vault backup: 2025-07-29 08:19:35

This commit is contained in:
aGYZ 2025-07-29 08:19:36 +08:00
parent 8925bd9206
commit 74c7bbf43f
2 changed files with 26 additions and 7 deletions

View File

@ -155,6 +155,23 @@
"stream": true, "stream": true,
"enableCors": true, "enableCors": true,
"displayName": "gemini-2.5-flash" "displayName": "gemini-2.5-flash"
},
{
"name": "gemini-2.5-pro",
"provider": "google",
"enabled": true,
"isBuiltIn": false,
"baseUrl": "http://60.205.246.14:8000",
"apiKey": "gyz",
"isEmbeddingModel": false,
"capabilities": [
"reasoning",
"vision",
"websearch"
],
"stream": true,
"displayName": "gemini-2.5-pro",
"enableCors": true
} }
], ],
"activeEmbeddingModels": [ "activeEmbeddingModels": [
@ -285,7 +302,7 @@
"name": "Translate to Chinese", "name": "Translate to Chinese",
"prompt": "<instruction>Translate the text below into Chinese:\n 1. Preserve the meaning and tone\n 2. Maintain appropriate cultural context\n 3. Keep formatting and structure\n \n </instruction>\n\n<text>{copilot-selection}</text>\n<restrictions>\n1. Blade翻译为叶片flapwise翻译为挥舞edgewise翻译为摆振pitch angle翻译成变桨角度twist angle翻译为扭角rotor翻译为风轮turbine、wind turbine翻译为机组、风电机组span翻译为展向deflection翻译为变形mode翻译为模态normal mode翻译为简正模态jacket 翻译为导管架superelement翻译为超单元shaft翻译为主轴azimuth、azimuth angle翻译为方位角neutral axes 翻译为中性轴\n2. Return only the translated text.\n</restrictions>", "prompt": "<instruction>Translate the text below into Chinese:\n 1. Preserve the meaning and tone\n 2. Maintain appropriate cultural context\n 3. Keep formatting and structure\n \n </instruction>\n\n<text>{copilot-selection}</text>\n<restrictions>\n1. Blade翻译为叶片flapwise翻译为挥舞edgewise翻译为摆振pitch angle翻译成变桨角度twist angle翻译为扭角rotor翻译为风轮turbine、wind turbine翻译为机组、风电机组span翻译为展向deflection翻译为变形mode翻译为模态normal mode翻译为简正模态jacket 翻译为导管架superelement翻译为超单元shaft翻译为主轴azimuth、azimuth angle翻译为方位角neutral axes 翻译为中性轴\n2. Return only the translated text.\n</restrictions>",
"showInContextMenu": true, "showInContextMenu": true,
"modelKey": "gemma3:12b|ollama" "modelKey": "gemini-2.5-flash|google"
}, },
{ {
"name": "Summarize", "name": "Summarize",
@ -351,7 +368,7 @@
"name": "check formula", "name": "check formula",
"prompt": "<instruct>This formula is wrong, cannot display in latex. check formula \nreturn only corrected formula in latex </instruct>\n\n<text>{copilot-selection}</text>", "prompt": "<instruct>This formula is wrong, cannot display in latex. check formula \nreturn only corrected formula in latex </instruct>\n\n<text>{copilot-selection}</text>",
"showInContextMenu": true, "showInContextMenu": true,
"modelKey": "phi4:latest|ollama" "modelKey": "gemini-2.5-flash|google"
} }
] ]
} }

