{r}_{a c,1,b,n,q_{i},q_{j}}=\left\{\begin{array}{c c}{\sum_{p=0}^{P+4}\mathbf{r}_{a c,1,b,n,1,p,q_{i},q_{j}}\;\zeta^{p}}&{a_{b,n,1}\leq\zeta