diff --git a/.obsidian/plugins/copilot/data.json b/.obsidian/plugins/copilot/data.json index 87cb51e..9ee3207 100644 --- a/.obsidian/plugins/copilot/data.json +++ b/.obsidian/plugins/copilot/data.json @@ -144,8 +144,8 @@ "provider": "google", "enabled": true, "isBuiltIn": false, - "baseUrl": "http://60.205.246.14:8000", - "apiKey": "gyz", + "baseUrl": "", + "apiKey": "AIzaSyAnULu8WrFeKeOpW2SoJdqXGu4FrDcyB2I", "isEmbeddingModel": false, "capabilities": [ "reasoning", @@ -153,7 +153,7 @@ "websearch" ], "stream": true, - "displayName": "gemini-2.5-flash", + "displayName": "gemini-2.5-flash-gemini", "enableCors": true }, { @@ -172,6 +172,21 @@ "stream": true, "displayName": "gemini-2.5-pro", "enableCors": true + }, + { + "name": "gpt-oss:20b", + "provider": "ollama", + "enabled": true, + "isBuiltIn": false, + "baseUrl": "https://possibly-engaged-filly.ngrok-free.app/", + "apiKey": "", + "isEmbeddingModel": false, + "capabilities": [ + "reasoning" + ], + "stream": true, + "displayName": "gpt-oss:20b", + "enableCors": true } ], "activeEmbeddingModels": [ diff --git a/书籍/力学书籍/力学/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library)/auto/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library).md b/书籍/力学书籍/力学/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library)/auto/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library).md index c34836b..50316fe 100644 --- a/书籍/力学书籍/力学/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library)/auto/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library).md +++ b/书籍/力学书籍/力学/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library)/auto/Dynamics of Structures (Ray Clough, Joseph Penzien) (Z-Library).md @@ -983,27 +983,26 @@ $$ The response given by the first term of Eq. (2-29) is depicted in Fig. 2-5 as a vector representing the complex constant $G_{1}$ rotating in the counterclockwise direction with the angular velocity $\omega$ ; also shown are its real and imaginary constants. It will be noted that the resultant response vector $\left(G_{R}+i\,G_{I}\right)\exp(i\omega t)$ leads vector $G_{R}\exp(i\omega t)$ by the phase angle $\theta$ ; moreover it is evident that the response also can be expressed in terms of the absolute value, $\overline{G}$ , and the combined angle $(\omega t+\theta)$ . Examination of the second term of Eq. (2-29) shows that the response associated with it is entirely equivalent to that shown in Fig. 2-5 except that the resultant vector $\overline{{G}}\exp[-i(\omega t\!+\!\theta)]$ is rotating in the clockwise direction and the phase angle by which it leads the component $G_{R}\exp(-i\omega t)$ also is in the clockwise direction. 由方程 (2-29) 的第一项给出的响应在图 2-5 中描绘为一个向量,表示复常数 $G_{1}$ 以角速度 $\omega$ 沿逆时针方向旋转;图中还显示了它的实部和虚部常数。值得注意的是,合响应向量 $\left(G_{R}+i\,G_{I}\right)\exp(i\omega t)$ 以相位角 $\theta$ 超前向量 $G_{R}\exp(i\omega t)$ ;此外,显然响应也可以用绝对值 $\overline{G}$ 和组合角 $(\omega t+\theta)$ 来表示。检查方程 (2-29) 的第二项表明,与之相关的响应与图 2-5 中所示的响应完全等效,不同之处在于合向量 $\overline{{G}}\exp[-i(\omega t\!+\!\theta)]$ 沿顺时针方向旋转,并且它超前分量 $G_{R}\exp(-i\omega t)$ 的相位角也沿顺时针方向。 -The two counter-rotating vectors $\overline{{G}}\exp[i(\omega t+\theta)]$ and $\overline{{G}}\exp[-i(\omega t+\theta)]$ that represent the total free-vibration response given by Eq. (2-29) are shown in Fig. 2-6; -代表由式 (2-29) 给出的总自由振动响应的两个反向旋转向量 $\overline{{G}}\exp[i(\omega t+\theta)]$ 和 $\overline{{G}}\exp[-i(\omega t+\theta)]$ 如 图 2-6 所示; + ![](971b6f64e38f1091af1b6e11ff5c9363f0593ab047d236d237211c3a358ccd87.jpg) FIGURE 2-5 Portrayal of first term of Eq. (2-29). -it is evident here that the imaginary components of the two vectors cancel each other leaving only the real vibratory motion - +The two counter-rotating vectors $\overline{{G}}\exp[i(\omega t+\theta)]$ and $\overline{{G}}\exp[-i(\omega t+\theta)]$ that represent the total free-vibration response given by Eq. (2-29) are shown in Fig. 2-6; it is evident here that the imaginary components of the two vectors cancel each other leaving only the real vibratory motion +代表由式 (2-29) 给出的总自由振动响应的两个反向旋转向量 $\overline{{G}}\exp[i(\omega t+\theta)]$ 和 $\overline{{G}}\exp[-i(\omega t+\theta)]$ 如 图 2-6 所示;此处显而易见,两个向量的虚部相互抵消,只留下真实的振动运动。 $$ v(t)=2\;\overline{{G}}\;\cos(\omega t+\theta) $$ An alternative for this real motion expression may be derived by applying the Euler transformation Eq. (2-23a) to Eq. (2-29), with the result - +这种真实运动表达式的另一种形式可以通过将欧拉变换方程 Eq. (2-23a) 应用于方程 Eq. (2-29) 推导出来,结果是 $$ v(t)=A\,\cos\omega t+B\,\sin\omega t $$ in which $A\,=\,2G_{R}$ and $B\:=\:-2G_{I}$ . The values of these two constants may be determined from the initial conditions, that is, the displacement $v(0)$ and velocity $\dot{v}(0)$ at time $t=0$ when the free vibration was set in motion. Substituting these into Eq. (2-31) and its first time derivative, respectively, it is easy to show that - +其中 $A\,=\,2G_{R}$ 且 $B\:=\:-2G_{I}$ 。这两个常数的值可以根据初始条件确定,即当自由振动开始时,在 $t=0$ 时刻的位移 $v(0)$ 和速度 $\dot{v}(0)$。将这些代入式 (2-31) 及其一阶时间导数,可以很容易地证明 $$ v(0)=A=2G_{R}\qquad\qquad{\frac{\dot{v}(0)}{\omega}}=B=-2G_{I} $$ @@ -1015,12 +1014,12 @@ v(t)=v(0)\ \cos\omega t+{\frac{{\dot{v}}(0)}{\omega}}\ \sin\omega t $$ This solution represents a simple harmonic motion (SHM) and is portrayed graphically in Fig. 2-7. The quantity $\omega$ , which we have identified previously as the angular velocity (measured in radians per unit of time) of the vectors rotating in the complex plane, also is known as the circular frequency. The cyclic frequency, usually referred to as the frequency of motion, is given by - +该解表示一个简谐运动 (SHM),并在图 2-7 中以图形方式描绘。量 $\omega$,我们之前已将其识别为在复平面中旋转的向量的角速度(以弧度每单位时间测量),也称为圆频率。循环频率,通常被称为运动频率,由下式给出 $$ f={\frac{\omega}{2\pi}} $$ -Its reciprocal +Its reciprocal 其倒数 $$ {\frac{1}{f}}={\frac{2\pi}{\omega}}=T @@ -1031,8 +1030,13 @@ FIGURE 2-7 Undamped free-vibration response. is the time required to complete one cycle and is called the period of the motion. Usually for structural and mechanical systems the period $T$ is measured in seconds and the frequency is measured in cycles per second, commonly referred to as Hertz $(H z)$ . -The motion represented by Eq. (2-33) and depicted by Fig. 2-7 also may be interpreted in terms of a pair of vectors, v(0) and v˙(ω0) rotating counter-clockwise in the complex plane with angular velocity $\omega$ , as shown in Fig. 2-8. Using previously stated relations among the free-vibration constants and the initial conditions, it may be seen that Fig. 2-8 is equivalent to Fig. 2-5, but with double amplitude and with a negative phase angle to correspond with positive initial conditions. Accordingly, the amplitude $\rho=2\overline{{G}}$ , and as shown by Eq. (2-30) the free vibration may be expressed as +The motion represented by Eq. (2-33) and depicted by Fig. 2-7 also may