View File

@ -71,25 +71,27 @@ E.3 Miscellaneous formulas 39
# 1 Structural equations of motion # 1 Structural equations of motion
This chapter contains the derivations of the nonlinear equations of motion based on the kinematic formulation of articulated substructures to form the entire turbine structure. This chapter contains the derivations of the nonlinear equations of motion based on the kinematic formulation of articulated substructures to form the entire turbine structure.
本章包含基于铰接子结构运动学公式的非线性运动方程的推导,以形成整个机组结构。
# 1.1 Lagrange equations of articulated substructures # 1.1 Lagrange equations of articulated substructures
The Lagrangian of a structure ${\cal{L}}=T-V$ is given by its total kinetic energy $T$ and the total potential energy $V$ of the conservative forces acting on the structure, e.g. gravity and elastic forces. Using Lagranges equations, the nonlinear equations of motion can be derived as The Lagrangian of a structure ${{L}}=T-V$ is given by its total kinetic energy $T$ and the total potential energy $V$ of the conservative forces acting on the structure, e.g. gravity and elastic forces. Using Lagranges equations, the nonlinear equations of motion can be derived as
结构的拉格朗日量 ${{L}}=T-V$ 由其总动能 $T$ 和作用在结构上的保守力(例如重力和弹力)的总势能 $V$ 给出。利用拉格朗日方程,可以推导出非线性运动方程,如下所示:
$$ $$
{\frac{d}{d t}}\left({\frac{\partial L}{\partial{\dot{q}}_{i}}}\right)-{\frac{\partial L}{\partial q_{i}}}+{\frac{\partial D}{\partial{\dot{q}}_{i}}}=Q_{i}\;\;{\mathsf{f o r}}\;\;i=1,\ldots,N_{D} {\frac{d}{d t}}\left({\frac{\partial L}{\partial{\dot{q}}_{i}}}\right)-{\frac{\partial L}{\partial q_{i}}}+{\frac{\partial D}{\partial{\dot{q}}_{i}}}=Q_{i}\;\;{\mathsf{f o r}}\;\;i=1,\ldots,N_{D}
$$ $$
where $D$ is the Rayleigh dissipation function used to model the internal energy dissipation, and $Q_{i}$ is the gen­ eralized force for the generalized coordinate $q_{i}$ due to non­conservative forces handled in the next sections. where $D$ is the Rayleigh dissipation function used to model the internal energy dissipation, and $Q_{i}$ is the gen­eralized force for the generalized coordinate $q_{i}$ due to non­conservative forces handled in the next sections.
The Lagrangian is a function of the displacements, velocities, and time The Lagrangian is a function of the displacements, velocities, and time
其中 $D$ 是用于模拟内能耗散的瑞利耗散函数,$Q_{i}$ 是由于下一节中处理的非保守力而作用于广义坐标 $q_{i}$ 的广义力。
拉格朗日量是位移、速度和时间的函数。
$$ $$
L=T\left(t,\mathbf{q},{\dot{\mathbf{q}}}\right)-V\left(t,\mathbf{q}\right) L=T\left(t,\mathbf{q},{\dot{\mathbf{q}}}\right)-V\left(t,\mathbf{q}\right)
$$ $$
where the potential energy of the conservative forces are independent of velocities. Using (1.2) and the chain rule, the first term of (1.1) can be expanded as where the potential energy of the conservative forces are independent of velocities. Using (1.2) and the chain rule, the first term of (1.1) can be expanded as
其中保守力的势能与速度无关。利用(1.2)和链式法则,(1.1)的第一项可以展开为
$$ $$
\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial{\dot{q}}_{j}}{\ddot{q}}_{j}+\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial q_{j}}{\dot{q}}_{j}+\frac{\partial}{\partial t}\bigg(\frac{\partial T}{\partial{\dot{q}}_{i}}\bigg)-\frac{\partial T}{\partial q_{i}}+\frac{\partial D}{\partial{\dot{q}}_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i} \sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial{\dot{q}}_{j}}{\ddot{q}}_{j}+\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial q_{j}}{\dot{q}}_{j}+\frac{\partial}{\partial t}\bigg(\frac{\partial T}{\partial{\dot{q}}_{i}}\bigg)-\frac{\partial T}{\partial q_{i}}+\frac{\partial D}{\partial{\dot{q}}_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i}
$$ $$