vault backup: 2025-07-29 08:19:35

This commit is contained in:
aGYZ 2025-07-29 08:19:36 +08:00
parent 8925bd9206
commit 74c7bbf43f
2 changed files with 26 additions and 7 deletions

View File

@ -155,6 +155,23 @@
"stream": true,
"enableCors": true,
"displayName": "gemini-2.5-flash"
},
{
"name": "gemini-2.5-pro",
"provider": "google",
"enabled": true,
"isBuiltIn": false,
"baseUrl": "http://60.205.246.14:8000",
"apiKey": "gyz",
"isEmbeddingModel": false,
"capabilities": [
"reasoning",
"vision",
"websearch"
],
"stream": true,
"displayName": "gemini-2.5-pro",
"enableCors": true
}
],
"activeEmbeddingModels": [
@ -285,7 +302,7 @@
"name": "Translate to Chinese",
"prompt": "<instruction>Translate the text below into Chinese:\n 1. Preserve the meaning and tone\n 2. Maintain appropriate cultural context\n 3. Keep formatting and structure\n \n </instruction>\n\n<text>{copilot-selection}</text>\n<restrictions>\n1. Blade翻译为叶片flapwise翻译为挥舞edgewise翻译为摆振pitch angle翻译成变桨角度twist angle翻译为扭角rotor翻译为风轮turbine、wind turbine翻译为机组、风电机组span翻译为展向deflection翻译为变形mode翻译为模态normal mode翻译为简正模态jacket 翻译为导管架superelement翻译为超单元shaft翻译为主轴azimuth、azimuth angle翻译为方位角neutral axes 翻译为中性轴\n2. Return only the translated text.\n</restrictions>",
"showInContextMenu": true,
"modelKey": "gemma3:12b|ollama"
"modelKey": "gemini-2.5-flash|google"
},
{
"name": "Summarize",
@ -351,7 +368,7 @@
"name": "check formula",
"prompt": "<instruct>This formula is wrong, cannot display in latex. check formula \nreturn only corrected formula in latex </instruct>\n\n<text>{copilot-selection}</text>",
"showInContextMenu": true,
"modelKey": "phi4:latest|ollama"
"modelKey": "gemini-2.5-flash|google"
}
]
}

View File

@ -71,25 +71,27 @@ E.3 Miscellaneous formulas 39
# 1 Structural equations of motion
This chapter contains the derivations of the nonlinear equations of motion based on the kinematic formulation of articulated substructures to form the entire turbine structure.
本章包含基于铰接子结构运动学公式的非线性运动方程的推导,以形成整个机组结构。
# 1.1 Lagrange equations of articulated substructures
The Lagrangian of a structure ${\cal{L}}=T-V$ is given by its total kinetic energy $T$ and the total potential energy $V$ of the conservative forces acting on the structure, e.g. gravity and elastic forces. Using Lagranges equations, the nonlinear equations of motion can be derived as
The Lagrangian of a structure ${{L}}=T-V$ is given by its total kinetic energy $T$ and the total potential energy $V$ of the conservative forces acting on the structure, e.g. gravity and elastic forces. Using Lagranges equations, the nonlinear equations of motion can be derived as
结构的拉格朗日量 ${{L}}=T-V$ 由其总动能 $T$ 和作用在结构上的保守力(例如重力和弹力)的总势能 $V$ 给出。利用拉格朗日方程,可以推导出非线性运动方程,如下所示:
$$
{\frac{d}{d t}}\left({\frac{\partial L}{\partial{\dot{q}}_{i}}}\right)-{\frac{\partial L}{\partial q_{i}}}+{\frac{\partial D}{\partial{\dot{q}}_{i}}}=Q_{i}\;\;{\mathsf{f o r}}\;\;i=1,\ldots,N_{D}
$$
where $D$ is the Rayleigh dissipation function used to model the internal energy dissipation, and $Q_{i}$ is the gen­ eralized force for the generalized coordinate $q_{i}$ due to non­conservative forces handled in the next sections.
where $D$ is the Rayleigh dissipation function used to model the internal energy dissipation, and $Q_{i}$ is the gen­eralized force for the generalized coordinate $q_{i}$ due to non­conservative forces handled in the next sections.
The Lagrangian is a function of the displacements, velocities, and time
其中 $D$ 是用于模拟内能耗散的瑞利耗散函数,$Q_{i}$ 是由于下一节中处理的非保守力而作用于广义坐标 $q_{i}$ 的广义力。
拉格朗日量是位移、速度和时间的函数。
$$
L=T\left(t,\mathbf{q},{\dot{\mathbf{q}}}\right)-V\left(t,\mathbf{q}\right)
$$
where the potential energy of the conservative forces are independent of velocities. Using (1.2) and the chain rule, the first term of (1.1) can be expanded as
其中保守力的势能与速度无关。利用(1.2)和链式法则,(1.1)的第一项可以展开为
$$
\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial{\dot{q}}_{j}}{\ddot{q}}_{j}+\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial q_{j}}{\dot{q}}_{j}+\frac{\partial}{\partial t}\bigg(\frac{\partial T}{\partial{\dot{q}}_{i}}\bigg)-\frac{\partial T}{\partial q_{i}}+\frac{\partial D}{\partial{\dot{q}}_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i}
$$