vault backup: 2025-07-29 08:19:35
This commit is contained in:
parent
8925bd9206
commit
74c7bbf43f
21
.obsidian/plugins/copilot/data.json
vendored
21
.obsidian/plugins/copilot/data.json
vendored
@ -155,6 +155,23 @@
|
||||
"stream": true,
|
||||
"enableCors": true,
|
||||
"displayName": "gemini-2.5-flash"
|
||||
},
|
||||
{
|
||||
"name": "gemini-2.5-pro",
|
||||
"provider": "google",
|
||||
"enabled": true,
|
||||
"isBuiltIn": false,
|
||||
"baseUrl": "http://60.205.246.14:8000",
|
||||
"apiKey": "gyz",
|
||||
"isEmbeddingModel": false,
|
||||
"capabilities": [
|
||||
"reasoning",
|
||||
"vision",
|
||||
"websearch"
|
||||
],
|
||||
"stream": true,
|
||||
"displayName": "gemini-2.5-pro",
|
||||
"enableCors": true
|
||||
}
|
||||
],
|
||||
"activeEmbeddingModels": [
|
||||
@ -285,7 +302,7 @@
|
||||
"name": "Translate to Chinese",
|
||||
"prompt": "<instruction>Translate the text below into Chinese:\n 1. Preserve the meaning and tone\n 2. Maintain appropriate cultural context\n 3. Keep formatting and structure\n \n </instruction>\n\n<text>{copilot-selection}</text>\n<restrictions>\n1. Blade翻译为叶片,flapwise翻译为挥舞,edgewise翻译为摆振,pitch angle翻译成变桨角度,twist angle翻译为扭角,rotor翻译为风轮,turbine、wind turbine翻译为机组、风电机组,span翻译为展向,deflection翻译为变形,mode翻译为模态,normal mode翻译为简正模态,jacket 翻译为导管架,superelement翻译为超单元,shaft翻译为主轴,azimuth、azimuth angle翻译为方位角,neutral axes 翻译为中性轴\n2. Return only the translated text.\n</restrictions>",
|
||||
"showInContextMenu": true,
|
||||
"modelKey": "gemma3:12b|ollama"
|
||||
"modelKey": "gemini-2.5-flash|google"
|
||||
},
|
||||
{
|
||||
"name": "Summarize",
|
||||
@ -351,7 +368,7 @@
|
||||
"name": "check formula",
|
||||
"prompt": "<instruct>This formula is wrong, cannot display in latex. check formula \nreturn only corrected formula in latex </instruct>\n\n<text>{copilot-selection}</text>",
|
||||
"showInContextMenu": true,
|
||||
"modelKey": "phi4:latest|ollama"
|
||||
"modelKey": "gemini-2.5-flash|google"
|
||||
}
|
||||
]
|
||||
}
|
@ -71,25 +71,27 @@ E.3 Miscellaneous formulas 39
|
||||
# 1 Structural equations of motion
|
||||
|
||||
This chapter contains the derivations of the nonlinear equations of motion based on the kinematic formulation of articulated substructures to form the entire turbine structure.
|
||||
|
||||
本章包含基于铰接子结构运动学公式的非线性运动方程的推导,以形成整个机组结构。
|
||||
# 1.1 Lagrange equations of articulated substructures
|
||||
|
||||
The Lagrangian of a structure ${\cal{L}}=T-V$ is given by its total kinetic energy $T$ and the total potential energy $V$ of the conservative forces acting on the structure, e.g. gravity and elastic forces. Using Lagrange’s equations, the nonlinear equations of motion can be derived as
|
||||
|
||||
The Lagrangian of a structure ${{L}}=T-V$ is given by its total kinetic energy $T$ and the total potential energy $V$ of the conservative forces acting on the structure, e.g. gravity and elastic forces. Using Lagrange’s equations, the nonlinear equations of motion can be derived as
|
||||
结构的拉格朗日量 ${{L}}=T-V$ 由其总动能 $T$ 和作用在结构上的保守力(例如重力和弹力)的总势能 $V$ 给出。利用拉格朗日方程,可以推导出非线性运动方程,如下所示:
|
||||
$$
|
||||
{\frac{d}{d t}}\left({\frac{\partial L}{\partial{\dot{q}}_{i}}}\right)-{\frac{\partial L}{\partial q_{i}}}+{\frac{\partial D}{\partial{\dot{q}}_{i}}}=Q_{i}\;\;{\mathsf{f o r}}\;\;i=1,\ldots,N_{D}
|
||||
$$
|
||||
|
||||
where $D$ is the Rayleigh dissipation function used to model the internal energy dissipation, and $Q_{i}$ is the gen eralized force for the generalized coordinate $q_{i}$ due to nonconservative forces handled in the next sections.
|
||||
where $D$ is the Rayleigh dissipation function used to model the internal energy dissipation, and $Q_{i}$ is the generalized force for the generalized coordinate $q_{i}$ due to nonconservative forces handled in the next sections.
|
||||
|
||||
The Lagrangian is a function of the displacements, velocities, and time
|
||||
其中 $D$ 是用于模拟内能耗散的瑞利耗散函数,$Q_{i}$ 是由于下一节中处理的非保守力而作用于广义坐标 $q_{i}$ 的广义力。
|
||||
|
||||
拉格朗日量是位移、速度和时间的函数。
|
||||
$$
|
||||
L=T\left(t,\mathbf{q},{\dot{\mathbf{q}}}\right)-V\left(t,\mathbf{q}\right)
|
||||
$$
|
||||
|
||||
where the potential energy of the conservative forces are independent of velocities. Using (1.2) and the chain rule, the first term of (1.1) can be expanded as
|
||||
|
||||
其中保守力的势能与速度无关。利用(1.2)和链式法则,(1.1)的第一项可以展开为
|
||||
$$
|
||||
\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial{\dot{q}}_{j}}{\ddot{q}}_{j}+\sum_{j=1}^{N_{D}}\frac{\partial^{2}T}{\partial{\dot{q}}_{i}\partial q_{j}}{\dot{q}}_{j}+\frac{\partial}{\partial t}\bigg(\frac{\partial T}{\partial{\dot{q}}_{i}}\bigg)-\frac{\partial T}{\partial q_{i}}+\frac{\partial D}{\partial{\dot{q}}_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i}
|
||||
$$
|
||||
|
Loading…
x
Reference in New Issue
Block a user