diff --git a/.obsidian/plugins/copilot/data.json b/.obsidian/plugins/copilot/data.json index cde47f3..6b239b5 100644 --- a/.obsidian/plugins/copilot/data.json +++ b/.obsidian/plugins/copilot/data.json @@ -155,6 +155,23 @@ "stream": true, "enableCors": true, "displayName": "gemini-2.5-flash" + }, + { + "name": "gemini-2.5-pro", + "provider": "google", + "enabled": true, + "isBuiltIn": false, + "baseUrl": "http://60.205.246.14:8000", + "apiKey": "gyz", + "isEmbeddingModel": false, + "capabilities": [ + "reasoning", + "vision", + "websearch" + ], + "stream": true, + "displayName": "gemini-2.5-pro", + "enableCors": true } ], "activeEmbeddingModels": [ @@ -285,7 +302,7 @@ "name": "Translate to Chinese", "prompt": "Translate the text below into Chinese:\n 1. Preserve the meaning and tone\n 2. Maintain appropriate cultural context\n 3. Keep formatting and structure\n \n \n\n{copilot-selection}\n\n1. Blade翻译为叶片,flapwise翻译为挥舞,edgewise翻译为摆振,pitch angle翻译成变桨角度,twist angle翻译为扭角,rotor翻译为风轮,turbine、wind turbine翻译为机组、风电机组,span翻译为展向,deflection翻译为变形,mode翻译为模态,normal mode翻译为简正模态,jacket 翻译为导管架,superelement翻译为超单元,shaft翻译为主轴,azimuth、azimuth angle翻译为方位角,neutral axes 翻译为中性轴\n2. Return only the translated text.\n", "showInContextMenu": true, - "modelKey": "gemma3:12b|ollama" + "modelKey": "gemini-2.5-flash|google" }, { "name": "Summarize", @@ -351,7 +368,7 @@ "name": "check formula", "prompt": "This formula is wrong, cannot display in latex. check formula \nreturn only corrected formula in latex \n\n{copilot-selection}", "showInContextMenu": true, - "modelKey": "phi4:latest|ollama" + "modelKey": "gemini-2.5-flash|google" } ] } \ No newline at end of file diff --git a/书籍/力学书籍/CASEstab_theory_manual/auto/CASEstab_theory_manual.md b/书籍/力学书籍/CASEstab_theory_manual/auto/CASEstab_theory_manual.md index e6726d3..7e6be8d 100644 --- a/书籍/力学书籍/CASEstab_theory_manual/auto/CASEstab_theory_manual.md +++ b/书籍/力学书籍/CASEstab_theory_manual/auto/CASEstab_theory_manual.md @@ -71,25 +71,27 @@ E.3 Miscellaneous formulas 39 # 1 Structural equations of motion This chapter contains the derivations of the nonlinear equations of motion based on the kinematic formulation of articulated substructures to form the entire turbine structure. - +本章包含基于铰接子结构运动学公式的非线性运动方程的推导,以形成整个机组结构。 # 1.1 Lagrange equations of articulated substructures -The Lagrangian of a structure ${\cal{L}}=T-V$ is given by its total kinetic energy $T$ and the total potential energy $V$ of the conservative forces acting on the structure, e.g. gravity and elastic forces. Using Lagrange’s equations, the nonlinear equations of motion can be derived as - +The Lagrangian of a structure ${{L}}=T-V$ is given by its total kinetic energy $T$ and the total potential energy $V$ of the conservative forces acting on the structure, e.g. gravity and elastic forces. Using Lagrange’s equations, the nonlinear equations of motion can be derived as +结构的拉格朗日量 ${{L}}=T-V$ 由其总动能 $T$ 和作用在结构上的保守力(例如重力和弹力)的总势能 $V$ 给出。利用拉格朗日方程,可以推导出非线性运动方程,如下所示: $$ {\frac{d}{d t}}\left({\frac{\partial L}{\partial{\dot{q}}_{i}}}\right)-{\frac{\partial L}{\partial q_{i}}}+{\frac{\partial D}{\partial{\dot{q}}_{i}}}=Q_{i}\;\;{\mathsf{f o r}}\;\;i=1,\ldots,N_{D} $$ -where $D$ is the Rayleigh dissipation function used to model the internal energy dissipation, and $Q_{i}$ is the gen­ eralized force for the generalized coordinate $q_{i}$ due to non­conservative forces handled in the next sections. +where $D$ is the Rayleigh dissipation function used to model the internal energy dissipation, and $Q_{i}$ is the gen­eralized force for the generalized coordinate $q_{i}$ due to non­conservative forces handled in the next sections. The Lagrangian is a function of the displacements, velocities, and time +其中 $D$ 是用于模拟内能耗散的瑞利耗散函数,$Q_{i}$ 是由于下一节中处理的非保守力而作用于广义坐标 $q_{i}$ 的广义力。 +拉格朗日量是位移、速度和时间的函数。 $$ L=T\left(t,\mathbf{q},{\dot{\mathbf{q}}}\right)-V\left(t,\mathbf{q}\right) $$ where the potential energy of the conservative forces are independent of velocities. Using (1.2) and the chain rule, the first term of (1.1) can be expanded as - +其中保守力的势能与速度无关。利用(1.2)和链式法则,(1.1)的第一项可以展开为 $$ \sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial{\dot{q}}_{j}}{\ddot{q}}_{j}+\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial q_{j}}{\dot{q}}_{j}+\frac{\partial}{\partial t}\bigg(\frac{\partial T}{\partial{\dot{q}}_{i}}\bigg)-\frac{\partial T}{\partial q_{i}}+\frac{\partial D}{\partial{\dot{q}}_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i} $$