be interpreted in terms of a pair of vectors, v(0) and ${\frac{{\dot{v}}(0)}{\omega}}$ rotating counter-clockwise in the complex plane with angular velocity $\omega$ , as shown in Fig. 2-8. Using previously stated relations among the free-vibration constants and the initial conditions, it may be seen that Fig. 2-8 is equivalent to Fig. 2-5, but with double amplitude and with a negative phase angle to correspond with positive initial conditions. Accordingly, the amplitude $\rho=2\overline{{G}}$ , and as shown by Eq. (2-30) the free vibration may be expressed as +是完成一个循环所需的时间,称为运动周期。通常,对于结构和机械系统,周期 $T$ 以秒为单位测量,频率以每秒循环次数测量,通常称为赫兹 $(H z)$。 +![](6a5d4f92e2ed963aed8ef60b2055c027587a098eaf7d50c3d4e1373e2bd35c6c.jpg) +FIGURE 2-8 Rotating vector representation of undamped free vibration. + +由方程式 (2-33) 表示并由图 2-7 描绘的运动也可以根据一对向量 v(0) 和 ${\frac{{\dot{v}}(0)}{\omega}}$ 来解释,它们在复平面中以角速度 $\omega$ 逆时针旋转,如图 2-8 所示。使用先前陈述的自由振动常数和初始条件之间的关系,可以看出图 2-8 等效于图 2-5,但具有双倍振幅和负相位角以对应正初始条件。因此,振幅 $\rho=2\overline{{G}}$,并且如方程式 (2-30) 所示,自由振动可以表示为 $$ v(t)=\rho\,\cos(\omega t+\theta) $$ @@ -1052,60 +1056,59 @@ $$ # 2-6 DAMPED FREE VIBRATIONS If damping is present in the system, the solution of Eq. (2-25) which defines the response is - +如果系统存在阻尼,定义响应的式 (2-25) 的解是 $$ s_{1,2}=-\frac{c}{2m}\pm\sqrt{\left(\frac{c}{2m}\right)^{2}-\omega^{2}} $$ -Three types of motion are represented by this expression, according to whether the quantity under the square-root sign is positive, negative, or zero. It is convenient to discuss first the case when the radical term vanishes, which is called the criticallydamped condition. +Three types of motion are represented by this expression, according to whether the quantity under the square-root sign is positive, negative, or zero. It is convenient to discuss first the case when the radical term vanishes, which is called the critically-damped condition. +此表达式表示三种运动,具体取决于根号下的量是正、负还是零。方便起见,我们首先讨论根式项消失的情况,这被称为临界阻尼条件。 -![](6a5d4f92e2ed963aed8ef60b2055c027587a098eaf7d50c3d4e1373e2bd35c6c.jpg) -FIGURE 2-8 Rotating vector representation of undamped free vibration. - -# Critically-Damped Systems +## Critically-Damped Systems If the radical term in Eq. (2-39) is set equal to zero, it is evident that $c/2m=\omega$ ; thus, the critical value of the damping coefficient, $c_{c}$ , is - +如果式 (2-39) 中的根号项设为零,显然 $c/2m=\omega$;因此,阻尼系数的临界值 $c_{c}$ 是 $$ c_{c}=2\,m\,\omega $$ Then both values of $s$ given by Eq. (2-39) are the same, i.e., - +那么,由式 (2-39) 给出的 $s$ 的两个值是相同的,即 $$ s_{1}=s_{2}=-\frac{c_{c}}{2m}=-\omega $$ The solution of Eq. (2-20) in this special case must now be of the form - +方程 (2-20) 在这种特殊情况下的解现在必须是以下形式 $$ v(t)=(G_{1}+G_{2}\,t)\;\exp(-\omega t) $$ in which the second term must contain $t$ since the two roots of Eq. (2-25) are identical. Because the exponential term $\exp(-\omega t)$ is a real function, the constants $G_{1}$ and $G_{2}$ must also be real. +其中第二项必须包含 $t$,因为方程 (2-25) 的两个根是重合的。由于指数项 $\exp(-\omega t)$ 是一个实函数,因此常数 $G_{1}$ 和 $G_{2}$ 也必须是实数。 Using the initial conditions $v(0)$ and $\dot{v}(0)$ , these constants can be evaluated leading to - +利用初始条件 $v(0)$ 和 $\dot{v}(0)$,可以求出这些常数,从而得到 $$ v(t)=\big[v(0)\;(1-\omega t)+\dot{v}(0)\;t\big]\;\exp(-\omega t) $$ which is portrayed graphically in Fig. 2-9 for positive values of $v(0)$ and $\dot{v}(0)$ . Note that this free response of a critically-damped system does not include oscillation about the zero-deflection position; instead it simply returns to zero asymptotically in accordance with the exponential term of Eq. (2-43). However, a single zero-displacement crossing would occur if the signs of the initial velocity and displacement were different from each other. A very useful definition of the critically-damped condition described above is that it represents the smallest amount of damping for which no oscillation occurs in the free-vibration response. - +其在图2-9中以图形方式描绘,适用于$v(0)$和$\dot{v}(0)$为正值的情况。注意,临界阻尼系统的这种自由响应不包括围绕零变形位置的振荡;相反,它根据式(2-43)的指数项渐近地返回到零。然而,如果初始速度和位移的符号彼此不同,则会发生单次零位移穿越。上述临界阻尼条件的一个非常有用的定义是,它代表了在自由振动响应中不发生振荡的最小阻尼量。 ![](37469d268c30aa607f662652a1ace851e603e99b13ca0d2c5a2328e1308480ad.jpg) FIGURE 2-9 Free-vibration response with critical damping. -# Undercritically-Damped Systems +## Undercritically-Damped Systems If damping is less than critical, that is, if $c1$ , it is convenient to write Eq. (2-39) in the form diff --git a/工作OKRs/25.9-11 OKR.canvas b/工作OKRs/25.9-11 OKR.canvas index 8ca8f15..7102e61 100644 --- a/工作OKRs/25.9-11 OKR.canvas +++ b/工作OKRs/25.9-11 OKR.canvas @@ -6,7 +6,7 @@ {"id":"82708a439812fdc7","type":"text","text":"# 10月已完成\n\n","x":-220,"y":134,"width":440,"height":560}, {"id":"505acb3e6b119076","type":"text","text":"# 9月已完成\n\nP1 湍流 气动 多体 控制联调 done\n- 5mw 通了\n\t- 纯叶片变形\n\t- 纯塔架变形\n\t- 叶片+塔架变形 ","x":-700,"y":134,"width":440,"height":560}, {"id":"30cb7486dc4e224c","type":"text","text":"# 11月已完成\n\n\n\n","x":260,"y":134,"width":440,"height":560}, - {"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP2 柔性部件 叶片、塔架变形算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n\t\n- 梳理bladed动力学框架\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n- 共旋方法学习\n- DTU 变形量计算方法学习\n\n\nP1 线性化方法编写 搁置\n\nP1 气动、多体、控制、水动联调\nP2 湍流 气动 多体 控制联调 \n- 15mw呢 yaml多个模块都需要支持\n- 更换湍流风\n- dll 32位兼容 - 江\n\nP2 停机工况等调试\n\nP1 bladed对比--稳态,产出报告\n- 模态对比 两种描述方法不同,bladed方向更多,x y z deflection, x y z rotation,不好对比\n- 气动对比 aerodynamic info 轴向切向诱导因子,根部,尖部差距较大\n- 稳态变形量对比\n- 稳态变形量对比 -- steady power production loading、steady parked loading\n\nP1 稳态工况前端对接\n- 是否拆分成单独的bin,等待气动完成后开始\n- 如何接收参数 配置文件 \n\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-597,"y":-803,"width":453,"height":457}, + {"id":"c18d25521d773705","type":"text","text":"# 计划\n这周要做的3~5件重要的事情,这些事情能有效推进实现OKR。\n\nP1 必须做。P2 应该做\n\n\nP2 柔性部件 叶片、塔架变形算法 主线\n- 变形体动力学 简略看看ing\n- 柔性梁弯曲变形振动学习,主线 \n\t- 广义质量 刚度矩阵及含义\n\t\n- 梳理bladed动力学框架\n\t- 子结构文献阅读\n\t- 叶片模型建模 done\n- 共旋方法学习\n- DTU 变形量计算方法学习\n\n\nP1 线性化方法编写 搁置\n\nP1 气动、多体、控制、水动联调\nP2 湍流 气动 多体 控制联调 \n- 15mw呢 yaml多个模块都需要支持\n- 更换湍流风\n- dll 32位兼容 - 江\n\nP2 停机工况等调试\n\nP1 bladed对比--稳态运行载荷,产出报告\n- 模态对比 两种描述方法不同,bladed方向更多,x y z deflection, x y z rotation,不好对比\n- 气动对比 aerodynamic info 轴向切向诱导因子,根部,尖部差距较大\n- 气动新版本稳态跑通 done\n- 如何输出\n- 稳态变形量对比\n- 所有输出量\n\nP1 稳态工况前端对接\n- 是否拆分成单独的bin,等待气动完成后开始\n- 如何接收参数 配置文件 \n\nP1 专利\n\nP2 如何优雅的存储、输出结果。\nP2 yaw 自由度再bug确认 已知原理了\n","x":-597,"y":-803,"width":453,"height":457}, {"id":"86ab96a25a3bf82e","type":"text","text":" 湍流风+ 控制的联调,bladed也算一个算例\n- 加水动的联调\n- 8月份底完成这两个\n- 9月份完成停机等工况测试\n- 10月份明阳实际机型测试","x":580,"y":-803,"width":480,"height":220}, {"id":"e355f33c92cf18ea","type":"text","text":"9月份定常计算对接前端\n非定常测试完也对接前端","x":580,"y":-500,"width":480,"height":100}, {"id":"859e6853b7f1b92b","type":"text","text":"年底考核:\n专利\n线性化模块","x":1200,"y":-803,"width":320,"height":110}